Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 821
Filtrar
1.
Sci Rep ; 14(1): 4459, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396064

RESUMO

As the largest transporter family impacting on tumor genesis and development, the prognostic value of solute carrier (SLC) members has not been elucidated in colorectal cancer (CRC). We aimed to identify a prognostic signature from the SLC members and comprehensively analyze their roles in CRC. Firstly, we downloaded transcriptome data and clinical information of CRC samples from GEO (GSE39582) and TCGA as training and testing dataset, respectively. We extracted the expression matrix of SLC genes and established a prognostic model by univariate and multivariate Cox regression. Afterwards, the low-risk and high-risk group were identified. Then, the differences of prognosis traits, transcriptome features, clinical characteristics, immune infiltration and drug sensitivity between the two groups were explored. Furthermore, molecular subtyping was also implemented by non-negative matrix factorization (NMF). Finally, we studied the expression of the screened SLC genes in CRC tumor tissues and normal tissues as well as investigated the role of SLC12A2 by loss of function and gain of function. As a result, we developed a prognostic risk model based on the screened 6-SLC genes (SLC39A8, SLC2A3, SLC39A13, SLC35B1, SLC4A3, SLC12A2). Both in the training and testing sets, CRC patients in the high-risk group had the poorer prognosis and were in the more advanced pathological stage. What's more, the high-risk group were enriched with CRC progression signatures and immune infiltration. Two groups showed different drug sensitivity. On the other hand, two distinct subclasses (C1 and C2) were identified based on the 6 SLC genes. CRC patients in the high-risk group and C1 subtype had a worse prognosis. Furthermore, we found and validated that SLC12A2 was steadily upregulated in CRC. A loss-of-function study showed that knockdown of SLC12A2 expression restrained proliferation and stemness of CRC cells while a gain-of-function study showed the contrary results. Hence, we provided a 6-SLC gene signature for prognosis prediction of CRC patients. At the same time, we identified that SLC12A2 could promote tumor progression in CRC, which may serve as a potential therapeutic target.


Assuntos
Neoplasias Colorretais , Membro 2 da Família 12 de Carreador de Soluto , Humanos , Algoritmos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteínas de Membrana Transportadoras , Fenótipo , Prognóstico
2.
J Pain ; 25(2): 522-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37793537

RESUMO

Deactivation of the medial prefrontal cortex (mPFC) has been broadly reported in both neuropathic pain models and human chronic pain patients. Several cellular mechanisms may contribute to the inhibition of mPFC activity, including enhanced GABAergic inhibition. The functional effect of GABAA(γ-aminobutyric acid type A)-receptor activation depends on the concentration of intracellular chloride in the postsynaptic neuron, which is mainly regulated by the activity of Na-K-2Cl cotransporter isoform 1 (NKCC1) and K-Cl cotransporter isoform 2 (KCC2), 2 potassium-chloride cotransporters that import and extrude chloride, respectively. Recent work has shown that the NKCC1-KCC2 ratio is affected in numerous pathological conditions, and we hypothesized that it may contribute to the alteration of mPFC function in neuropathic pain. We used quantitative in situ hybridization to assess the level of expression of NKCC1 and KCC2 in the mPFC of a mouse model of neuropathic pain (spared nerve injury), and we found that KCC2 transcript is increased in the mPFC of spared nerve injury mice while NKCC1 is not affected. Perforated patch recordings further showed that this results in the hypernegative reversal potential of the GABAA current in pyramidal neurons of the mPFC. Computational simulations suggested that this change in GABAA reversal potential is sufficient to significantly reduce the overall activity of the cortical network. Thus, our results identify a novel pathological modulation of GABAA function and a new mechanism by which mPFC function is inhibited in neuropathic pain. Our data also help explain previous findings showing that activation of mPFC interneurons has proalgesic effect in neuropathic, but not in control conditions. PERSPECTIVE: Chronic pain is associated with the presence of depolarizing GABAA current in the spinal cord, suggesting that pharmacological NKCC1 antagonism has analgesic effects. However, our results show that in neuropathic pain, GABAA current is actually hyperinhibitory in the mPFC, where it contributes to the mPFC functional deactivation. This suggests caution in the use of NKCC1 antagonism to treat pain.


Assuntos
Dor Crônica , Neuralgia , Camundongos , Humanos , Animais , Cloretos/metabolismo , Cloretos/farmacologia , Neuralgia/metabolismo , Células Piramidais/metabolismo , Cotransportadores de K e Cl- , Ácido gama-Aminobutírico/metabolismo , Córtex Pré-Frontal , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
3.
Cell Metab ; 36(1): 159-175.e8, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113887

RESUMO

The gut microbiome has been found to play a crucial role in the treatment of multiple myeloma (MM), which is still considered incurable due to drug resistance. In previous studies, we demonstrated that intestinal nitrogen-recycling bacteria are enriched in patients with MM. However, their role in MM relapse remains unclear. This study highlights the specific enrichment of Citrobacter freundii (C. freundii) in patients with relapsed MM. Through fecal microbial transplantation experiments, we demonstrate that C. freundii plays a critical role in inducing drug resistance in MM by increasing levels of circulating ammonium. The ammonium enters MM cells through the transmembrane channel protein SLC12A2, promoting chromosomal instability and drug resistance by stabilizing the NEK2 protein. We show that furosemide sodium, a loop diuretic, downregulates SLC12A2, thereby inhibiting ammonium uptake by MM cells and improving progression-free survival and curative effect scores. These findings provide new therapeutic targets and strategies for the intervention of MM progression and drug resistance.


Assuntos
Microbioma Gastrointestinal , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Bortezomib/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/uso terapêutico , Membro 2 da Família 12 de Carreador de Soluto/farmacologia
4.
J Biol Chem ; 300(2): 105597, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160798

RESUMO

Increased expression of angiotensin II AT1A receptor (encoded by Agtr1a) and Na+-K+-Cl- cotransporter-1 (NKCC1, encoded by Slc12a2) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension development. However, little is known about their transcriptional control in the PVN in hypertension. DNA methylation is a critical epigenetic mechanism that regulates gene expression. Here, we determined whether transcriptional activation of Agtr1a and Slc12a2 results from altered DNA methylation in spontaneously hypertensive rats (SHR). Methylated DNA immunoprecipitation and bisulfite sequencing-PCR showed that CpG methylation at Agtr1a and Slc12a2 promoters in the PVN was progressively diminished in SHR compared with normotensive Wistar-Kyoto rats (WKY). Chromatin immunoprecipitation-quantitative PCR revealed that enrichment of DNA methyltransferases (DNMT1 and DNMT3A) and methyl-CpG binding protein 2, a DNA methylation reader protein, at Agtr1a and Slc12a2 promoters in the PVN was profoundly reduced in SHR compared with WKY. By contrast, the abundance of ten-eleven translocation enzymes (TET1-3) at Agtr1a and Slc12a2 promoters in the PVN was much greater in SHR than in WKY. Furthermore, microinjecting of RG108, a selective DNMT inhibitor, into the PVN of WKY increased arterial blood pressure and correspondingly potentiated Agtr1a and Slc12a2 mRNA levels in the PVN. Conversely, microinjection of C35, a specific TET inhibitor, into the PVN of SHR markedly reduced arterial blood pressure, accompanied by a decrease in Agtr1a and Slc12a2 mRNA levels in the PVN. Collectively, our findings suggest that DNA hypomethylation resulting from the DNMT/TET switch at gene promoters in the PVN promotes transcription of Agtr1a and Slc12a2 and hypertension development.


Assuntos
Desmetilação do DNA , Hipotálamo , Receptor Tipo 1 de Angiotensina , Membro 2 da Família 12 de Carreador de Soluto , Animais , Ratos , Pressão Sanguínea , DNA/metabolismo , Hipertensão/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Tipo 1 de Angiotensina/metabolismo , RNA Mensageiro/genética , Sistema Nervoso Simpático/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
5.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818620

RESUMO

The membrane potential (MP) controls cell homeostasis by directing molecule transport and gene expression. How the MP is set upon epithelial differentiation is unknown. Given that tissue architecture also controls homeostasis, we investigated the relationship between basoapical polarity and resting MP in three-dimensional culture of the HMT-3522 breast cancer progression. A microelectrode technique to measure MP and input resistance reveals that the MP is raised by gap junction intercellular communication (GJIC), which directs tight-junction mediated apical polarity, and is decreased by the Na+/K+/2Cl- (NKCC, encoded by SLC12A1 and SLC12A2) co-transporter, active in multicellular structures displaying basal polarity. In the tumor counterpart, the MP is reduced. Cancer cells display diminished GJIC and do not respond to furosemide, implying loss of NKCC activity. Induced differentiation of cancer cells into basally polarized multicellular structures restores widespread GJIC and NKCC responses, but these structures display the lowest MP. The absence of apical polarity, necessary for cancer onset, in the non-neoplastic epithelium is also associated with the lowest MP under active Cl- transport. We propose that the loss of apical polarity in the breast epithelium destabilizes cellular homeostasis in part by lowering the MP.


Assuntos
Glândulas Mamárias Humanas , Humanos , Potenciais da Membrana , Epitélio/metabolismo , Mama , Comunicação Celular/fisiologia , Polaridade Celular/fisiologia , Células Epiteliais , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
6.
J Am Chem Soc ; 146(1): 552-566, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38146212

RESUMO

The sodium, potassium, and chloride cotransporter 1 (NKCC1) plays a key role in tightly regulating ion shuttling across cell membranes. Lately, its aberrant expression and function have been linked to numerous neurological disorders and cancers, making it a novel and highly promising pharmacological target for therapeutic interventions. A better understanding of how NKCC1 dynamically operates would therefore have broad implications for ongoing efforts toward its exploitation as a therapeutic target through its modulation. Based on recent structural data on NKCC1, we reveal conformational motions that are key to its function. Using extensive deep-learning-guided atomistic simulations of NKCC1 models embedded into the membrane, we captured complex dynamical transitions between alternate open conformations of the inner and outer vestibules of the cotransporter and demonstrated that NKCC1 has water-permeable states. We found that these previously undefined conformational transitions occur via a rocking-bundle mechanism characterized by the cooperative angular motion of transmembrane helices (TM) 4 and 9, with the contribution of the extracellular tip of TM 10. We found these motions to be critical in modulating ion transportation and in regulating NKCC1's water transporting capabilities. Specifically, we identified interhelical dynamical contacts between TM 10 and TM 6, which we functionally validated through mutagenesis experiments of 4 new targeted NKCC1 mutants. We conclude showing that those 4 residues are highly conserved in most Na+-dependent cation chloride cotransporters (CCCs), which highlights their critical mechanistic implications, opening the way to new strategies for NKCC1's function modulation and thus to potential drug action on selected CCCs.


Assuntos
Cloretos , Água , Membro 2 da Família 12 de Carreador de Soluto/química , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Cloretos/metabolismo , Mutagênese , Cátions/metabolismo , Água/metabolismo
7.
Biomed Res Int ; 2023: 4191999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143588

RESUMO

The Kir4.1 channel, an inwardly rectifying potassium ion (K+) channel, is located in the hair cells of the organ of Corti as well as the intermediate cells of the stria vascularis. The Kir4.1 channel has a crucial role in the generation of endolymphatic potential and maintenance of the resting membrane potential. However, the role and functions of the Kir4.1 channel in the progenitor remain undescribed. To observe the role of Kir4.1 in the progenitor treated with the one-shot ototoxic drugs (kanamycin and furosemide), we set the proper condition in culturing Immortomouse-derived HEI-OC1 cells to express the potassium-related channels well. And also, that was reproduced in mice experiments to show the important role of Kir4.1 in the survival of hair cells after treating the ototoxicity drugs. In our results, when kanamycin and furosemide drugs were cotreated with HEI-OC1 cells, the Kir4.1 channel did not change, but the expression levels of the NKCC1 cotransporter and KCNQ4 channel are decreased. This shows that inward and outward channels were blocked by the two drugs (kanamycin and furosemide). However, noteworthy here is that the expression level of Kir4.1 channel increased when kanamycin was treated alone. This shows that Kir4.1, an inwardly rectifying potassium channel, acts as an outward channel in place of the corresponding channel when the KCNQ4 channel, an outward channel, is blocked. These results suggest that the Kir4.1 channel has a role in maintaining K+ homeostasis in supporting cells, with K+ concentration compensator when the NKCC1 cotransporter and Kv7.4 (KCNQ4) channels are deficient.


Assuntos
Ototoxicidade , Canais de Potássio Corretores do Fluxo de Internalização , Camundongos , Animais , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Aminoglicosídeos/toxicidade , Membro 2 da Família 12 de Carreador de Soluto , Furosemida/farmacologia , Antibacterianos , Canamicina , Potássio/metabolismo , Cabelo/metabolismo
8.
Epilepsia ; 64(12): 3389-3403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37779224

RESUMO

OBJECTIVE: A pathological excitatory action of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been observed in epilepsy. Blocking the Cl- importer NKCC1 with bumetanide is expected to reduce the neuronal intracellular Cl- concentration ([Cl- ]i ) and thereby attenuate the excitatory GABA response. Accordingly, several clinical trials of bumetanide for epilepsy were conducted. Although NKCC1 is expressed in both neurons and glial cells, an involvement of glial NKCC1 in seizures has not yet been reported. Astrocytes maintain high [Cl- ]i with NKCC1, and this gradient promotes Cl- efflux via the astrocytic GABAA receptor (GABAA R). This Cl- efflux buffers the synaptic cleft Cl- concentration to maintain the postsynaptic Cl- gradient during intense firing of GABAergic neurons, thereby sustaining its inhibitory action during seizure. In this study, we investigated the function of astrocytic NKCC1 in modulating the postsynaptic action of GABA in acute seizure models. METHODS: We used the astrocyte-specific conditional NKCC1 knockout (AstroNKCC1KO) mice. The seizurelike events (SLEs) in CA1 pyramidal neurons were triggered by tetanic stimulation of stratum radiatum in acute hippocampus slices. The SLE underlying GABAA R-mediated depolarization was evaluated by applying the GABAA R antagonist bicuculline. The pilocarpine-induced seizure in vivo was monitored in adult mice by the Racine scale. The SLE duration and tetanus stimulation intensity threshold and seizure behavior in AstroNKCC1KO mice and wild-type (WT) mice were compared. RESULTS: The AstroNKCC1KO mice were prone to seizures with lower threshold and longer duration of SLEs and larger GABAA R-mediated depolarization underlying the SLEs, accompanied by higher Racine-scored seizures. Bumetanide reduced these indicators of seizure in AstroNKCC1KO mice (which still express neuronal NKCC1), but not in the WT, both in vitro and in vivo. SIGNIFICANCE: Astrocytic NKCC1 inhibits GABA-mediated excitatory action during seizures, whereas neuronal NKCC1 has the converse effect, suggesting opposing actions of bumetanide on these cells.


Assuntos
Bumetanida , Epilepsia , Membro 2 da Família 12 de Carreador de Soluto , Animais , Camundongos , Astrócitos , Bumetanida/farmacologia , Bumetanida/uso terapêutico , Epilepsia/tratamento farmacológico , Ácido gama-Aminobutírico/metabolismo , Neurônios , Receptores de GABA-A/fisiologia , Convulsões , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico , Membro 2 da Família 12 de Carreador de Soluto/genética , Sinapses , Cloretos/metabolismo
9.
Ann Surg Oncol ; 30(13): 8743-8754, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37684371

RESUMO

BACKGROUND: The potential of membrane transporters activated in cancer stem cells (CSCs) as new therapeutic targets for cancer is attracting increasing interest. Therefore, the present study examined the expression profiles of ion transport-related molecules in the CSCs of esophageal adenocarcinoma (EAC). METHODS: Cells that highly expressed aldehyde dehydrogenase 1 family member A1 (ALDH1A1) were separated from OE33 cells, a human Barrett's EAC cell line, by fluorescence-activated cell sorting. CSCs were identified based on the formation of tumorspheres. Gene expression profiles in CSCs were examined by a microarray analysis. RESULTS: Among OE33 cells, ALDH1A1 messenger RNA levels were higher in CSCs than in non-CSCs. Furthermore, CSCs exhibited resistance to cisplatin and had the capacity to redifferentiate. The results of the microarray analysis of CSCs showed the up-regulated expression of several genes related to ion channels/transporters, such as transient receptor potential vanilloid 2 (TRPV2) and solute carrier family 12 member 2 (SLC12A2). The cytotoxicities of the TRPV2 inhibitor tranilast and the SLC12A2 inhibitor furosemide were higher at lower concentrations in CSCs than in non-CSCs, and both markedly reduced the number of tumorspheres. The cell population among OE33 cells that highly expressed ALDH1A1 also was significantly decreased by these inhibitors. CONCLUSIONS: Based on the present results, TRPV2 and SLC12A2 are involved in the maintenance of CSCs, and their specific inhibitors, tranilast and furosemide, respectively, have potential as targeted therapeutic agents for EAC.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias Esofágicas , Humanos , Furosemida/metabolismo , Neoplasias Esofágicas/patologia , Adenocarcinoma/patologia , Antineoplásicos/uso terapêutico , Células-Tronco Neoplásicas , Linhagem Celular Tumoral , Canais de Cátion TRPV/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
11.
Otol Neurotol ; 44(10): 1057-1065, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733989

RESUMO

HYPOTHESIS: Analysis of human temporal bone specimens of patients with Menière's disease (MD) may demonstrate altered expression of gene products related to barrier formation and ionic homeostasis within cochlear structures compared with control specimens. BACKGROUND: MD represents a challenging otologic disorder for investigation. Despite attempts to define the pathogenesis of MD, there remain many gaps in our understanding, including differences in protein expression within the inner ear. Understanding these changes may facilitate the identification of more targeted therapies for MD. METHODS: Human temporal bones from patients with MD (n = 8) and age-matched control patients (n = 8) were processed with immunohistochemistry stains to detect known protein expression related to ionic homeostasis and barrier function in the cochlea, including CLDN11, CLU, KCNJ10, and SLC12A2. Immunofluorescence intensity analysis was performed to quantify protein expression in the stria vascularis, organ of Corti, and spiral ganglion neuron (SGN). RESULTS: Expression of KCNJ10 was significantly reduced in all cochlear regions, including the stria vascularis (9.23 vs 17.52, p = 0.011), OC (14.93 vs 29.16, p = 0.014), and SGN (7.69 vs 18.85, p = 0.0048) in human temporal bone specimens from patients with MD compared with control, respectively. CLDN11 (7.40 vs 10.88, p = 0.049) and CLU (7.80 vs 17.51, p = 0.0051) expression was significantly reduced in the SGN. CONCLUSION: The results of this study support that there may be differences in the expression of proteins related to ionic homeostasis and barrier function within the cochlea, potentially supporting the role of targeted therapies to treat MD.


Assuntos
Doença de Meniere , Humanos , Doença de Meniere/patologia , Cóclea/patologia , Estria Vascular/patologia , Osso Temporal/patologia , Homeostase , Membro 2 da Família 12 de Carreador de Soluto
12.
Seizure ; 111: 206-214, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690372

RESUMO

BACKGROUND: Bumetanide, an inhibitor of the sodium-potassium-chloride cotransporter-1, has been suggested as an adjunct to phenobarbital for treating neonatal seizures. METHODS: A systematic review of animal and human studies was conducted to evaluate the efficacy and safety of bumetanide for neonatal seizures. PubMed, Embase, CINAHL and Cochrane databases were searched in March 2023. RESULTS: 26 animal (rat or mice) studies describing 38 experiments (28 in-vivo and ten in-vitro) and two human studies (one RCT and one open-label dose-finding) were included. The study designs, methods to induce seizures, bumetanide dose, and outcome measures were heterogeneous, with only 4/38 experiments being in animal hypoxia/ischaemia models. Among 38 animal experiments, bumetanide was reported to have antiseizure effects in 21, pro-seizure in six and ineffective in 11. The two human studies (n = 57) did not show the benefits of bumetanide as an add-on agent to phenobarbital in their primary analyses, but one study reported benefit on post-hoc analysis. Overall, hearing impairment was detected in 5/37 surviving infants in the bumetanide group vs. 0/13 in controls. Four of the five infants with hearing impairment had received aminoglycosides concurrently. Other adverse effects reported were diuresis, mild-to-moderate dehydration, hypotension, and electrolyte disturbances. The studies did not report on long-term neurodevelopment. The certainty of the evidence was very low. CONCLUSION: Animal data suggest that bumetanide has inconsistent effects as an antiseizure medication in neonates. Data from human studies are scarce and raise some concerns regarding ototoxicity when given with aminoglycosides. Well conducted studies in animal models of hypoxic-ischaemic encephalopathy are urgently needed. Future RCTs, if conducted in human neonates, should have an adequate sample size, assess neurodevelopment, minimize using aminoglycosides, be transparent about the potential ototoxicity in the parent information sheet, conduct early hearing tests and have trial-stopping rules that include hearing impairment as an outcome.


Assuntos
Epilepsia , Perda Auditiva , Doenças do Recém-Nascido , Ototoxicidade , Recém-Nascido , Lactente , Humanos , Ratos , Camundongos , Animais , Bumetanida/efeitos adversos , Ototoxicidade/tratamento farmacológico , Inibidores de Simportadores de Cloreto de Sódio e Potássio/efeitos adversos , Membro 2 da Família 12 de Carreador de Soluto , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Epilepsia/tratamento farmacológico , Fenobarbital/farmacologia , Fenobarbital/uso terapêutico , Aminoglicosídeos/uso terapêutico , Anticonvulsivantes/efeitos adversos
14.
Cells ; 12(15)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37566028

RESUMO

Human cerebral organoids resemble the 3D complexity of the human brain and have the potential to augment current drug development pipelines for neurological disease. Epilepsy is a complex neurological condition characterized by recurrent seizures. A third of people with epilepsy do not respond to currently available pharmaceutical drugs, and there is not one drug that treats all subtypes; thus, better models of epilepsy are needed for drug development. Cerebral organoids may be used to address this unmet need. In the present work, human cerebral organoids are used along with electrophysiological methods to explore oxygen-glucose deprivation as a hyperexcitability agent. This activity is investigated in its response to current antiseizure drugs. Furthermore, the mechanism of action of the drug candidates is probed with qPCR and immunofluorescence. The findings demonstrate OGD-induced hyperexcitable changes in the cerebral organoid tissue, which is treated with cannabidiol and bumetanide. There is evidence for NKCC1 and KCC2 gene expression, as well as other genes and proteins involved in the complex development of GABAergic signaling. This study supports the use of organoids as a platform for modelling cerebral cortical hyperexcitability that could be extended to modelling epilepsy and used for drug discovery.


Assuntos
Epilepsia , Glucose , Humanos , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Glucose/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Encéfalo/metabolismo , Organoides/metabolismo
15.
Am J Physiol Cell Physiol ; 325(2): C385-C390, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399495

RESUMO

Mutations in the SLC12A2 gene, which encodes the Na-K-2Cl cotransporter-1 (NKCC1), are linked to various conditions such as neurodevelopmental deficits, deafness, and fluid secretion in different epithelia. Cases of complete NKCC1 deficiency in young patients are straightforward, leading to clinical presentations that overlap with the phenotypes observed in NKCC1 knockout mouse models. However, cases involving deleterious variants in one allele are more difficult, as the clinical presentation is variable, and the cause-effect relationship is not always clear. For instance, we worked on a single patient's case from multiple angles and published six related papers to convince ourselves of the cause-and-effect relationship between her NKCC1 mutation and her clinical presentations. The cluster of mutations in a small portion of the carboxyl terminus and its association with deafness point to a cause-and-effect relationship, even if the molecular mechanism is unknown. Overall, the preponderance of evidence suggests that the SLC12A2 gene is a human disease-causing and likely haploinsufficient gene that requires further investigation.


Assuntos
Surdez , Simportadores , Humanos , Camundongos , Animais , Feminino , Simportadores/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 2 da Família 12 de Carreador de Soluto/genética , Camundongos Knockout , Mutação/genética
16.
Fluids Barriers CNS ; 20(1): 45, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328833

RESUMO

Regulation of the volume and electrolyte composition of the cerebrospinal fluid (CSF) is vital for brain development and function. The Na-K-Cl co-transporter NKCC1 in the choroid plexus (ChP) plays key roles in regulating CSF volume by co-transporting ions and mediating same-direction water movements. Our previous study showed ChP NKCC1 is highly phosphorylated in neonatal mice as the CSF K+ level drastically decreases and that overexpression of NKCC1 in the ChP accelerates CSF K+ clearance and reduces ventricle size [1]. These data suggest that NKCC1 mediates CSF K+ clearance following birth in mice. In this current study, we used CRISPR technology to create a conditional NKCC1 knockout mouse line and evaluated CSF K+ by Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES). We demonstrated ChP-specific reduction of total and phosphorylated NKCC1 in neonatal mice following embryonic intraventricular delivery of Cre recombinase using AAV2/5. ChP-NKCC1 knockdown was accompanied by a delayed perinatal clearance of CSF K+. No gross morphological disruptions were observed in the cerebral cortex. We extended our previous results by showing embryonic and perinatal rats shared key characteristics with mice, including decreased ChP NKCC1 expression level, increased ChP NKCC1 phosphorylation state, and increased CSF K+ levels compared to adult. Collectively, these follow up data support ChP NKCC1's role in age-appropriate CSF K+ clearance during neonatal development.


Assuntos
Plexo Corióideo , Potássio , Membro 2 da Família 12 de Carreador de Soluto , Animais , Feminino , Camundongos , Gravidez , Ratos , Córtex Cerebral/metabolismo , Ventrículos Cerebrais/metabolismo , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/metabolismo , Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
17.
Neurotox Res ; 41(6): 526-545, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37378827

RESUMO

Neonatal hypoxia-ischemia (HI) is one of the main causes of tissue damage, cell death, and imbalance between neuronal excitation and inhibition and synaptic loss in newborns. GABA, the major inhibitory neurotransmitter of the central nervous system (CNS) in adults, is excitatory at the onset of neurodevelopment and its action depends on the chloride (Cl-) cotransporters NKCC1 (imports Cl-) and KCC2 (exports Cl-) expression. Under basal conditions, the NKCC1/KCC2 ratio decreases over neurodevelopment. Thus, changes in this ratio caused by HI may be related to neurological disorders. The present study evaluated the effects of bumetanide (NKCC cotransporters inhibitor) on HI impairments in two neurodevelopmental periods. Male Wistar rat pups, 3 (PND3) and 11 (PND11) days old, were submitted to the Rice-Vannucci model. Animals were divided into 3 groups: SHAM, HI-SAL, and HI-BUM, considering each age. Bumetanide was administered intraperitoneally at 1, 24, 48, and 72 h after HI. NKCC1, KCC2, PSD-95, and synaptophysin proteins were analyzed after the last injection by western blot. Negative geotaxis, righting reflex, open field, object recognition test, and Morris water maze task were performed to assess neurological reflexes, locomotion, and memory function. Tissue atrophy and cell death were evaluated by histology. Bumetanide prevented neurodevelopmental delay, hyperactivity, and declarative and spatial memory deficits. Furthermore, bumetanide reversed HI-induced brain tissue damage, reduced neuronal death and controlled GABAergic tone, maintained the NKCC1/KCC2 ratio, and synaptogenesis close to normality. Thereby, bumetanide appears to play an important therapeutic role in the CNS, protecting the animals against HI damage and improving functional performance.


Assuntos
Bumetanida , Hipóxia-Isquemia Encefálica , Ratos , Animais , Masculino , Bumetanida/farmacologia , Bumetanida/uso terapêutico , Ratos Wistar , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Isquemia/tratamento farmacológico , Hipóxia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Encéfalo/metabolismo , Cognição , Animais Recém-Nascidos
18.
Brain ; 146(10): 4247-4261, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37082944

RESUMO

Although the Na-K-Cl cotransporter (NKCC1) inhibitor bumetanide has prominent positive effects on the pathophysiology of many neurological disorders, the mechanism of action is obscure. Attention paid to elucidating the role of Nkcc1 has mainly been focused on neurons, but recent single cell mRNA sequencing analysis has demonstrated that the major cellular populations expressing NKCC1 in the cortex are non-neuronal. We used a combination of conditional transgenic animals, in vivo electrophysiology, two-photon imaging, cognitive behavioural tests and flow cytometry to investigate the role of Nkcc1 inhibition by bumetanide in a mouse model of controlled cortical impact (CCI). Here, we found that bumetanide rescues parvalbumin-positive interneurons by increasing interneuron-microglia contacts shortly after injury. The longitudinal phenotypic changes in microglia were significantly modified by bumetanide, including an increase in the expression of microglial-derived BDNF. These effects were accompanied by the prevention of CCI-induced decrease in hippocampal neurogenesis. Treatment with bumetanide during the first week post-CCI resulted in significant recovery of working and episodic memory as well as changes in theta band oscillations 1 month later. These results disclose a novel mechanism for the neuroprotective action of bumetanide mediated by an acceleration of microglial activation dynamics that leads to an increase in parvalbumin interneuron survival following CCI, possibly resulting from increased microglial BDNF expression and contact with interneurons. Salvage of interneurons may normalize ambient GABA, resulting in the preservation of adult neurogenesis processes as well as contributing to bumetanide-mediated improvement of cognitive performance.


Assuntos
Bumetanida , Inibidores de Simportadores de Cloreto de Sódio e Potássio , Camundongos , Animais , Bumetanida/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Microglia/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Parvalbuminas/metabolismo , Parvalbuminas/farmacologia , Membro 2 da Família 12 de Carreador de Soluto , Interneurônios/metabolismo , Neurogênese
19.
Epilepsy Behav ; 142: 109189, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037061

RESUMO

Birth asphyxia and the resulting hypoxic-ischemic encephalopathy (HIE) are highly associated with perinatal and neonatal death, neonatal seizures, and an adverse later-life outcome. Currently used drugs, including phenobarbital and midazolam, have limited efficacy to suppress neonatal seizures. There is a medical need to develop new therapies that not only suppress neonatal seizures but also prevent later-life consequences. We have previously shown that the loop diuretic bumetanide does not potentiate the effects of phenobarbital in a rat model of birth asphyxia. Here we compared the effects of bumetanide (0.3 or 10 mg/kg i.p.), midazolam (1 mg/kg i.p.), and a combination of bumetanide and midazolam on neonatal seizures and later-life outcomes in this model. While bumetanide at either dose was ineffective when administered alone, the higher dose of bumetanide markedly potentiated midazolam's effect on neonatal seizures. Median bumetanide brain levels (0.47-0.53 µM) obtained with the higher dose were in the range known to inhibit the Na-K-Cl-cotransporter NKCC1 but it remains to be determined whether brain NKCC1 inhibition was underlying the potentiation of midazolam. When behavioral and cognitive alterations were examined over three months after asphyxia, treatment with the bumetanide/midazolam combination, but not with bumetanide or midazolam alone, prevented impairment of learning and memory. Furthermore, the combination prevented the loss of neurons in the dentate hilus and aberrant mossy fiber sprouting in the CA3a area of the hippocampus. The molecular mechanisms that explain that bumetanide potentiates midazolam but not phenobarbital in the rat model of birth asphyxia remain to be determined.


Assuntos
Asfixia Neonatal , Epilepsia , Humanos , Recém-Nascido , Ratos , Animais , Bumetanida/uso terapêutico , Bumetanida/farmacologia , Midazolam/uso terapêutico , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia , Asfixia/complicações , Asfixia/tratamento farmacológico , Nascimento a Termo , Membro 2 da Família 12 de Carreador de Soluto , Fenobarbital/uso terapêutico , Fenobarbital/farmacologia , Epilepsia/tratamento farmacológico , Asfixia Neonatal/complicações , Asfixia Neonatal/tratamento farmacológico , Convulsões/tratamento farmacológico , Convulsões/etiologia
20.
Mol Brain ; 16(1): 30, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934242

RESUMO

Neuronal voltage changes which are dependent on chloride transporters and channels are involved in forming neural functions during early development and maintaining their stability until adulthood. The intracellular chloride concentration maintains a steady state, which is delicately regulated by various genes coding for chloride transporters and channels (GClTC) on the plasmalemma; however, the synergistic effect of these genes in central nervous system disorders remains unclear. In this study, we first defined 10 gene clusters with similar temporal expression patterns, and identified 41 GClTC related to brain developmental process. Then, we found 4 clusters containing 22 GClTC were enriched for the neuronal functions. The GClTC from different clusters presented distinct cell type preferences and anatomical heterogeneity. We also observed strong correlations between clustered genes and diseases, most of which were nervous system disorders. Finally, we found that one of the most well-known GClTC, SLC12A2, had a more profound effect on glial cell-related diseases than on neuron-related diseases, which was in accordance with our observation that SLC12A2 was mainly expressed in oligodendrocytes during brain development. Our findings provide a more comprehensive understanding of the temporal and spatial expression characteristics of GClTC, which can help us understand the complex roles of GClTC in the development of the healthy human brain and the etiology of brain disorders.


Assuntos
Encefalopatias , Cloretos , Humanos , Encéfalo/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neuroglia/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...