Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Genet Metab ; 122(3): 76-84, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28711408

RESUMO

Carnitine transporter defect (CTD; also known as systemic primary carnitine deficiency; MIM 212140) is due to mutations in the SLC22A5 gene and leads to extremely low carnitine levels in blood and tissues. Affected individuals may develop early onset cardiomyopathy, weakness, or encephalopathy, which may be serious or even fatal. The disorder can be suggested by newborn screening. However, markedly low newborn carnitine levels can also be caused by conditions unrelated to CTD, such as the low carnitine levels often associated with normal pregnancies and some metabolic disorders occurring in the mother. In order to clarify the biochemical characteristics most useful for identification of CTD in newborns, we examined California Department of Public Health newborn screening data for CTD from 2005 to 12 and performed detailed chart reviews at six metabolic centers in California. The reviews covered 14 cases of newborn CTD, 14 cases of maternal disorders (CTD, 6 cases; glutaric aciduria, type 1, 5; medium-chain acyl CoA dehydrogenase deficiency, 2; and cobalamin C deficiency, 1), and 154 false-positive cases identified by newborn screening. Our results show that newborns with CTD identified by NBS exhibit different biochemical characteristics, compared to individuals ascertained clinically. Newborns with CTD may have NBS dried blood spot free carnitine near the lower cutoff and confirmatory plasma total and free carnitine levels near the normal lower limit, particularly if obtained within two weeks after birth. These findings raise the concern that true cases of CTD may exist that could have been missed by newborn screening. CTD should be considered as a possible diagnosis in cases with suggestive clinical features, even if CTD was thought to be excluded in the newborn period. Maternal plasma total carnitine and newborn urine total carnitine values are the most important predictors of true CTD in newborns. However, biochemical testing alone does not yield a discriminant rule to distinguish true CTD from low carnitine in newborns due to other causes. Because of this biochemical variability and overlap, molecular genetic testing is imperative to confirm CTD in newborns. Additionally, functional testing of fibroblast carnitine uptake remains necessary for cases in which other confirmatory testing is inconclusive. Even with utilization of all available diagnostic testing methods, confirmation of CTD ascertained by NBS remains lengthy and challenging. Incorporation of molecular analysis as a second tier step in NBS for CTD may be beneficial and should be investigated.


Assuntos
Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Carnitina/sangue , Carnitina/deficiência , Carnitina/metabolismo , Hiperamonemia/sangue , Hiperamonemia/diagnóstico , Doenças Musculares/sangue , Doenças Musculares/diagnóstico , Triagem Neonatal/métodos , California , Cardiomiopatias/complicações , Carnitina/análise , Carnitina/química , Carnitina/urina , Teste em Amostras de Sangue Seco , Reações Falso-Positivas , Feminino , Fibroblastos/fisiologia , Humanos , Hiperamonemia/complicações , Recém-Nascido , Limite de Detecção , Masculino , Mães , Doenças Musculares/complicações , Mutação , Análise de Sequência de DNA , Membro 5 da Família 22 de Carreadores de Soluto/deficiência , Membro 5 da Família 22 de Carreadores de Soluto/genética
2.
Ann Nutr Metab ; 68 Suppl 3: 5-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27931018

RESUMO

Carnitine is needed for transfer of long-chain fatty acids across the inner mitochondrial membrane for subsequent ß-oxidation. Carnitine can be synthesized by the body and is also obtained in the diet through consumption of meat and dairy products. Defects in carnitine transport such as those caused by defective activity of the OCTN2 transporter encoded by the SLC22A5 gene result in primary carnitine deficiency, and newborn screening programmes can identify patients at risk for this condition before irreversible damage. Initial biochemical diagnosis can be confirmed through molecular testing, although direct study of carnitine transport in fibroblasts is very useful to confirm or exclude primary carnitine deficiency in individuals with genetic variations of unknown clinical significance or who continue to have low levels of carnitine despite negative molecular analyses. Genetic defects in carnitine biosynthesis do not generally result in low plasma levels of carnitine. However, deletion of the trimethyllysine hydroxylase gene, a key gene in carnitine biosynthesis, has been associated with non-dysmorphic autism. Thus, new roles for carnitine are emerging that are unrelated to classic inborn errors of metabolism.


Assuntos
Cardiomiopatias/diagnóstico , Carnitina/deficiência , Deficiências Nutricionais/diagnóstico , Testes Genéticos , Hiperamonemia/diagnóstico , Erros Inatos do Metabolismo/diagnóstico , Doenças Musculares/diagnóstico , Mutação , Triagem Neonatal , Membro 5 da Família 22 de Carreadores de Soluto/genética , Cardiomiopatias/dietoterapia , Cardiomiopatias/epidemiologia , Cardiomiopatias/metabolismo , Carnitina/metabolismo , Carnitina/uso terapêutico , Deficiências Nutricionais/dietoterapia , Deficiências Nutricionais/metabolismo , Dinamarca/epidemiologia , Suplementos Nutricionais , Humanos , Hiperamonemia/dietoterapia , Hiperamonemia/epidemiologia , Hiperamonemia/metabolismo , Incidência , Recém-Nascido , Erros Inatos do Metabolismo/dietoterapia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Oxigenases de Função Mista/deficiência , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Doenças Musculares/dietoterapia , Doenças Musculares/epidemiologia , Doenças Musculares/metabolismo , Prognóstico , Membro 5 da Família 22 de Carreadores de Soluto/deficiência , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo
3.
Acta bioquím. clín. latinoam ; 42(2): 245-247, abr.-jun. 2008. graf, tab
Artigo em Espanhol | LILACS | ID: lil-633050

RESUMO

El transportador de carnitina (OCTN2) es fundamental para el metabolismo mitocondrial de los ácidos grasos de cadena larga. Su carencia produce la deficiencia primaria de carnitina. El presente estudio tuvo como objetivo el análisis de los ácidos grasos producidos por fibroblastos incubados en presencia de sustratos deuterados, mediante cromatografía de gases acoplada a espectrometría de masas (GC - MS) como herramienta diagnóstica de la deficiencia primaria de carnitina. Se encontró un perfil característico en esta deficiencia, lo que permite su diagnóstico in vitro.


Carnitine transporter (OCTN2) is required for the mitochondrial metabolism of long-chain fatty acids. Primary carnitine deficiency is a consequence of its deficiency. The objective of the present study was to analyse the fatty acids produced by fibroblasts incubated with deuterated substrates, using gas chromatography-mass spectrometry as a diagnostic tool for the diagnosis of VLCAD deficiency. A characteristic profile for this deficiency was found using this technique which enables its in vitro diagnosis.


Assuntos
Carnitina/deficiência , Membro 5 da Família 22 de Carreadores de Soluto/deficiência , Técnicas In Vitro , Carnitina/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...