Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 203: 110911, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31734539

RESUMO

Here, we show that mesna (sodium-2-mercaptoethane sulfonate), primarily used to prevent nephrotoxicity and urinary tract toxicity caused by chemotherapeutic agents such as cyclophosphamide and ifosfamide, modulates the catalytic activity of lactoperoxidase (LPO) by binding tightly to the enzyme, functioning either as a one electron substrate for LPO Compounds I and II, destabilizing Compound III. Lactoperoxidase is a hemoprotein that utilizes hydrogen peroxide (H2O2) and thiocyanate (SCN-) to produce hypothiocyanous acid (HOSCN), an antimicrobial agent also thought to be associated with carcinogenesis. Our results revealed that mesna binds stably to LPO within the SCN- binding site, dependent of the heme iron moiety, and its combination with LPO-Fe(III) is associated with a disturbance in the water molecule network in the heme cavity. At low concentrations, mesna accelerated the formation and decay of LPO compound II via its ability to serve as a one electron substrate for LPO compounds I and II. At higher concentrations, mesna also accelerated the formation of Compound II but it decays to LPO-Fe(III) directly or through the formation of an intermediate, Compound I*, that displays characteristic spectrum similar to that of LPO Compound I. Mesna inhibits LPO's halogenation activity (IC50 value of 9.08 µM) by switching the reaction from a 2e- to a 1e- pathway, allowing the enzyme to function with significant peroxidase activity (conversion of H2O2 to H2O without generation of HOSCN). Collectively, mesna interaction with LPO may serve as a potential mechanism for modulating its steady-state catalysis, impacting the regulation of local inflammatory and infectious events.


Assuntos
Inibidores Enzimáticos/química , Lactoperoxidase/antagonistas & inibidores , Mesna/química , Substâncias Protetoras/química , Cinética
2.
ACS Synth Biol ; 7(4): 1067-1074, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29474065

RESUMO

Harnessing and controlling self-assembly is an important step in developing proteins as novel biomaterials. With this goal, here we report the design of a general genetically programmed system that covalently concatenates multiple distinct protein domains into specific assembled arrays. It is driven by iterative intein-mediated native chemical ligation (NCL) under mild native conditions. The system uses a series of initially inert recombinant protein fusions that sandwich the protein modules to be ligated between one of a number of different affinity tags and an intein protein domain. Orthogonal activation at opposite termini of compatible protein fusions, via protease and intein cleavage, coupled with sequential mixing directs an irreversible and traceless stepwise assembly process. This gives total control over the composition and arrangement of component proteins within the final product, enabled the limits of the system-reaction efficiency and yield-to be investigated, and led to the production of "functional" assemblies.


Assuntos
Inteínas/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Cisteína/química , Concentração de Íons de Hidrogênio , Mesna/química , Nanoestruturas/química , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , Repetições de Tetratricopeptídeos
3.
Free Radic Biol Med ; 110: 54-62, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28552694

RESUMO

Myeloperoxidase (MPO), an abundant protein in neutrophils, monocytes, and macrophages, is thought to play a critical role in the pathogenesis of various disorders ranging from cardiovascular diseases to cancer. We show that mesna (2-mercaptoethanesulfonic acid sodium salt), a detoxifying agent, which inhibits side effects of oxazaphosphorine chemotherapy, functions as a potent inhibitor of MPO; modulating its catalytic activity and function. Using rapid kinetic methods, we examined the interactions of mesna with MPO compounds I and II and ferric forms in the presence and absence of chloride (Cl-), the preferred substrate of MPO. Our results suggest that low mesna concentrations dramatically influenced the build-up, duration, and decay of steady-state levels of Compound I and Compound II, which is the rate-limiting intermediate in the classic peroxidase cycle. Whereas, higher mesna concentrations facilitate the porphyrin-to-adjacent amino acid electron transfer allowing the formation of an unstable transient intermediate, Compound I*, that displays a characteristic spectrum similar to Compound I. In the absence of plasma level of chloride, mesna not only accelerated the formation and decay of Compound II but also reduced its stability in a dose depend manner. Mesna competes with Cl-, inhibiting MPO's chlorinating activity with an IC50 of 5µM, and switches the reaction from a 2e- to a 1e- pathway allowing the enzyme to function only with catalase-like activity. A kinetic model which shows the dual regulation through which mesna interacts with MPO and regulates its downstream inflammatory pathways is presented further validating the repurposing of mesna as an anti-inflammatory drug.


Assuntos
Inibidores Enzimáticos/química , Mesna/química , Peroxidase/antagonistas & inibidores , Cloretos/química , Ensaios Enzimáticos , Humanos , Cinética , Leucócitos/química , Leucócitos/enzimologia , Modelos Químicos , Peroxidase/química , Peroxidase/isolamento & purificação , Soluções , Taurina/análogos & derivados , Taurina/química
4.
Toxicol Lett ; 275: 92-100, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28495614

RESUMO

The purpose of this study was to evaluate the efficacy of potential candidate molecules or their combinations against strong alkylation agent sulfur mustard (SM) on the human lung alveolar epithelial cell line A-549. Candidate molecules were chosen on the basis of their previously observed protective effects in vitro. The tested compounds, including antioxidants, sulfhydryl or other sulfur-containing molecules, nitrogen-containing molecules, PARP inhibitors and a NO synthase inhibitor, were applicated 30min before SM treatment. The efficiency of candidate molecules to protect cells against DNA damage and cell death induced by SM was determined using single-cell gel electrophoresis (comet assay) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by viable cells. The damage of DNA was assessed 1 and 24h after dose 50µM SM. Cell survival was assessed 24 and 72h after the exposure. To achieve maximal cytoprotection, combinations of selected compounds with sodium 2-mercaptoethane sulphonate (MESNA) were tested. We found significant protective effects by several drugs used individually and also in combination with MESNA. High protection was achieved by sodium thiosulphate, which was further potentiated when combined with MESNA. Most of the selected compounds or mixture provided only moderate genoptotection without having any effect towards cell viability.


Assuntos
Dano ao DNA , Mesna/farmacologia , Gás de Mostarda/toxicidade , Mutagênicos/toxicidade , Substâncias Protetoras/farmacologia , Células A549 , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Citoproteção , Sinergismo Farmacológico , Humanos , Mesna/química , Substâncias Protetoras/química
5.
Methods Mol Biol ; 1513: 223-232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27807841

RESUMO

Activity-based diubiquitin probes are highly useful in probing the deubiquitinase (DUB) activity and ubiquitin chain linkage specificity. Here we describe a detailed protocol to synthesize a new class of diubiquitin DUB probes. In this method, two ubiquitin moieties are connected through a linker resembling the native linkage in size and containing a Michael acceptor for trapping the DUB active-site cysteine. Detailed procedures for generating the linker molecule are also described.


Assuntos
Derivados de Benzeno/química , Técnicas de Química Sintética , Enzimas Desubiquitinantes/análise , Sondas Moleculares/síntese química , Ubiquitina/metabolismo , Domínio Catalítico , Cisteína/química , Enzimas Desubiquitinantes/metabolismo , Humanos , Mesna/química , Sondas Moleculares/química , Plasmídeos/química , Plasmídeos/metabolismo , Ubiquitinação
6.
Nature ; 539(7629): 396-401, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27749816

RESUMO

The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C1-compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C4 hydrocarbon butane. The archaea, proposed genus 'Candidatus Syntrophoarchaeum', show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase. We detect butyl-coenzyme M, indicating archaeal butane activation analogous to the first step in anaerobic methane oxidation. In addition, Ca. Syntrophoarchaeum expresses the genes encoding ß-oxidation enzymes, carbon monoxide dehydrogenase and reversible C1 methanogenesis enzymes. This allows for the complete oxidation of butane. Reducing equivalents are seemingly channelled to HotSeep-1, a thermophilic sulfate-reducing partner bacterium known from the anaerobic oxidation of methane. Genes encoding 16S rRNA and methyl-coenzyme M reductase similar to those identifying Ca. Syntrophoarchaeum were repeatedly retrieved from marine subsurface sediments, suggesting that the presented activation mechanism is naturally widespread in the anaerobic oxidation of short-chain hydrocarbons.


Assuntos
Archaea/metabolismo , Butanos/metabolismo , Mesna/química , Mesna/metabolismo , Alquilação , Anaerobiose , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Biocatálise , Evolução Molecular , Oxirredução , Sulfatos/metabolismo , Temperatura
7.
Antimicrob Agents Chemother ; 60(7): 4274-82, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27161644

RESUMO

Metallo-ß-lactamases (MBLs) confer resistance to carbapenems, and their increasing global prevalence is a growing clinical concern. To elucidate the mechanisms by which these enzymes recognize and hydrolyze carbapenems, we solved 1.4 to 1.6 Å crystal structures of SMB-1 (Serratia metallo-ß-lactamase 1), a subclass B3 MBL, bound to hydrolyzed carbapenems (doripenem, meropenem, and imipenem). In these structures, SMB-1 interacts mainly with the carbapenem core structure via elements in the active site, including a zinc ion (Zn-2), Q157[113] (where the position in the SMB-1 sequence is in brackets after the BBL number), S221[175], and T223[177]. There is less contact with the carbapenem R2 side chains, strongly indicating that SMB-1 primarily recognizes the carbapenem core structure. This is the first report describing how a subclass B3 MBL recognizes carbapenems. We also solved the crystal structure of SMB-1 in complex with the approved drugs captopril, an inhibitor of the angiotensin-converting enzyme, and 2-mercaptoethanesulfonate, a chemoprotectant. These drugs are inhibitors of SMB-1 with Ki values of 8.9 and 184 µM, respectively. Like carbapenems, these inhibitors interact with Q157[113] and T223[177] and their thiol groups coordinate the zinc ions in the active site. Taken together, the data indicate that Q157[113], S221[175], T223[177], and the two zinc ions in the active site are key targets in the design of SMB-1 inhibitors with enhanced affinity. The structural data provide a solid foundation for the development of effective inhibitors that would overcome the carbapenem resistance of MBL-producing multidrug-resistant microbes.


Assuntos
Antibacterianos/química , Carbapenêmicos/química , beta-Lactamases/química , Inibidores da Enzima Conversora de Angiotensina/química , Captopril/química , Domínio Catalítico , Cristalografia por Raios X , Doripenem , Imipenem/química , Meropeném , Mesna/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Serratia marcescens/enzimologia , Tienamicinas/química , beta-Lactamases/metabolismo
8.
Expert Rev Anticancer Ther ; 16(1): 123-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26568378

RESUMO

INTRODUCTION: It is important for sarcoma patients to receive the correct dose of Mesna as an adjuvant with ifosfamide to reduce the risk of hemorrhagic cystitis. This paper describes a study conducted to evaluate the physicochemical stability of Mesna for injection formulation over 14 days. METHODS: Mesna samples (n = 4, 20 mg/ml) were incubated in glass vials at 37 + 0.5ºC. Mesna concentrations were determined by liquid chromatography-mass spectrometry (LC-MS/MS), and nuclear magnetic resonance spectroscopy (NMR) was used to detect degradation products. Evaporative losses and pH were also monitored. RESULTS: Our results differed from those published in existing literature. Both LC-MS/MS and NMR indicated that Mesna was unstable. The mean percentage decrease in Mesna concentration was 40% by day 14 of the analysis. The presence of Mesna's dimer Dimesna was detected on day 0 and its concentration increased over time. Dimesna was the only by-product identified. CONCLUSION: Both LC-MS/MS and NMR analyses confirmed the instability of Mesna and its conversion into Dimesna.


Assuntos
Cromatografia Líquida/métodos , Espectroscopia de Ressonância Magnética/métodos , Mesna/análise , Espectrometria de Massas em Tandem/métodos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Concentração de Íons de Hidrogênio , Injeções , Mesna/análogos & derivados , Mesna/química
9.
J Oncol Pharm Pract ; 22(1): 86-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25178698

RESUMO

PURPOSE: This paper aims to summarise and critically review the existing published literature with regard to clinical considerations as well as stability testing studies of Ifosfamide and Mesna. It also aims to highlight the factors that should be considered when designing and conducting stability testing experiments. SUMMARY: Ifosfamide and Mesna are currently given to patients for 14 days continuous home-based infusion for the treatment of soft tissue sarcoma. No previous work has evaluated their stability for more than 7 days under real-life conditions so the current regimen involves patients visiting hospital twice during the 14-day treatment. This may create extra disruption to patients' life style as well as increasing the workload for cancer services. CONCLUSION: There is a need to conduct stability testing experiments for Ifosfamide and Mesna taking into consideration all of the highlighted factors to mimic standard clinical practice.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Ifosfamida/química , Ifosfamida/uso terapêutico , Mesna/química , Mesna/uso terapêutico , Sarcoma/tratamento farmacológico , Estabilidade de Medicamentos , Humanos
10.
J Biol Chem ; 290(15): 9322-34, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25691570

RESUMO

Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB7SH) to CH4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM) is productive whereas the other (MCR·CoB7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB7SH complex is highly disfavored (Kd = 56 mM). However, binding of CoB7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB7SH·MCR(Ni(I))·CH3SCoM) is highly favored (Kd = 79 µM). Only then can the chemical reaction occur (kobs = 20 s(-1) at 25 °C), leading to rapid formation and dissociation of CH4 leaving the binary product complex (MCR(Ni(II))·CoB7S(-)·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. This first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates.


Assuntos
Proteínas Arqueais/metabolismo , Mesna/metabolismo , Methanobacteriaceae/enzimologia , Oxirredutases/metabolismo , Fosfotreonina/análogos & derivados , Proteínas Arqueais/química , Proteínas Arqueais/genética , Biocatálise , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Mesna/química , Metano/química , Metano/metabolismo , Methanobacteriaceae/genética , Modelos Biológicos , Modelos Químicos , Níquel/química , Níquel/metabolismo , Oxirredutases/química , Oxirredutases/genética , Fosfotreonina/química , Fosfotreonina/metabolismo , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Espectrometria de Fluorescência , Especificidade por Substrato
11.
J Phys Chem A ; 118(12): 2196-208, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24506703

RESUMO

The oxidation of a well-known chemoprotectant in anticancer therapies, sodium 2-mercaptoethanesulfonate, MESNA, by acidic bromate and aqueous bromine was studied in acidic medium. Stoichiometry of the reaction is: BrO3(-) + HSCH2CH2SO3H → Br(-) + HO3SCH2CH2SO3H. In excess bromate conditions the stoichiometry was deduced to be: 6BrO3(-) + 5HSCH2CH2SO3H + 6H(+) → 3Br2 + 5HO3SCH2CH2SO3H + 3H2O. The direct reaction of bromine and MESNA gave a stoichiometric ratio of 3:1: 3Br2 + HSCH2CH2SO3H + 3H2O → HO3SCH2CH2SO3H + 6Br(-) + 6H(+). This direct reaction is very fast; within limits of the mixing time of the stopped-flow spectrophotometer and with a bimolecular rate constant of 1.95 ± 0.05 × 10(4) M(-1) s(-1). Despite the strong oxidizing agents utilized, there is no cleavage of the C-S bond and no sulfate production was detected. The ESI-MS data show that the reaction proceeds via a predominantly nonradical pathway of three consecutive 2-electron transfers on the sulfur center to obtain the product 1,2-ethanedisulfonic acid, a well-known medium for the delivery of psychotic drugs. Thiyl radicals were detected but the absence of autocatalytic kinetics indicated that the radical pathway was a minor oxidation route. ESI-MS data showed that the S-oxide, contrary to known behavior of organosulfur compounds, is much more stable than the sulfinic acid. In conditions where the oxidizing equivalents are limited to a 4-electron transfer to only the sulfinic acid, the products obtained are a mixture of the S-oxide and the sulfonic acid with negligible amounts of the sulfinic acid. It appears the S-oxide is the preferred conformation over the sulfenic acid since no sulfenic acids have ever been stabilized without bulky substituent groups. The overall reaction scheme could be described and modeled by a minimal network of 18 reactions in which the major oxidants are HOBr and Br2(aq).


Assuntos
Bromatos/química , Bromo/química , Mesna/química , Substâncias Protetoras/química , Água/química , Simulação por Computador , Elétrons , Cinética , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Oxidantes/química , Oxirredução
12.
Methods Enzymol ; 536: 95-108, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24423270

RESUMO

Expressed protein ligation (EPL) combines two methods to ligate a synthetic peptide to a recombinant protein. Native chemical ligation (NCL) is a process in which two synthesized peptides are ligated by reaction of a C-terminal thioester on one peptide with an N-terminal cysteine residue of another protein. The chemistry of inteins, self-excising protein fragments that ligate the surrounding protein back together, creates isolatable intermediates with the two chemical groups necessary for NCL, a C-terminal thioester and an N-terminal cysteine residue. This technique allows for the incorporation of synthetic amino acids, radiolabeled amino acids, and fluorescent moieties at specific locations in a protein. It has the advantage of allowing attachment of such synthetic peptides to the termini of a recombinant protein, allowing for the synthesis of large proteins with modified amino acids. This technique utilizes the IMPACT(TM)-System created by New England Biolabs, who provide a variety of vectors in which the multicloning site is directly upstream of an intein sequence fused to a chitin-binding domain (CBD). The CBD binds tightly and specifically to chitin beads, allowing for an efficient one-step purification. This step can be used to obtain highly purified proteins (see Protein Affinity Purification using Intein/Chitin Binding Protein Tags). After purification of the recombinant protein, cleavage from the intein is achieved through the addition of a reactive thiol compound, usually sodium 2-mercaptoethanesulfonate (MESNA) (see also Proteolytic affinity tag cleavage). This reaction creates a protein with a C-terminal thioester that can then react with a peptide containing an N-terminal cysteine residue, ligating the two proteins via a peptide bond.


Assuntos
Cisteína/química , Quitina/química , Reagentes de Ligações Cruzadas/química , Ésteres , Inteínas , Mesna/química , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
13.
J Oncol Pharm Pract ; 20(1): 51-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23512269

RESUMO

PURPOSE: Ifosfamide plus mesna have been used recently in a high-dose regimen that allows this chemotherapy to be given to outpatients with less toxicity over 14 days using a portable pump. However, there is a need for published stability information. The aim of this study was to investigate the physicochemical stability of ifosfamide with mesna in normal saline at room temperature over a prolonged period of 14 days. METHODS: Infusion solutions of 1:1 ifosfamide and mesna at final concentrations of 10, 20 and 30 mg/mL were prepared with 0.9% sodium chloride in PVC bags. Solutions were stored at room temperature. Concentrations of ifosfamide and mesna were measured at 0 and 1, 3, 7 and 14 days using a stability-indicating reversed phase high-performance liquid chromatography (HPLC) assay with ultraviolet detection. RESULTS: Ifosfamide and mesna were both physicochemically stable (>94%) for 14 days in all tested infusion solutions (10, 20 and 30 mg/mL). CONCLUSIONS: Our stability data indicate that ifosfamide and mesna (1:1) combination can be administered as a prolonged continuous infusion with portable pump in an outpatient setting without replacement of the infusion bag. We suggest 20 mg/mL as a reasonable concentration for infusion rates of about 2-4 cc/hr over prolonged periods of time.


Assuntos
Ifosfamida/química , Mesna/química , Soluções Farmacêuticas/química , Fenômenos Químicos , Combinação de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Humanos , Ifosfamida/administração & dosagem , Infusões Intravenosas , Mesna/administração & dosagem , Pacientes Ambulatoriais , Soluções Farmacêuticas/administração & dosagem
14.
J Am Chem Soc ; 135(40): 14985-95, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24003767

RESUMO

Ethyl-coenzyme M (CH3CH2-S-CH2CH2-SO3(-), Et-S-CoM) serves as a homologous substrate for the enzyme methyl-coenzyme M reductase (MCR) resulting in the product ethane instead of methane. The catalytic reaction proceeds via an intermediate that already contains all six C-H bonds of the product. Because product release occurs after a second, rate-limiting step, many cycles of intermediate formation and reconversion to substrate occur before a substantial amount of ethane is released. In deuterated buffer, the intermediate becomes labeled, and C-H activation in the back reaction rapidly leads to labeled Et-S-CoM, which enables intermediate formation to be detected. Here, we present a comprehensive analysis of this pre-equilibrium. (2)H- and (13)C-labeled isotopologues of Et-S-CoM were used as the substrates, and the time course of each isotopologue was followed by NMR spectroscopy. A kinetic simulation including kinetic isotope effects allowed determination of the primary and α- and ß-secondary isotope effects for intermediate formation and for the C-H/C-D bond activation in the ethane-containing intermediate. The values obtained are in accordance with those found for the native substrate Me-S-CoM (see preceding publication, Scheller, S.; Goenrich, M.; Thauer, R. K.; Jaun, B. J. Am. Chem. Soc. 2013, 135, DOI: 10.1021/ja406485z) and thus imply the same catalytic mechanism for both substrates. The experiment by Floss and co-workers, demonstrating a net inversion of configuration to chiral ethane with CH3CDT-S-CoM as the substrate, is compatible with the observed rapid isotope exchange if the isotope effects measured here are taken into account.


Assuntos
Etano/metabolismo , Mesna/química , Mesna/metabolismo , Methanosarcina barkeri/enzimologia , Oxirredutases/metabolismo , Isótopos , Cinética , Modelos Moleculares , Oxirredutases/química , Conformação Proteica , Homologia de Sequência
16.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 11): 1549-57, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23090404

RESUMO

The zinc-containing corrinoid:coenzyme M methyltransferase MtaA is part of the methanol-coenzyme M-methyltransferase complex of Methanosarcina mazei. The whole complex consists of three subunits: MtaA, MtaB and MtaC. The MtaB-MtaC complex catalyses the cleavage of methanol (bound to MtaB) and the transfer of the methyl group onto the cobalt of cob(I)alamin (bound to MtaC). The MtaA-MtaC complex catalyses methyl transfer from methyl-cob(III)alamin (bound to MtaC) to coenzyme M (bound to MtaA). The crystal structure of the MtaB-MtaC complex from M. barkeri has previously been determined. Here, the crystal structures of MtaA from M. mazei in a substrate-free but Zn(2+)-bound state and in complex with Zn(2+) and coenzyme M (HS-CoM) are reported at resolutions of 1.8 and 2.1 Å, respectively. A search for homologous proteins revealed that MtaA exhibits 23% sequence identity to human uroporphyrinogen III decarboxylase, which has also the highest structural similarity (r.m.s.d. of 2.03 Å for 306 aligned amino acids). The main structural feature of MtaA is a TIM-barrel-like fold, which is also found in all other zinc enzymes that catalyse thiol-group alkylation. The active site of MtaA is situated at the narrow bottom of a funnel such that the thiolate group of HS-CoM points towards the Zn(2+) ion. The Zn(2+) ion in the active site of MtaA is coordinated tetrahedrally via His240, Cys242 and Cys319. In the substrate-free form the fourth ligand is Glu263. Binding of HS-CoM leads to exchange of the O-ligand of Glu263 for the S-ligand of HS-CoM with inversion of the zinc geometry. The interface between MtaA and MtaC for transfer of the methyl group from MtaC-bound methylcobalamin is most likely to be formed by the core complex of MtaB-MtaC and the N-terminal segment (a long loop containing three α-helices and a ß-hairpin) of MtaA, which is not part of the TIM-barrel core structure of MtaA.


Assuntos
Corrinoides/metabolismo , Mesna/metabolismo , Methanosarcina/enzimologia , Metiltransferases/química , Metiltransferases/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Corrinoides/química , Humanos , Mesna/química , Methanosarcina/química , Methanosarcina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Zinco/química
17.
Inorg Chem ; 51(6): 3690-7, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22400908

RESUMO

Divalent and trivalent nickel complexes of 1,4,8,11-tetraazacyclotetradecane, denoted as cyclam hereafter, coordinated by methyl coenzyme M (MeSCoM(-)) and coenzyme M (HSCoM(-)) have been synthesized in the course our model studies of methyl coenzyme M reductase (MCR). The divalent nickel complexes Ni(cyclam)(RSCoM)(2) (R = Me, H) have two trans-disposed RSCoM(-) ligands at the nickel(II) center as sulfonates, and thus, the nickels have an octahedral coordination. The SCoM(2-) adduct Ni(cyclam)(SCoM) was also synthesized, in which the SCoM(2-) ligand chelates the nickel via the thiolate sulfur and a sulfonate oxygen. The trivalent MeSCoM adduct [Ni(cyclam)(MeSCoM)(2)](OTf) was synthesized by treatment of [Ni(cyclam)(NCCH(3))(2)](OTf)(3) with ((n)Bu(4)N)[MeSCoM]. A similar reaction with ((n)Bu(4)N)[HSCoM] did not afford the corresponding trivalent HSCoM(-) adduct, but rather the divalent nickel complex polymer [-Ni(II)(cyclam)(CoMSSCoM)-](n) was obtained, in which the terminal thiol of HSCoM(-) was oxidized to the disulfide (CoMSSCoM)(2-) by the Ni(III) center.


Assuntos
Lactamas Macrocíclicas/química , Mesna/química , Modelos Moleculares , Níquel/química , Oxirredutases/química , Domínio Catalítico
18.
Comp Biochem Physiol C Toxicol Pharmacol ; 155(2): 269-74, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21946249

RESUMO

As the number of products containing nanomaterials increase, human exposure to nanoparticles (NPs) is unavoidable. Presently, few studies focus on the potential long-term consequences of developmental NP exposure. In this study, zebrafish embryos were acutely exposed to three gold NPs that possess functional groups with differing surface charge. Embryos were exposed to 50 µg/mL of 1.5 nm gold nanoparticles (AuNPs) possessing negatively charged 2-mercaptoethanesulfonic acid (MES) or neutral 2-(2-(2-mercaptoethoxy)ethoxy)ethanol (MEEE) ligands or 10 µg/mL of the AuNPs possessing positively charged trimethylammoniumethanethiol (TMAT). Both MES- and TMAT-AuNP exposed embryos exhibited hypo-locomotor activity, while those exposed to MEEE-AuNPs did not. A subset of embryos that were exposed to 1.5 nm MES- and TMAT-AuNPs during development from 6 to 120 h post fertilization was raised to adulthood. Behavioral abnormalities and the number of survivors into adulthood were evaluated at 122 days post fertilization. We found that both treatments induced abnormal startle behavior following a tap stimulus. However, the MES-AuNPs exposed group also exhibited abnormal adult behavior in the light and had a lower survivorship into adulthood. This study demonstrates that acute, developmental exposure to 1.5 nm MES- and TMAT-AuNPs, two NPs differing only in the functional group, affects larval behavior, with behavioral effects persisting into adulthood.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Atividade Motora/efeitos dos fármacos , Peixe-Zebra/fisiologia , Animais , Embrião não Mamífero/embriologia , Ouro/química , Humanos , Larva/efeitos dos fármacos , Larva/fisiologia , Mesna/química , Mesna/toxicidade , Nanopartículas Metálicas/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/toxicidade , Compostos de Sulfidrila/química , Compostos de Sulfidrila/toxicidade , Fatores de Tempo , Peixe-Zebra/embriologia
19.
J Colloid Interface Sci ; 363(2): 490-6, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21868022

RESUMO

A viable cost-effective approach employing mixtures of non-ionic surfactants Triton X-114/Triton X-100 (TX-114/TX-100), and subsequent cloud point extraction (CPE), has been utilized to concentrate and recycle inorganic nanoparticles (NPs) in aqueous media. Gold Au- and palladium Pd-NPs have been pre-synthesized in aqueous phases and stabilized by sodium 2-mercaptoethanesulfonate (MES) ligands, then dispersed in aqueous non-ionic surfactant mixtures. Heating the NP-micellar systems induced cloud point phase separations, resulting in concentration of the NPs in lower phases after the transition. For the Au-NPs UV/vis absorption has been used to quantify the recovery and recycle efficiency after five repeated CPE cycles. Transmission electron microscopy (TEM) was used to investigate NP size, shape, and stability. The results showed that NPs are preserved after the recovery processes, but highlight a potential limitation, in that further particle growth can occur in the condensed phases.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Octoxinol/química , Paládio/química , Polietilenoglicóis/química , Tensoativos/química , Fracionamento Químico , Reutilização de Equipamento , Ligantes , Mesna/química , Tamanho da Partícula , Reciclagem , Propriedades de Superfície
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 81(1): 578-82, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21782501

RESUMO

Based on the surface-enhanced Raman scattering (SERS) sodium 2-mercaptoethanesulfonate (mesna) was determined using unmodified gold colloid as the probe. The Raman scattering intensity was obviously enhanced in the presence of sodium chloride. The influence of experimental parameters, such as incubation time, sodium chloride concentration and pH value on SERS performance was examined. Under the optimum conditions, the SERS intensity is proportional to the concentration of mesna in the range of 9.0×10(-8) to 9.0×10(-7) mol/L and detection limit (S/N=3) is 1.16×10(-8) mol/L. The corresponding correlation coefficient of the linear equation is 0.996, which indicates that there is a good linear relationship between SERS intensity and mesna concentration. The experimental results indicate that the proposed method is a viable method for determination of mesna. The real samples were analyzed and the results obtained were satisfactory.


Assuntos
Mesna/análise , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/normas , Calibragem , Coloide de Ouro/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Mesna/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Concentração Osmolar , Cloreto de Sódio/química , Cloreto de Sódio/farmacologia , Análise Espectral Raman/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...