Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Front Immunol ; 15: 1372692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720884

RESUMO

Background: The tertiary lymphatic structure (TLS) is an important component of the tumor immune microenvironment and has important significance in patient prognosis and response to immune therapy. However, the underlying mechanism of TLS in soft tissue sarcoma remains unclear. Methods: A total of 256 RNAseq and 7 single-cell sequencing samples were collected from TCGA-SARC and GSE212527 cohorts. Based on published TLS-related gene sets, four TLS scores were established by GSVA algorithm. The immune cell infiltration was calculated via TIMER2.0 and "MCPcounter" algorithms. In addition, the univariate, LASSO, and multivariate-Cox analyses were used to select TLS-related and prognosis-significant hub genes. Single-cell sequencing dataset, clinical immunohistochemical, and cell experiments were utilized to validate the hub genes. Results: In this study, four TLS-related scores were identified, and the total-gene TLS score more accurately reflected the infiltration level of TLS in STS. We further established two hub genes (DUSP9 and TNFSF14) prognosis markers and risk scores associated with soft tissue sarcoma prognosis and immune therapy response. Flow cytometry analysis showed that the amount of CD3, CD8, CD19, and CD11c positive immune cell infiltration in the tumor tissue dedifferentiated liposarcoma patients was significantly higher than that of liposarcoma patients. Cytological experiments showed that soft tissue sarcoma cell lines overexpressing TNFSF14 could inhibit the proliferation and migration of sarcoma cells. Conclusion: This study systematically explored the TLS and related genes from the perspectives of bioinformatics, clinical features and cytology experiments. The total-gene TLS score, risk score and TNFSF14 hub gene may be useful biomarkers for predicting the prognosis and immunotherapy efficacy of soft tissue sarcoma.


Assuntos
Biomarcadores Tumorais , Imunoterapia , Sarcoma , Microambiente Tumoral , Humanos , Sarcoma/genética , Sarcoma/terapia , Sarcoma/imunologia , Sarcoma/diagnóstico , Biomarcadores Tumorais/genética , Prognóstico , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Perfilação da Expressão Gênica , Análise de Célula Única
2.
J Autoimmun ; 144: 103177, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38368767

RESUMO

Psoriasis (PS) and atopic dermatitis (AD) are common skin inflammatory diseases characterized by hyper-responsive keratinocytes. Although, some cytokines have been suggested to be specific for each disease, other cytokines might be central to both diseases. Here, we show that Tumor necrosis factor superfamily member 14 (TNFSF14), known as LIGHT, is required for experimental PS, similar to its requirement in experimental AD. Mice devoid of LIGHT, or deletion of either of its receptors, lymphotoxin ß receptor (LTßR) and herpesvirus entry mediator (HVEM), in keratinocytes, were protected from developing imiquimod-induced psoriatic features, including epidermal thickening and hyperplasia, and expression of PS-related genes. Correspondingly, in single cell RNA-seq analysis of PS patient biopsies, LTßR transcripts were found strongly expressed with HVEM in keratinocytes, and LIGHT was upregulated in T cells. Similar transcript expression profiles were also seen in AD biopsies, and LTßR deletion in keratinocytes also protected mice from allergen-induced AD features. Moreover, in vitro, LIGHT upregulated a broad spectrum of genes in human keratinocytes that are clinical features of both PS and AD skin lesions. Our data suggest that agents blocking LIGHT activity might be useful for therapeutic intervention in PS as well as in AD.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Camundongos , Animais , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Queratinócitos/metabolismo , Citocinas/metabolismo , Psoríase/genética , Psoríase/metabolismo , Inflamação/metabolismo
3.
Mediators Inflamm ; 2023: 3732315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36654880

RESUMO

LIGHT is a member of the TNF superfamily and a proinflammatory cytokine involved in liver pathogenesis. Many liver diseases involve activation of Toll-like receptor 3 (TLR3), which is activated by double-stranded RNA (dsRNA). However, the involvement of LIGHT in TLR3 implicated liver diseases is not clear. In this study, we investigated the role of LIGHT in TLR3 involved liver pathogenesis by using a mouse model of TLR3 agonist poly(I:C)-induced hepatitis. We found LIGHT expression at both protein and mRNA level in liver tissues is dramatically increased during the course of poly(I:C)-induced liver injury. This induction depends on NF-κB activation as pretreating the mice with a NF-κB inhibitor abrogates LIGHT upregulation. Importantly, blockade of the LIGHT signaling pathway with the recombinant LIGHT receptor HVEM protein ameliorates liver injury in poly(I:C)-induced hepatitis. Conclusions. These results indicate that LIGHT amplification by NF-κB plays a significant role in TLR3 involved hepatitis and points LIGHT to be a potential drug target for liver disease therapy.


Assuntos
Hepatite , NF-kappa B , Receptor 3 Toll-Like , Citocinas , Hepatite/genética , Hepatite/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Poli I-C/farmacologia , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Camundongos , Modelos Animais de Doenças , Doença Aguda
4.
Viral Immunol ; 35(9): 579-585, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36342780

RESUMO

Tumor necrosis factor superfamily 14 (TNFSF14) (LIGHT) is an interesting costimulatory molecule associated with T lymphocyte activation, and it mainly exerts its biological effects by binding to its receptors herpesvirus invasion mediator (HVEM) and lymphotoxin-ß receptor. Research shows that TNFSF14 plays a critical regulatory role in immune responses to viral infection, but its role is different in different diseases. TNFSF14 can be a cytokine neutralization target during novel coronavirus infection, and anti-TNFSF14 monoclonal antibody treatment can reduce the risk of respiratory failure and mortality. When the host is infected with adenovirus, TNFSF14 can be used as an inflammatory biomarker to indicate whether there was an adenovirus infection in the host and the degree of disease caused by viral infection. When hosts suffer influenza virus infection, the TNFSF14-HVEM signaling pathway can stimulate the maturation and proliferation of memory CD8+ T cells, which helps the host immune system stimulate a second immune response against respiratory virus infection. TNFSF14 can act as an immune adjuvant and enhance the immunogenicity of the human papillomavirus (HPV) DNA vaccine when the host is infected with HPV. During hepatitis virus infection, TNFSF14 acts as a proinflammatory factor, participates in inflammation and causes tissue damage. In conclusion, TNFSF14 plays different and significant roles in diverse viral infections. This article reviews the current research on TNFSF14 in antiviral immunity.


Assuntos
COVID-19 , Infecções por Papillomavirus , Humanos , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Antivirais , Transdução de Sinais , Fator de Necrose Tumoral alfa
5.
Front Immunol ; 13: 1025286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341396

RESUMO

Glioblastoma multiforme (GBM) is a common central neural system malignant tumor among adults. Alongside its microscopic spread, immunosuppression in the tumor microenvironment also induces its refractoriness, which makes immunotherapy for GBM particularly important. Unfortunately, traditional immune checkpoint inhibitors (ICIs) often show limited therapeutic effects in GBM clinical trials, and new therapeutic strategies or targets are urgently needed. TNFSF14/LIGHT is a novel immune checkpoint molecule that plays essential roles in both innate and acquired immunity. Despite recent advances in our understanding of the function of TNFSF14/LIGHT in a variety of cancer types, the clinical and immunological importance of TNFSF14/LIGHT in human gliomas has not been fully explained. Here, we employed a comprehensive in silico analysis with publicly available data to analyze the molecular and immune characteristics of TNFSF14/LIGHT to explore its feasibility as an immunotherapy target. Totally, 2215 glioma cases were enrolled in the current study. Immunohistochemistry staining based on patient tissues (n = 34) was performed for the validation. TNFSF14/LIGHT was expressed higher in higher-WHO-grade gliomas and mesenchymal subtypes, and it was sensitive as a prognostic marker in GBM and low-grade glioma (LGG). A nomogram prognostic model was established based on TNFSF14/LIGHT expression together with other risk factors. Additionally, Gene Ontology and pathway analysis revealed that TNFSF14/LIGHT participated in T-cell activities and inflammatory processes. Moreover, analysis based on the structure and interactions of TNFSF14/LIGHT revealed its mutation sites in tumors as well as crucial interacting proteins. Analysis of IMvigor210 indicated the role of TNFSF14/LIGHT in immunotherapy. Altogether, our results reveal an underlying role of TNFSF14/LIGHT as an immunotherapy target in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/terapia , Glioma/metabolismo , Glioblastoma/terapia , Prognóstico , Imunoterapia/métodos , Microambiente Tumoral , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
6.
J Reprod Immunol ; 153: 103693, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35987137

RESUMO

Intrauterine adhesion (IUA) is a fibrotic disease, with complex and multifactorial process, causing menstrual disorders, pregnancy loss or infertility. LIGHT (also named TNFSF14), mainly expressed by immune cells, has been reported to be associated with tissue fibrosis. However, the features of immunocyte subsets, the expression and roles of LIGHT and its receptor HVEM (herpes virus entry mediator) and LTßR (lymphotoxin beta receptor) in IUA remain largely unknown. Compared with the control group, we observed increased ratios of CD45+ cells, neutrophils, T cells, macrophages and decreased natural killer cells proportion, and high LIGHT expression on CD4+ T cells and macrophages in IUA endometrium. Further analysis showed there was a positive correlation between upregulated profibrotic factors (e.g., ɑ-smooth muscle actin, transforming growth factor ß1) and HVEM in IUA endometrial tissue. More importantly, recombinant human LIGHT protein directly up-regulated the expression of HVEM, LTßR, profibrotic and proinflammatory factors expression in human endometrial stromal cells. These findings reveal abnormal changes of immune cell subsets proportion and the overexpression of LIGHT-HVEM/LTßR axis in IUA endometrium, should contribute to inflammation and fibrosis formation of IUA.


Assuntos
Receptor beta de Linfotoxina , Membro 14 de Receptores do Fator de Necrose Tumoral , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Doenças Uterinas , Actinas , Feminino , Fibrose/genética , Humanos , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/fisiologia , Gravidez , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Doenças Uterinas/genética , Doenças Uterinas/patologia
7.
J Immunol ; 209(3): 510-525, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817517

RESUMO

Coinhibition of TIGIT (T cell immunoreceptor with Ig and ITIM domains) and PD-1/PD-L1 (PD-1/L1) may improve response rates compared with monotherapy PD-1/L1 blockade in checkpoint naive non-small cell lung cancer with PD-L1 expression >50%. TIGIT mAbs with an effector-competent Fc can induce myeloid cell activation, and some have demonstrated effector T cell depletion, which carries a clinical liability of unknown significance. TIGIT Ab blockade translates to antitumor activity by enabling PVR signaling through CD226 (DNAM-1), which can be directly inhibited by PD-1. Furthermore, DNAM-1 is downregulated on tumor-infiltrating lymphocytes (TILs) in advanced and checkpoint inhibition-resistant cancers. Therefore, broadening clinical responses from TIGIT blockade into PD-L1low or checkpoint inhibition-resistant tumors, may be induced by immune costimulation that operates independently from PD-1/L1 inhibition. TNFSF14 (LIGHT) was identified through genomic screens, in vitro functional analysis, and immune profiling of TILs as a TNF ligand that could provide broad immune activation. Accordingly, murine and human bifunctional fusion proteins were engineered linking the extracellular domain of TIGIT to the extracellular domain of LIGHT, yielding TIGIT-Fc-LIGHT. TIGIT competitively inhibited binding to all PVR ligands. LIGHT directly activated myeloid cells through interactions with LTßR (lymphotoxin ß receptor), without the requirement for a competent Fc domain to engage Fcγ receptors. LIGHT costimulated CD8+ T and NK cells through HVEM (herpes virus entry mediator A). Importantly, HVEM was more widely expressed than DNAM-1 on T memory stem cells and TILs across a range of tumor types. Taken together, the mechanisms of TIGIT-Fc-LIGHT promoted strong antitumor activity in preclinical tumor models of primary and acquired resistance to PD-1 blockade, suggesting that immune costimulation mediated by LIGHT may broaden the clinical utility of TIGIT blockade.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1/genética , Humanos , Camundongos , Células Mieloides/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
8.
Mucosal Immunol ; 15(2): 327-337, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34903876

RESUMO

Fibroblasts mediate tissue remodeling in eosinophilic esophagitis (EoE), a chronic allergen-driven inflammatory pathology. Diverse fibroblast subtypes with homeostasis-regulating or inflammatory profiles have been recognized in various tissues, but which mediators induce these alternate differentiation states remain largely unknown. We recently identified that TNFSF14/LIGHT promotes an inflammatory esophageal fibroblast in vitro. Herein we used esophageal biopsies and primary fibroblasts to investigate the role of the LIGHT receptors, herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTßR), and their downstream activated pathways, in EoE. In addition to promoting inflammatory gene expression, LIGHT down-regulated homeostatic factors including WNTs, BMPs and type 3 semaphorins. In vivo, WNT2B+ fibroblasts were decreased while ICAM-1+ and IL-34+ fibroblasts were expanded in EoE, suggesting that a LIGHT-driven gene signature was imprinted in EoE versus normal esophageal fibroblasts. HVEM and LTßR overexpression and deficiency experiments demonstrated that HVEM regulates a limited subset of LIGHT targets, whereas LTßR controls all transcriptional effects. Pharmacologic blockade of the non-canonical NIK/p100/p52-mediated NF-κB pathway potently silenced LIGHT's transcriptional effects, with a lesser role found for p65 canonical NF-κB. Collectively, our results show that LIGHT promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype and represses homeostatic gene expression via a LTßR-NIK-p52 NF-κB dominant pathway.


Assuntos
Esôfago , Inflamação , Transcriptoma , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Esôfago/metabolismo , Fibroblastos/metabolismo , Homeostase , Humanos , Inflamação/genética , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
9.
J Invest Dermatol ; 142(6): 1541-1551.e3, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34838790

RESUMO

Systemic sclerosis (SSc) is an autoimmune and vascular disease resulting in multiple organ fibrosis, in which IL-6 and T helper (Th)2/Th17 cytokines serve as critical disease drivers. LIGHT is a proinflammatory cytokine promoting IL-6 production in lung fibroblasts and Th1 chemokine expression in dermal fibroblasts (DFs) stimulated with IFN-γ. In this study, we investigated the potential contribution of LIGHT to SSc development using clinical samples and animal models. In SSc-involved skin, LIGHT was upregulated in inflammatory cells, whereas herpesvirus entry mediator (HVEM), a receptor of LIGHT, was downregulated in DFs. Similar expression profiles of LIGHT and HVEM were reproduced in bleomycin-treated mice. Transcription factor FLI1 bound to the HVEM promoter, and FLI1 small interfering RNA suppressed HVEM expression in normal DFs. In SSc DFs, LIGHT significantly increased IL-6 production, whereas IFN-γ/LIGHT-dependent Th1 chemokine induction was decreased compared with that in normal DFs. Importantly, LIGHT small interfering RNA significantly attenuated bleomycin-induced skin fibrosis, and serum LIGHT levels were elevated in patients with diffuse cutaneous SSc and positively correlated with clinical parameters reflecting skin and pulmonary fibrosis. Taken together, these results suggest that altered response of DFs to LIGHT, namely increased IL-6 production and decreased Th1 chemokine expression, contributes to the development of skin fibrosis in SSc.


Assuntos
Interleucina-6 , Escleroderma Sistêmico , Animais , Bleomicina/toxicidade , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , Humanos , Interleucina-6/metabolismo , Camundongos , Proteína Proto-Oncogênica c-fli-1 , RNA Interferente Pequeno/metabolismo , Escleroderma Sistêmico/metabolismo , Pele/patologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
10.
J Exp Med ; 218(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34709351

RESUMO

HVEM is a TNF (tumor necrosis factor) receptor contributing to a broad range of immune functions involving diverse cell types. It interacts with a TNF ligand, LIGHT, and immunoglobulin (Ig) superfamily members BTLA and CD160. Assessing the functional impact of HVEM binding to specific ligands in different settings has been complicated by the multiple interactions of HVEM and HVEM binding partners. To dissect the molecular basis for multiple functions, we determined crystal structures that reveal the distinct HVEM surfaces that engage LIGHT or BTLA/CD160, including the human HVEM-LIGHT-CD160 ternary complex, with HVEM interacting simultaneously with both binding partners. Based on these structures, we generated mouse HVEM mutants that selectively recognized either the TNF or Ig ligands in vitro. Knockin mice expressing these muteins maintain expression of all the proteins in the HVEM network, yet they demonstrate selective functions for LIGHT in the clearance of bacteria in the intestine and for the Ig ligands in the amelioration of liver inflammation.


Assuntos
Antígenos CD/metabolismo , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Antígenos CD/química , Antígenos CD/genética , Cristalografia por Raios X , Drosophila/citologia , Drosophila/genética , Feminino , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Receptores Imunológicos/química , Receptores Imunológicos/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/química , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Yersiniose/genética , Yersiniose/patologia
11.
J Genet Genomics ; 48(6): 497-507, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34353742

RESUMO

Among multiple sclerosis (MS) susceptibility genes, the strongest non-human leukocyte antigen (HLA) signal in the Italian population maps to the TNFSF14 gene encoding LIGHT, a glycoprotein involved in dendritic cell (DC) maturation. Through fine-mapping in a large Italian dataset (4,198 patients with MS and 3,903 controls), we show that the TNFSF14 intronic SNP rs1077667 is the primarily MS-associated variant in the region. Expression quantitative trait locus (eQTL) analysis indicates that the MS risk allele is significantly associated with reduced TNFSF14 messenger RNA levels in blood cells, which is consistent with the allelic imbalance in RNA-Seq reads (P < 0.0001). The MS risk allele is associated with reduced levels of TNFSF14 gene expression (P < 0.01) in blood cells from 84 Italian patients with MS and 80 healthy controls (HCs). Interestingly, patients with MS are lower expressors of TNFSF14 compared to HC (P < 0.007). Individuals homozygous for the MS risk allele display an increased percentage of LIGHT-positive peripheral blood myeloid DCs (CD11c+, P = 0.035) in 37 HCs, as well as in in vitro monocyte-derived DCs from 22 HCs (P = 0.04). Our findings suggest that the intronic variant rs1077667 alters the expression of TNFSF14 in immune cells, which may play a role in MS pathogenesis.


Assuntos
Predisposição Genética para Doença/genética , Esclerose Múltipla/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Alelos , Feminino , Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Íntrons/genética , Itália , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
12.
Exp Mol Med ; 53(3): 393-406, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33654222

RESUMO

Splenectomy has been reported to improve liver fibrosis in patients with cirrhosis and hypersplenism. However, the mechanisms remain unclear. Tumor necrosis factor superfamily 14 (TNFSF14; also known as LIGHT) is highly expressed in the context of fibrosis and promotes disease progression in patients with fibrotic diseases such as pulmonary and skin fibrosis. Here, we determined whether splenectomy controls the production of LIGHT to improve liver fibrosis. Splenectomy reduced serum LIGHT levels in cirrhotic patients with hypersplenism and a ConA-induced liver fibrosis mouse model. Blocking LIGHT resulted in the downregulation of TGF-ß1 in RAW264.7 cells. LIGHT treatment of RAW264.7 and JS1 cells in coculture regulated transforming growth factor-ß1 (TGF-ß1) expression through the activation of JNK signaling. Small interfering RNA-mediated silencing of lymphotoxin ß receptor (LTßR) in macrophages resulted in pronounced decreases in the levels of fibrosis and αSMA in JS1 cells. These results indicated that LIGHT bound to LTßR and drove liver fibrosis in vitro. Blocking TGF-ß1 abolished the effect of LIGHT in vitro. Furthermore, the administration of recombinant murine LIGHT protein-induced liver fibrosis with splenectomy, while blocking LIGHT without splenectomy improved liver fibrosis in vivo, revealing that the decrease in fibrosis following splenectomy was directly related to reduced levels of LIGHT. Thus, high levels of LIGHT derived from the spleen and hepatic macrophages activate JNK signaling and lead to increased TGF-ß1 production in hepatic macrophages. Splenectomy attenuates liver fibrosis by decreasing the expression of LIGHT.


Assuntos
Regulação da Expressão Gênica , Cirrose Hepática/prevenção & controle , MAP Quinase Quinase 4/metabolismo , Esplenectomia/métodos , Fator de Crescimento Transformador beta1/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Estudos de Casos e Controles , Feminino , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , MAP Quinase Quinase 4/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta1/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
13.
J Surg Res ; 263: 44-52, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33631377

RESUMO

BACKGROUND: The generation of long-term durable tumor immunity and prolonged disease-free survival depends on the ability to generate and support CD8+ central memory T-cells. Microsatellite-stable colon cancer is resistant to currently available immunotherapies; thus, development of novel mechanisms to increase both lymphocyte infiltration and central memory formation are needed to improve outcomes in these patients. We have previously demonstrated that both interleukin-2 (IL-2) and LIGHT (TNFSF14) independently enhance antitumor immune responses and hypothesize that combination immunotherapy may increase the CD8+ central memory T-cell response. METHODS: Murine colorectal cancer tumors were established in syngeneic mice. Tumors were treated with control, soluble, or liposomal IL-2 at established intervals. A subset of animal tumors overexpressed tumor necrosis superfamily factor LIGHT (TNFSF14). Peripheral blood, splenic, and tumor-infiltrating lymphocytes were isolated for phenotypic studies and flow cytometry. RESULTS: Tumors exposed to a combination of LIGHT and IL-2 experienced a decrease in tumor size compared with IL-2 alone that was not demonstrated in wild-type tumors or between other treatment groups. Combination exposure also increased splenic central memory CD8+ cells compared with IL-2 administration alone, while not increasing tumor-infiltrating lymphocytes. In the periphery, the combination enhanced levels of circulating CD8 T-cells and central memory T-cells, while also increasing circulating T-regulatory cells. CONCLUSIONS: Combination of IL-2, whether soluble or liposomal, with exposure to LIGHT results in increased CD8+ central memory cells in the spleen and periphery. New combination immunotherapy strategies that support both effector and memory T-cell functions are critical to enhancing durable antitumor responses and warrant further investigation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/terapia , Imunoterapia/métodos , Interleucina-2/administração & dosagem , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral/transplante , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Memória Imunológica/efeitos dos fármacos , Injeções Intralesionais , Lipossomos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Proteínas Recombinantes/administração & dosagem , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
14.
Mucosal Immunol ; 14(3): 679-690, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33568785

RESUMO

Inflammatory bowel disease is characterized by an exacerbated intestinal immune response, but the critical mechanisms regulating immune activation remain incompletely understood. We previously reported that the TNF-superfamily molecule TNFSF14 (LIGHT) is required for preventing severe disease in mouse models of colitis. In addition, deletion of lymphotoxin beta receptor (LTßR), which binds LIGHT, also led to aggravated colitis pathogenesis. Here, we aimed to determine the cell type(s) requiring LTßR and the mechanism critical for exacerbation of colitis. Specific deletion of LTßR in neutrophils (LTßRΔN), but not in several other cell types, was sufficient to induce aggravated colitis and colonic neutrophil accumulation. Mechanistically, RNA-Seq analysis revealed LIGHT-induced suppression of cellular metabolism, and mitochondrial function, that was dependent on LTßR. Functional studies confirmed increased mitochondrial mass and activity, associated with excessive mitochondrial ROS production and elevated glycolysis at steady-state and during colitis. Targeting these metabolic changes rescued exacerbated disease severity. Our results demonstrate that LIGHT signals to LTßR on neutrophils to suppress metabolic activation and thereby prevents exacerbated immune pathogenesis during colitis.


Assuntos
Colite/imunologia , Doenças Inflamatórias Intestinais/imunologia , Receptor beta de Linfotoxina/metabolismo , Mitocôndrias/metabolismo , Neutrófilos/metabolismo , Ativação Metabólica , Animais , Sulfato de Dextrana , Modelos Animais de Doenças , Progressão da Doença , Humanos , Receptor beta de Linfotoxina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
15.
PLoS One ; 16(2): e0247368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606781

RESUMO

Osteoporosis is a progressive systemic skeletal disease associated with decreased bone mineral density and deterioration of bone quality, and it affects millions of people worldwide. Currently, it is treated mainly using antiresorptive and osteoanabolic agents. However, these drugs have severe adverse effects. Cell replacement therapy using mesenchymal stem cells (MSCs) could serve as a treatment strategy for osteoporosis in the future. LIGHT (HVEM-L, TNFSF14, or CD258) is a member of the tumor necrosis factor superfamily. However, the effect of recombinant LIGHT (rhLIGHT) on osteogenesis in human bone marrow-derived MSCs (hBM-MSCs) is unknown. Therefore, we monitored the effects of LIGHT on osteogenesis of hBM-MSCs. Lymphotoxin-ß receptor (LTßR), which is a LIGHT receptor, was constitutively expressed on the surface of hBM-MSCs. After rhLIGHT treatment, calcium and phosphate deposition in hBM-MSCs, stained by Alizarin red and von Kossa, respectively, significantly increased. We performed quantitative real-time polymerase chain reaction to examine the expressions of osteoprogenitor markers (RUNX2/CBFA1 and collagen I alpha 1) and osteoblast markers (alkaline phosphatase, osterix/Sp7, and osteocalcin) and immunoblotting to assess the underlying biological mechanisms following rhLIGHT treatment. We found that rhLIGHT treatment enhanced von Kossa- and Alizarin red-positive hBM-MSCs and induced the expression of diverse differentiation markers of osteogenesis in a dose-dependent manner. WNT/ß-catenin pathway activation strongly mediated rhLIGHT-induced osteogenesis of hBM-MSCs, accelerating the differentiation of hBM-MSCs into osteocytes. In conclusion, the interaction between LIGHT and LTßR enhances osteogenesis of hBM-MSCs. Therefore, LIGHT might play an important role in stem cell therapy.


Assuntos
Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proteínas Recombinantes/farmacologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Via de Sinalização Wnt/efeitos dos fármacos
16.
MAbs ; 13(1): 1868066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33404287

RESUMO

LIGHT is a member of the tumor necrosis factor superfamily, which has been claimed to mediate anti-tumor activity on the basis of cancer cures observed in immunocompetent mice bearing transgenic LIGHT-expressing tumors. The preclinical development of a LIGHT-based therapeutic has been hindered by the lack of functional stability exhibited by this protein. Here, we describe the cloning, expression, and characterization of five antibody-LIGHT fusion proteins, directed against the alternatively spliced extra domain A of fibronectin, a conserved tumor-associated antigen. Among the five tested formats, only the sequential fusion of the F8 antibody in single-chain diabody format, followed by the LIGHT homotrimer expressed as a single polypeptide, yielded a protein (termed "F8-LIGHT") that was not prone to aggregation. A quantitative biodistribution analysis in tumor-bearing mice, using radio-iodinated protein preparations, confirmed that F8-LIGHT was able to preferentially accumulate at the tumor site, with a tumor-to-blood ratio of ca. five to one 24 hours after intravenous administration. Tumor therapy experiments, performed in two murine tumor models (CT26 and WEHI-164), featuring different levels of lymphocyte infiltration into the neoplastic mass, revealed that F8-LIGHT could significantly reduce tumor-cell growth and was more potent than a similar fusion protein (KSF-LIGHT), directed against hen egg lysozyme and serving as negative control of irrelevant specificity in the mouse. At a mechanistic level, the activity of F8-LIGHT was mainly due to an intratumoral expansion of natural killer cells, whereas there was no evidence of expansion of CD8 + T cells, neither in the tumor, nor in draining lymph nodes. Abbreviations: CTLA-4: Cytotoxic T-lymphocytes-associated protein 4; EGFR: Epidermal growth factor receptor; HVEM: Herpesvirus entry mediator; IFNγ: Interferon-gamma; LIGHT: Lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes; LTßR: Lymphotoxin beta receptor; NF-κB: Nuclear factor "kappa-light-chain-enhancer" of activated B cells; NK: Natural killer cells; PD-1: Programmed cell death protein 1; PD-L1: Programmed death-ligand 1; TNF: Tumor necrosis factor.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Animais , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Progressão da Doença , Humanos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Neoplasias/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética , Distribuição Tecidual , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
17.
Aging (Albany NY) ; 12(24): 25469-25486, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33231567

RESUMO

OBJECTIVE: Tumor necrosis factor superfamily protein 14 (TNFSF14) was recently identified as a risk factor in some fibrosis diseases. However, the role of TNFSF14 in renal fibrosis pathogenesis remains unknown. RESULTS: It was found that TNFSF14 levels were significantly increased both in UUO-induced renal fibrotic mice and in patients with fibrotic nephropathy, compared with those in controls. Accordingly, Tnfsf14 deficiency led to a marked reduction in renal fibrosis lesions and inflammatory cytokines expression in the UUO mice. Furthermore, the levels of Sphk1, a critical molecule that causes fibrotic nephropathy, were remarkably reduced in Tnfsf14 KO mice with UUO surgery. In vitro recombinant TNFSF14 administration markedly up-regulated the expression of Sphk1 of primary mouse renal tubular epithelial cells (mTECs). CONCLUSION: TNFSF14 is a novel pro-fibrotic factor of renal fibrosis, for which TNFSF14 up-regulates Sphk1 expression, which may be the underlying mechanism of TNFSF14-mediated renal fibrosis. METHODS: We investigated the effect of TNFSF14 on renal fibrosis and the relationship between TNFSF14 and pro-fibrotic factor sphingosine kinase 1 (Sphk1) by using the unilateral urethral obstruction (UUO)-induced mice renal fibrosis as a model and the specimen of patients with fibrosis nephropathy, by Masson trichrome staining, immunohistochemistry, qRT-PCR, and western blot analysis.


Assuntos
Fibrose/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Modelos Animais de Doenças , Fibrose/genética , Fibrose/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
18.
Int Immunopharmacol ; 89(Pt A): 106999, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33045563

RESUMO

Cisplatin is widely used as a chemotherapeutic agent for treating patients with solid tumors. The most common side effect of cisplatin treatment is nephrotoxicity. Recent studies have shown that mitochondrial apoptotic pathways are involved in cisplatin-induced acute kidney injury (Cis-AKI). LIGHT, the 14th member of the tumor necrosis factor superfamily (TNFSF14), was found to induce apoptosis of certain types of tumor cells. So far, a link between LIGHT and Cis-AKI has not been reported. In this study, we observed that expression of LIGHT and its receptors HVEM and LTßR was increased in kidney tissues of mice after cisplatin treatment. LIGHT deficiency aggravated kidney injury, as evidenced by more severe tubular injury; remarkably increased levels of serum creatinine (Scr), blood urea nitrogen (BUN), and both kidney injury molecule-1 (KIM-1) and inflammatory cytokine mRNAs in renal tissues. Moreover, in the renal tissues of LIGHT KO mice, cisplatin-induced mitochondrion injury and the levels of the pro-apoptotic molecules Bax, Cytochrome C (Cyt C), cleaved caspase-3, and cleaved caspase-9 were dramatically increased; in contrast, the expression of anti-apoptotic molecule Bcl-2 was markedly reduced, compared to those in WT mice, suggesting that LIGHT deficiency accelerated cisplatin-induced mitochondrial apoptosis of renal tubular cells in these mice. Accordingly, treatment with recombinant human LIGHT (rLIGHT) was shown to alleviate cisplatin-induced kidney injury in vivo. Similar results were observed after the human renal tubular epithelial cell line HK-2 cells exposure to rLIGHT stimulation, evidenced by the reduction in the mitochondrion dysfunction (as confirmed by the significant reduced oxidative stress and membrane potential changes) and in the percentage of cells apoptosis. While blocking LIGHT with the soluble fusion protein LTßR-Ig or HVEM-Ig accelerated the HK-2 cells apoptosis. In conclusion, LIGHT deficiency aggravates Cis-AKI by promoting mitochondrial apoptosis pathways.


Assuntos
Injúria Renal Aguda/metabolismo , Apoptose , Cisplatino , Túbulos Renais/metabolismo , Mitocôndrias/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Túbulos Renais/patologia , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
19.
Structure ; 28(11): 1197-1205.e2, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32795404

RESUMO

Herpes virus entry mediator (HVEM) regulates positive and negative signals for T cell activation through co-signaling pathways. Dysfunction of the HVEM co-signaling network is associated with multiple pathologies related to autoimmunity, infectious disease, and cancer, making the associated molecules biologically and therapeutically attractive targets. HVEM interacts with three ligands from two different superfamilies using two different binding interfaces. The engagement with ligands CD160 and B- and T-lymphocyte attenuator (BTLA), members of immunoglobulin superfamily, is associated with inhibitory signals, whereas inflammatory responses are regulated through the interaction with LIGHT from the TNF superfamily. We computationally redesigned the HVEM recognition interfaces using a residue-specific pharmacophore approach, ProtLID, to achieve switchable-binding specificity. In subsequent cell-based binding assays the new interfaces, designed with only single or double mutations, exhibited selective binding to only one or two out of the three cognate ligands.


Assuntos
Antígenos CD/química , Receptores Imunológicos/química , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Receptores Virais/química , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/química , Antígenos CD/genética , Antígenos CD/metabolismo , Sítios de Ligação , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Células HEK293 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Linfócitos T/metabolismo , Linfócitos T/virologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
20.
Genes Genomics ; 42(9): 1055-1066, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32725578

RESUMO

BACKGROUND: TNFSF14 has been proven to play an important role in various types of tumors. However, its function in renal cell carcinoma (RCC) has not yet been fully elucidated. OBJECTIVE: In order to explore molecular mechanism of RCC, we evaluated the effect of TNFSF14 on RCC progression, prognosis and immune microenvironment. METHODS: Using TCGA database, the differential expression of TNFSF14 and its relationships between clinicopathological features and prognosis were determined. Cox univariate and multivariate analyses were successively performed to identify whether TNFSF14 was an independent prognostic factor. The discriminating ability of TNFSF14 in RCC prognosis analysis was validated under the same clinical subgroups. Tumor mutational burden (TMB) of each RCC samples was calculated and the differential expression of TNFSF14 between high- and low-TMB groups was analyzed. The immune abundances of 22 leukocyte subtypes in each RCC samples were presented through the CIBERSORT algorithm. TIMER database was used to explore the relationships between copy number of TNFSF14 and the infiltration levels of 6 immune cells. RESULTS: Overexpression of TNFSF14 implied adverse clinicopathological features and poor prognosis. Meanwhile, TNFSF14 was identified as an independent prognostic factor (HR = 1.047, P = 0.028) and possessed prevalent applicability in RCC prognostic analysis. TNFSF14 was upregulated in high-TMB group than that in low-TMB group (Log2FC = 0.722). Moreover, overexpression of TNFSF14 brought alteration of immune abundance of 8 leukocyte subtypes. Besides, somatic copy number alteration (SCNA) of TNFSF14 was associated with infiltration levels of 6 immune cells. CONCLUSIONS: TNFSF14 has crucial impact on progression, prognosis and immune microenvironment in RCC. Besides, TNFSF14 may be a potential biomarker for predicting the efficacy and response rate of RCC immunotherapy.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Biomarcadores Tumorais , Carcinoma de Células Renais/patologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Humanos , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Prognóstico , Microambiente Tumoral/imunologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...