Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Photochem Photobiol ; 99(2): 356-419, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36161310

RESUMO

This review follows the research, development and clinical applications of the photosensitizer 5,10,15,20-tetra(m-hydroxyphenyl)chlorin (mTHPC, temoporfin) in photodynamic (cancer) therapy (PDT) and other medical applications. Temoporfin is the active substance in the medicinal product Foscan® authorized in the EU for the palliative treatment of head and neck cancer. Chemistry, biochemistry and pharmacology, as well as clinical and other applications of temoporfin are addressed, including the extensive work that has been done on formulation development including liposomal formulations. The literature has been covered from 2009 to early 2022, thereby connecting it to the previous extensive review on this photosensitizer published in this journal [Senge, M. O. and J. C. Brandt (2011) Photochem. Photobiol. 87, 1240-1296] which followed its way from initial development to approval and clinical application.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Mesoporfirinas/uso terapêutico , Mesoporfirinas/farmacologia , Lipossomos/química
2.
Mol Ther ; 29(10): 2931-2948, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34023507

RESUMO

Checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies, have been shown to be extraordinarily effective, but their durable response rate remains low, especially in colorectal cancer (CRC). Recent studies have shown that photodynamic therapy (PDT) could effectively enhance PD-L1 blockade therapeutic effects, although the reason is still unclear. Here, we report the use of multifunctional nanoparticles (NPs) loaded with photosensitized mTHPC (mTHPC@VeC/T-RGD NPs)-mediated PDT treatment to potentiate the anti-tumor efficacy of PD-L1 blockade for CRC treatment and investigate the underlying mechanisms of PDT enhancing PD-L1 blockade therapeutic effect in this combination therapy. In this study, the mTHPC@VeC/T-RGD NPs under the 660-nm near infrared (NIR) laser could kill tumor cells by inducing apoptosis and/or necrosis and stimulating systemic immune response, which could be further promoted by the PD-L1 blockade to inhibit primary and distant tumor growth, as well as building long-term host immunological memory to prevent tumor recurrence. Furthermore, we detected that mTHPC@VeC/T-RGD NP-mediated PDT sensitizes tumors to PD-L1 blockade therapy mainly because PDT-mediated hypoxia could induce the hypoxia-inducible factor 1α (HIF-1α) signaling pathway that upregulates PD-L1 expression in CRC. Taken together, our work demonstrates that mTHPC@VeC/T-RGD NP-mediated PDT is a promising strategy that may potentiate the response rate of anti-PD-L1 checkpoint blockade immunotherapies in CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inibidores de Checkpoint Imunológico/administração & dosagem , Fotoquimioterapia/métodos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Mesoporfirinas/química , Mesoporfirinas/farmacologia , Camundongos , Nanopartículas Multifuncionais/administração & dosagem , Nanopartículas Multifuncionais/química , Tamanho da Partícula , Hipóxia Tumoral/efeitos dos fármacos
3.
Int J Nanomedicine ; 16: 951-976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603362

RESUMO

PURPOSE: Lipoparticles are the core-shell type lipid-polymer hybrid systems comprising polymeric nanoparticle core enveloped by single or multiple pegylated lipid layers (shell), thereby melding the biomimetic properties of long-circulating vesicles as well as the mechanical advantages of the nanoparticles. The present study was aimed at the development of such an integrated system, combining the photodynamic and chemotherapeutic approaches for the treatment of multidrug-resistant cancers. METHODS: For this rationale, two different sized Pirarubicin (THP) loaded poly lactic-co-glycolic acid (PLGA) nanoparticles were prepared by emulsion solvent evaporation technique, whereas liposomes containing Temoporfin (mTHPC) were prepared by lipid film hydration method. Physicochemical and morphological characterizations were done using dynamic light scattering, laser doppler anemometry, atomic force microscopy, and transmission electron microscopy. The quantitative assessment of cell damage was determined using MTT and reactive oxygen species (ROS) assay. The biocompatibility of the nanoformulations was evaluated with serum stability testing, haemocompatibility as well as acute in vivo toxicity using female albino (BALB/c) mice. RESULTS AND CONCLUSION: The mean hydrodynamic diameter of the formulations was found between 108.80 ± 2.10 to 405.70 ± 10.00 nm with the zeta (ζ) potential ranging from -12.70 ± 1.20 to 5.90 ± 1.10 mV. Based on the physicochemical evaluations, the selected THP nanoparticles were coated with mTHPC liposomes to produce lipid-coated nanoparticles (LCNPs). A significant (p< 0.001) cytotoxicity synergism was evident in LCNPs when irradiated at 652 nm, using an LED device. No incidence of genotoxicity was observed as seen with the comet assay. The LCNPs decreased the generalized in vivo toxicity as compared to the free drugs and was evident from the serum biochemical profile, visceral body index, liver function tests as well as renal function tests. The histopathological examinations of the vital organs revealed no significant evidence of toxicity suggesting the safety and efficacy of our lipid-polymer hybrid system.


Assuntos
Lipídeos/química , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Fotoquimioterapia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Humanos , Concentração Inibidora 50 , Cinética , Lipossomos , Testes de Função Hepática , Mesoporfirinas/farmacologia , Mesoporfirinas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Neoplasias Ovarianas/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade Aguda
4.
PLoS One ; 15(11): e0238754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253225

RESUMO

Heme biosynthesis occurs through a series of reactions that take place within the cytoplasm and mitochondria, so intermediates need to move across these cellular compartments. However, the specific membrane transport mechanisms involved in the process are not yet identified. The ATP-binding cassette protein ABCB10 is essential for normal heme production, as knocking down this transporter in mice is embryonically lethal and accompanied by severe anemia plus oxidative damage. The role of ABCB10 is unknown, but given its location in the inner mitochondrial membrane, it has been proposed as a candidate to export either an early heme precursor or heme. Alternatively, ABCB10 might transport a molecule important for protection against oxidative damage. To help discern between these possibilities, we decided to study the effect of heme analogs, precursors, and antioxidant peptides on purified human ABCB10. Since substrate binding increases the ATP hydrolysis rate of ABC transporters, we have determined the ability of these molecules to activate purified ABCB10 reconstituted in lipid nanodiscs using ATPase measurements. Under our experimental conditions, we found that the only heme analog increasing ABCB10 ATPase activity was Zinc-mesoporphyrin. This activation of almost seventy percent was specific for ABCB10, as the ATPase activity of a negative control bacterial ABC transporter was not affected. The activation was also observed in cysteine-less ABCB10, suggesting that Zinc-mesoporphyrin's effect did not require binding to typical heme regulatory motifs. Furthermore, our data indicate that ABCB10 was not directly activated by neither the early heme precursor delta-aminolevulinic acid nor glutathione, downsizing their relevance as putative substrates for this transporter. Although additional studies are needed to determine the physiological substrate of ABCB10, our findings reveal Zinc-mesoporphyrin as the first tool compound to directly modulate ABCB10 activity and raise the possibility that some actions of Zinc-mesoporphyrin in cellular and animal studies could be mediated by ABCB10.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Mesoporfirinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Zinco/farmacologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico/efeitos dos fármacos , Glutationa/metabolismo , Heme/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
5.
Int J Pharm ; 582: 119347, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32315751

RESUMO

Nanoparticle albumin-bound (nab)-technology is an industrial applicable manufacturing method for the preparation of albumin-based drug carriers of poorly water-soluble drugs. In the present study the advantages of nanotechnology, albumin as an endogenous protein with the capability of high tumor enrichment and the selective light activation of the photosensitizer Temoporfin (mTHPC) were combined to a new delivery system for oncological use. The herewith provided well-established photodynamic therapy may enable a beneficial alternative for the treatment of solid tumors. In the present study a reproducible method for the preparation of stable mTHPC-albumin nanoparticles via nab-technology was established. The nanoparticles were physicochemically characterized with regard to particle size and size distribution and the impact of this preparation method on nanoparticle as well as mTHPC stability was investigated. Nanoparticles with improved colloidal stability over a broad pH range and in the presence of physiological NaCl concentrations were achieved in high yield. Due to high pressure homogenization a certain oxidative decay of mTHPC was observed. Cell culture experiments revealed an effective cellular uptake of mTHPC in a cholangiocarcinoma cell line (TFK-1). After light-activation high cytotoxicity was shown for photosensitizer loaded nanoparticles enabling the application of the proposed formulation in photodynamic therapy.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Portadores de Fármacos , Mesoporfirinas/farmacologia , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Soroalbumina Bovina/química , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Mesoporfirinas/química , Mesoporfirinas/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Solubilidade
6.
Mol Pharm ; 17(4): 1276-1292, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142290

RESUMO

meta-Tetra(hydroxyphenyl)chlorin (mTHPC) is one of the most potent second-generation photosensitizers, clinically used for photodynamic therapy (PDT) of head and neck squamous cell carcinomas. However, improvements are still required concerning its present formulation (i.e., Foscan, a solution of mTHPC in ethanol/propylene glycol (40:60 w/w)), as mTHPC has the tendency to aggregate in aqueous media, e.g., biological fluids, and it has limited tumor specificity. In the present study, polymeric micelles with three different diameters (17, 24, and 45 nm) based on benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) (PCLn-PEG; n = 9, 15, or 23) were prepared with mTHPC loadings ranging from 0.5 to 10 wt % using a film-hydration method as advanced nanoformulations for this photosensitizer. To favor the uptake of the micelles by cancer cells that overexpress the epidermal growth factor receptor (EGFR), the micelles were decorated with an EGFR-targeted nanobody (named EGa1) through maleimide-thiol chemistry. The enhanced binding of the EGFR-targeted micelles at 4 °C to EGFR-overexpressing A431 cells, compared to low-EGFR-expressing HeLa cells, confirmed the specificity of the micelles. In addition, an enhanced uptake of mTHPC-loaded micelles by A431 cells was observed when these were decorated with the EGa1 nanobody, compared to nontargeted micelles. Both binding and uptake of targeted micelles were blocked by an excess of free EGa1 nanobody, demonstrating that these processes occur through EGFR. In line with this, mTHPC loaded in EGa1-conjugated PCL23-PEG (EGa1-P23) micelles demonstrated 4 times higher photocytotoxicity on A431 cells, compared to micelles lacking the nanobody. Importantly, EGa1-P23 micelles also showed selective PDT against A431 cells compared to the low-EGFR-expressing HeLa cells. Finally, an in vivo pharmacokinetic study shows that after intravenous injection, mTHPC incorporated in the P23 micelles displayed prolonged blood circulation kinetics, compared to free mTHPC, independently of the presence of EGa1. Thus, these results make these micelles a promising nanomedicine formulation for selective therapy.


Assuntos
Mesoporfirinas/farmacologia , Polímeros/química , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/metabolismo , Etilenoglicóis/química , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Nanomedicina/métodos , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Poliésteres/química , Polietilenoglicóis/química
7.
Eur J Pharm Biopharm ; 150: 50-65, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151728

RESUMO

5,10,15,20-Tetrakis(3-hydroxyphenyl)chlorin (mTHPC; temoporfin) is one of the most potent second-generation photosensitizers available today for the treatment of a variety of clinical disorders and has a unique capability of being activated at different wavelengths. However, due to its highly lipophilic nature, poor solubility in the aqueous media and poor bioavailability limits its application in anticancer therapies. To overcome these potential issues, we developed three different liposomal formulations with mTHPC encapsulated in hydrophobic milieu thus increasing the bioavailability of the drug. The prepared formulations were characterized in terms of hydrodynamic diameter, surface charge, encapsulation efficiency, and stability studies. The mean size of the liposomes was found to be in the nanoscale range (about 100 nm) with zeta potential ranging from -6.0 to -13.7 mV. mTHPC loaded liposomes were also evaluated for morphology using atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM). Data obtained from the hemocompatibility experiments showed that these formulations were compatible with blood showing less than 10% hemolysis and coagulation time lower than 40 s. The results obtained from the single-cell gel electrophoresis assay also demonstrated no incidence of genotoxicity. Photodynamic destruction of SK-OV-3 cells using mTHPC loaded liposomes showed a dose-response relationship upon irradiation with two different wavelength lights (blue λ = 457 nm & red λ = 652 nm). A 10-fold pronounced effect was produced when liposomal formulations were irradiated at 652 nm as compared to 457 nm. This was also evaluated by the quantitative assessment of reactive oxygen production (ROS) using fluorescence microscopy. The qualitative assessment of PDT pre- and post-irradiation was visualized using confocal laser scanning microscopy (CLSM) which demonstrated an intense localization of mTHPC liposomes in the perinuclear region. Chick chorioallantoic membrane assay (CAM) was used as an alternative in-ovo model to demonstrate the localized destruction of tumor microvasculature. Overall, the prepared nanoformulation is a biocompatible, efficient and well characterized delivery system for mTHPC for the safe and effective PDT.


Assuntos
Carcinoma/tratamento farmacológico , Membrana Corioalantoide/irrigação sanguínea , Lipídeos/química , Mesoporfirinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Carcinoma/patologia , Linhagem Celular Tumoral , Embrião de Galinha , Relação Dose-Resposta a Droga , Composição de Medicamentos , Feminino , Humanos , Lipossomos , Mesoporfirinas/química , Densidade Microvascular/efeitos dos fármacos , Nanopartículas , Neoplasias Ovarianas/patologia , Fármacos Fotossensibilizantes/química , Solubilidade
8.
Phys Med Biol ; 65(1): 015017, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31739296

RESUMO

Light of different wavelengths can be used to obtain a more profitable outcome of photodynamic therapy (PDT), according to the absorption bands of the photosensitizer (PS). Low-grade cervical intraepithelial neoplasias (CINs) are superficial lesions that can be treated with light of shorter wavelength than red because a large light penetration depth in tissue is not necessary. We report a comparative investigation performed to evaluate the efficacy of light-emitting diodes (LEDs) of different wavelengths in the photodynamic treatment applied to both 2D and 3D HeLa cell spheroid cultures. The spheroids are utilized as a PDT dosage model, and cell viability is evaluated at different sections of the spheroids by confocal microscopy. Cells incubated with m-tetrahydroxyphenyl chlorin are illuminated with LED systems working in the low fluence range, emitting in the violet (390-415 nm), blue (440-470 nm), red (620-645 nm) and deep red (640-670 nm) regions of the light spectrum at various exposures times (t I) comprised between 0.5 and 30 min. PDT experiments performed on both 2D and 3D cell cultures indicate that the PDT treatment outcome is more efficient with violet light followed by red light. Dynamic data from the front displacement velocity of large 2D-quasi-radial colonies generated from cell spheroids adhered to the Petri dish bottom as well as the evolution of the 3D growth give further insight about the effect of PDT at each condition. Results from 3D cultures indicate that the penetration of the violet light is appropriate to kill HeLa cells several layers below, showing cell damage and death not only in the outer rim of the illuminated spheroids, where a PS accumulation exists, but also in the more internal region. Results indicate that violet LED light could be useful to treat CINs involving superficial dysplasia.


Assuntos
Sobrevivência Celular , Luz , Mesoporfirinas/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Esferoides Celulares/efeitos dos fármacos , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Células HeLa , Humanos , Esferoides Celulares/efeitos da radiação
9.
ACS Appl Mater Interfaces ; 11(49): 45368-45380, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31755692

RESUMO

Photodynamic therapy (PDT) is a promising recognized treatment for cancer. To date, PDT drugs are injected systemically, and the tumor area is irradiated to induce cell death. Current clinical protocols have several drawbacks, including limited accessibility to solid tumors and insufficient selectivity of drugs. Herein, we propose an alternative approach to improve PDT effectiveness by magnetic targeting of responsive carriers conjugated to the PDT drug. We coordinatively attached a meso-tetrahydroxyphenylchlorin (mTHPC) photosensitizer to Ce-doped-γ-Fe2O3 maghemite nanoparticles (MNPs). These MNPs are superparamagnetic and biocompatible, and the resulting mTHPC-MNPs nanocomposites are stable in aqueous suspensions. MDA-MB231 (human breast cancer) cells incubated with the mTHPC-MNPs showed high uptake and high death rates in cell population after PDT. The exposure to external magnetic forces during the incubation period directed the nanocomposites to selected sites enhancing drug accumulation that was double that of cells with no magnetic exposure. Next, breast cancer tumors were induced subcutaneously in mice and treated magnetically. In vivo results showed accelerated drug accumulation in tumors of mice injected with mTHPC-MNP nanocomposites, compared to the free drug. PDT irradiation led to a decrease in tumor size of both groups, whereas treatment with the focused magnetic nanocomposites led to significant tumor regression. Our results demonstrate a method to improve the current PDT treatments by applying magnetic forces to effectively direct the drug to cancerous tissue. This approach leads to a highly localized and effective PDT process, opening new directions for clinical PDT protocols.


Assuntos
Nanopartículas de Magnetita/química , Mesoporfirinas/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cério/química , Compostos Férricos/química , Compostos Férricos/farmacologia , Humanos , Magnetismo , Nanopartículas de Magnetita/uso terapêutico , Mesoporfirinas/química , Camundongos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/química , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 9(1): 11312, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383921

RESUMO

The photodynamic effect requires the simultaneous presence of light, photosensitizer (PS) and molecular oxygen. In this process, the photoinduced damage of cells is caused by reactive oxygen species (ROS). Besides DNA, the other target of ROS is the membranes, separating internal compartments in living cells. Hence, the ability of ROS formation of porphyrins as PSs, in liposomes as simple models of cellular membranes is of outstanding interest. Earlier we compared the binding parameters and locations of mesoporphyrin IX dihydrochloride (MPCl) and mesoporphyrin IX dimethyl ester (MPE), in small unilamellar vesicles (SUV) made from various saturated phosphatidylcholines. In this study, we used the same kinds of samples for comparing the ROS forming ability. Triiodide production from potassium iodide because of light-induced ROS in the presence of molybdate catalyst was applied, and the amount of product was quantitatively followed by optical spectrometry. Furthermore, we demonstrated and carefully studied SUVs disruption as direct evidence of membrane destruction by the methods of dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS), applying unsaturated phosphatidylcholines as membrane components. Although the ROS forming ability is more pronounced in the case of MPCl, we found that the measured disruption was more effective in the samples containing MPE.


Assuntos
Lipossomos/metabolismo , Mesoporfirinas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Esterificação , Mesoporfirinas/química , Metilação , Fosfatidilcolinas/metabolismo , Fármacos Fotossensibilizantes/química
11.
ACS Appl Mater Interfaces ; 11(11): 10505-10519, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30793580

RESUMO

Combinatory modulation of the physical and biochemical characteristics of nanocarrier delivery systems is an emergent topic in the field of nanomedicine. Here, we studied the combined effects of incorporation of active targeting moieties into nanocarriers and their morphology affecting the enhanced permeation and retention effect for nanomedicine cancer therapy. Self-assembled lipid discoidal and vesicular nanoparticles with low-polydispersity sub-50 nm size range and identical chemical compositions were synthesized, characterized, and correlated with in vitro cancer cellular internalization, in vivo tumor accumulation and cancer treatments. The fact that folate-associated bicelle yields the best outcome is indicative of the preference for discoidal carriers over spherical carriers and the improved targeting efficacy due to the targeting ligand/receptor binding. The approach is successfully adopted to design the nanocarriers for photodynamic therapy, which yields a consistent trend in in vitro and in vivo efficacy: folate nanodiscs > folate vesicles > nonfolate nanodiscs > nonfolate vesicles. Folate discs not only have shown a higher tumor uptake and photothermal therapeutic efficiency, but also minimize skin photosensitivity side effects. The advantages of nanodiscoidal bicelles as nanocarriers, including well-defined size, robust formation, easy encapsulation of hydrophobic molecules (therapeutics and/or diagnostics), easy incorporation of targeting molecules, and low toxicity, enable the scalable manufacturing of a generalized in vivo multimodal delivery platform.


Assuntos
Nanopartículas/química , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Endocitose , Feminino , Ácido Fólico/química , Humanos , Luz , Lipídeos/química , Mesoporfirinas/química , Mesoporfirinas/farmacologia , Mesoporfirinas/uso terapêutico , Camundongos , Camundongos Nus , Micelas , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Transplante Heterólogo
12.
Molecules ; 24(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795541

RESUMO

Guanine-rich sequences in the genomes of herpesviruses can fold into G-quadruplexes. Compared with the widely-studied G3-quadruplexes, the dynamic G2-quadruplexes are more sensitive to the cell microenvironment, but they attract less attention. Pseudorabies virus (PRV) is the model species for the study of the latency and reactivation of herpesvirus in the nervous system. A total of 1722 G2-PQSs and 205 G3-PQSs without overlap were identified in the PRV genome. Twelve G2-PQSs from the CDS region exhibited high conservation in the genomes of the Varicellovirus genus. Eleven G2-PQSs were 100% conserved in the repeated region of the annotated PRV genomes. There were 212 non-redundant G2-PQSs in the 3' UTR and 19 non-redundant G2-PQSs in the 5' UTR, which would mediate gene expression in the post-transcription and translation processes. The majority of examined G2-PQSs formed parallel structures and exhibited different sensitivities to cations and small molecules in vitro. Two G2-PQSs, respectively, from 3' UTR of UL5 (encoding helicase motif) and UL9 (encoding sequence-specific ori-binding protein) exhibited diverse regulatory activities with/without specific ligands in vivo. The G-quadruplex ligand, NMM, exhibited a potential for reducing the virulence of the PRV Ea strain. The systematic analysis of the distribution of G2-PQSs in the PRV genomes could guide further studies of the G-quadruplexes' functions in the life cycle of herpesviruses.


Assuntos
DNA Viral/química , Quadruplex G/efeitos dos fármacos , Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Suídeo 1/genética , Regiões 3' não Traduzidas/efeitos dos fármacos , Regiões 5' não Traduzidas/efeitos dos fármacos , Acridinas/química , Acridinas/farmacologia , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Animais , Bovinos , Linhagem Celular , Biologia Computacional/métodos , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Primase/genética , DNA Primase/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Células HEK293 , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/metabolismo , Humanos , Ligantes , Mesoporfirinas/química , Mesoporfirinas/farmacologia , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Suínos , Varicellovirus/efeitos dos fármacos , Varicellovirus/genética , Varicellovirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
13.
Photodiagnosis Photodyn Ther ; 25: 448-455, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30708089

RESUMO

Photodynamic therapy (PDT) is a very attractive strategy to complement or replace common cancer treatments such as radiotherapy, surgery, and chemotherapy. Some molecules have shown their efficiency as photosensitizers (PS), still many issues have to be solved such as the inherent cytotoxicity of the PS or its hydrophobic properties causing limitation in their solubility, leading to side effects. In this study, the encapsulation of an approved PS, the meso-tetra hydroxyphenylchlorine (mTHPC, Foscan®) within biocompatible and biodegradable poly(D, l-lactide-co-glycolide) acid (PLGA) NPs prepared by the nanoprecipitation method was studied. The mTHPC-loaded NPs (mTHPC ⊂ PLGA NPs) were analyzed by UV-vis spectroscopy to determine the efficiency of mTHPC encapsulation, and by dynamic light scattering (DLS) and atomic force microscopy (AFM) to determine mTHPC ⊂ PLGA NPs sizes, morphologies and surface charges. The longitudinal follow-up of mTHPC release from the NPs indicated that 50% of the encapsulated PS was retained within the NP matrix after a period of five days. Finally, the cytotoxicity and the phototoxicity of the mTHPC ⊂ PLGA NPs were determined in murine C6 glioma cell lines and compared to the ones of mTHPC alone. The studies showed a strong decrease of mTHPC cytotoxicity and an increase of mTHPC photo-cytotoxicity when mTHPC was encapsulated. In order to have a better insight of the underlying cellular mechanisms that governed cell death after mTHPC ⊂ PLGA NPs incubation and irradiation, annexin V staining tests were performed. The results indicated that apoptosis was the main cell death mechanism.


Assuntos
Glioma/tratamento farmacológico , Mesoporfirinas/farmacologia , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Mesoporfirinas/administração & dosagem , Mesoporfirinas/efeitos adversos , Tamanho da Partícula , Fotoquimioterapia/efeitos adversos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/efeitos adversos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
14.
Int J Mol Sci ; 19(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332729

RESUMO

The platinum(II) complexes carboplatin (CBDCA), cisplatin (CDDP) and oxaliplatin (1-OHP) are used as anticancer drugs in a large number of tumour chemotherapy regimens. Many attempts have been made to combine Pt(II)-based chemotherapy with alternative treatment strategies. One such alternative anticancer approach is known as photodynamic therapy (PDT), where a non-toxic photosensitizer (PS) produces oxidative stress via the formation of reactive oxygen species (ROS) after local illumination of the affected tissue. A very promising PS is 5,10,15,20-tetra(m-hydroxyphenyl)chlorin (mTHPC, Temoporfin), which is approved for the treatment of head and neck cancer in Europe. In the present study, a combination of mTHPC-mediated PDT and either CBDCA, CDDP, or 1-OHP was applied to five human cancer cell lines from different tumour origins. Cytotoxicity was determined by the MTT assay and synergistic effects on cytotoxicity were evaluated by calculation of Combination Indices (CI). Synergy was identified in some of the combinations, for example, with 1-OHP in three of the tested cell lines but antagonism was also observed for a number of combinations in certain cell lines. In cases of synergy, elevated ROS levels were observed after combination but apoptosis induction was not necessarily increased compared to a treatment with a single compound. Cell cycle analysis revealed a formation of apoptotic subG1 populations and S phase as well as G2/M phase arrests after combination. In conclusion, pre-treatment with mTHPC-PDT has the potential to sensitize some types of tumour cells towards Pt(II) complexes, in particular 1-OHP but synergy is highly dependent on the type of cancer.


Assuntos
Carboplatina/farmacologia , Cisplatino/farmacologia , Mesoporfirinas/farmacologia , Oxaliplatina/farmacologia , Fotoquimioterapia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Sinergismo Farmacológico , Exocitose , Humanos , Concentração Inibidora 50 , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Photodiagnosis Photodyn Ther ; 23: 111-118, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29894822

RESUMO

Photodynamic therapy (PDT) is a treatment utilizing the combined action of photosensitizers and light for the treatment of various cancers. The mechanisms for tumor destruction after PDT include direct tumor cell kill by singlet oxygen species (OS), indirect cell kill via vascular damage, and an elicited immune response. However, it has been reported that many cellular activators, including vascular endothelial growth factor (VEGF), are produced by tumor cells after PDT. In this study, we demonstrate that meta-tetra(hydroxyphenyl) chlorin (mTHPC)-based photodynamic therapy combined with bevacizumab (Avastin™), an anti-VEGF neutralizing monoclonal antibody that blocks the binding of VEGF to its receptor, can enhance the effectiveness of each treatment modality. We evaluated the efficacy of bevacizumab-based anti-angiogenesis in combination with PDT as well as the resulting VEGF levels and microvessel density (MVD) in a mouse model of human colon cancer. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) were performed to assess VEGF concentrations and microvessel density in the various treatment groups, and confocal imaging and high performance liquid chromatography (HPLC) analyses were used to measure the distribution and concentration of mTHPC in tumors. Our results demonstrate that combination of PDT followed by bevacizumab significantly elicits a greater tumor response whereas bevacizumab treatment prior to PDT led to a reduced tumor response. Immunostaining and ELISA analyses revealed a lower expression of VEGF in tumors treated with combination therapy of PDT followed by bevacizumab. However, bevacizumab treatment decreased the accumulation of mTHPC in tumors 24 h after administration, which complemented the results of decreased anti-tumor efficacy of bevacizumab followed by PDT.


Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Mesoporfirinas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Ensaio de Imunoadsorção Enzimática , Feminino , Estimativa de Kaplan-Meier , Mesoporfirinas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Lasers Med Sci ; 33(7): 1581-1590, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29796953

RESUMO

The aim of this study is to investigate the antitumor effects and possible mechanisms of meta-tetrahydroxyphenylchlorin-mediated photodynamic therapy (m-THPC-PDT) on human primary (SW480) and metastatic (SW620) colon cancer cell lines. SW480 and SW620 cells were incubated with various concentrations of m-THPC, followed by photodynamic irradiation. Subcellular localization of m-THPC in cells was observed with confocal laser scanning microscopy (CLSM). Photocytotoxicity of m-THPC in the two cells was investigated by using MTT assay. The flow cytometry was employed to detect the cell apoptosis. The migration and long-term recovery ability were determined by scratch test and colony formation assay respectively. CLSM showed that m-THPC was mainly distributed within the endoplasmic reticulum (ER) and lysosome of SW480 cells and within the lysosome and mitochondria of SW620 cells. m-THPC-PDT induced a dose-dependent and light energy-dependent cytotoxicity in SW480 and SW620 cells. Apoptosis rate was approximately 65 and 25% in SW480 and SW620 respectively when the concentration of m-THPC increased to 11.76 µM. However, the rate of necrotic cells had no significant changes in two cell lines. The colony formation and migration ability of the two cell lines were decreased with m-THPC-PDT treatment in a dose-dependent manner. PDT with m-THPC not only could effectively inhibit cell proliferation and decrease migration ability and colony formation ability, but also could effectively kill SW480 and SW620 cells in a dose-dependent manner in vitro. These results suggest that m-THPC is a promising sensitizer that warrants further development and extensive studies towards clinical use of colorectal cancer.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Mesoporfirinas/uso terapêutico , Fotoquimioterapia/métodos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Humanos , Luz , Mesoporfirinas/química , Mesoporfirinas/farmacologia , Metástase Neoplásica , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Frações Subcelulares/metabolismo , Ensaio Tumoral de Célula-Tronco
17.
Photodiagnosis Photodyn Ther ; 22: 106-114, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29567384

RESUMO

BACKGROUND: Organic crystalline nanoparticles (NPs) are not fluorescent due to the crystalline structure of the flat molecules organized in layers. In earlier experiments with Aluminum Phthalocyanine (AlPc)-derived NPs, the preferential uptake and dissolution by macrophages was demonstrated [3]. Therefore, inflamed tissue or cancer tissue with accumulated macrophages may exhibit specific fluorescence in contrast to healthy tissue which does not fluoresce. The present study addresses the photobiological effects of NP generated from Temoporfin (mTHPC), a clinically utilized photosensitizer belonging to the chlorin family. METHODS: In-vitro investigations addressing uptake, dissolution and phototoxicity of mTHPC NP vs. the liposomal mTHPC formulation Foslip were performed using J774A.1 macrophages and L929 fibroblasts. For total NP uptake analysis, the cells were lysed, the nanoparticles dissolved and the fluorescence quantified. The intracellular molecular dissolution was measured by flow cytometry. Fluorescence microscopy served for controlling intracellular localization of the dissolved fluorescing molecules. Reaction mechanisms after PDT (mitochondrial activity, apoptosis) were analyzed using fluorescent markers in cell-based assays and flow cytometry. RESULTS: Organic crystalline NP of different size were produced from mTHPC raw material. NP were internalized more efficiently in J774A.1 macrophages when compared to L929 fibroblasts, whereas uptake and fluorescence of Foslip was similar between the cell lines. NP dissolution correlated with internalization levels for larger particles in the range of 200-500 nm. Smaller particles (45 nm in diameter) were taken up at high levels in macrophages, but were not dissolved efficiently, resulting in comparatively low intracellular fluorescence. Whereas Foslip was predominantly localized in membranes, NP-mediated fluorescence also co-localized with acidic vesicles, suggesting endocytosis/phagocytosis as a major uptake mechanism. In macrophages, phototoxicity of NPs was stronger than in fibroblasts, even exceeding Foslip when administered in identical amounts. In both cell lines, phototoxicity correlated with mitochondrial depolarization and enhanced activation of caspase 3. CONCLUSIONS: Due to their preferential uptake/dissolution in macrophages, mTHPC NP may have potential for the diagnosis and photodynamic treatment of macrophage-associated disorders such as inflammation and cancer.


Assuntos
Macrófagos/citologia , Mesoporfirinas/farmacologia , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Apoptose , Fibroblastos/citologia , Citometria de Fluxo , Lipossomos/química , Microscopia de Fluorescência
18.
Photodiagnosis Photodyn Ther ; 21: 275-284, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29288831

RESUMO

BACKGROUND: Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site became a new standard in novel anticancer methods Anticancer photodynamic therapy also takes benefit from using nanoparticles by means of increasing targeting efficiency and decreased side effect. With this in mind, the silica-based nanoparticles, as drug delivery systems for the second-generation photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl) chlorin (temoporfin) were developed. METHODS: In order to determine the stability and therapeutic performance of the selected nanomaterials in physiological fluids, their physicochemical properties (i.e. size, polydispersity, zeta potential) were measured by dynamic light scattering technique and the diameter and the morphology of the individual particles were visualized by a transmission electron microscopy. Their efficacy was compared with commercial temoporfin formulation in terms of in vitro phototoxicity in 4T1 (murine mammary carcinoma) and of in vivo anticancer effect in Nu/Nu mice bearing MDA-MB-231 tumors. RESULTS AND CONCLUSIONS: The two types of silica nanoparticles, porous and non-porous and with different surface chemical modification, were involved and critically compared within the study. Their efficacy was successfully demonstrated and was shown to be superior in comparison with commercial temoporfin formulation in terms of in vitro phototoxicity and cellular uptake as well as in terms of in vivo anticancer effect on human breast cancer model. Temoporfin-loaded silica nanoparticles also passed through the blood-brain barrier showing potential for the treatment of brain metastases.


Assuntos
Mesoporfirinas/administração & dosagem , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Dióxido de Silício/química , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Mesoporfirinas/farmacologia , Camundongos Nus , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Fármacos Fotossensibilizantes/farmacologia , Polietilenoglicóis/química
19.
Int J Pharm ; 528(1-2): 287-298, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28606509

RESUMO

A major challenge in cancer photodynamic therapy (PDT) is the poor tumor selectivity of the photosensitizer. Therefore, temoporfin (mTHPC)-loaded nanoparticles, based on vitamin-E-succinate-grafted chitosan oligosaccharide and cyclic (arginine-glycine-aspartic acid-d-phenylalanine-lysine) (c[RGDfK])-modified d-α-tocopheryl polyethylene glycol 1000 succinate, were prepared (RGD-NPs) and were expected to enhance the accumulation of mTHPC in integrin-rich U87MG tumors. The RGD-NPs generated were 144.9nm in diameter and uniformly spherical. After irradiation, RGD-NPs effectively generated singlet oxygen, and displayed enhanced cellular uptake and cytotoxicity in U87MG cells. The RGD-NPs also penetrated deep into U87MG tumor spheroids, with a tumor-targeting ability and antitumor efficacy superior to those of unmodified nanoparticles in subcutaneous-tumor-bearing nude mice. A histopathological analysis confirmed the increased anticancer efficacy of RGD-NPs, with less systemic toxicity than unmodified nanoparticles. Therefore, the RGD-NPs developed in this study potentially target integrin-rich tumors and enhance the efficiency of PDT.


Assuntos
Mesoporfirinas/farmacologia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Vitamina E/química , Animais , Quitosana/química , Integrinas , Camundongos , Camundongos Nus , Polietilenoglicóis/química , Succinatos/química
20.
Photochem Photobiol Sci ; 16(7): 1063-1070, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28509917

RESUMO

The primary or acquired cancer chemoresistance is a major problem in the treatment of cancer patients. It could be overcome by non-overlapping treatment regimens such as photodynamic therapy (PDT). PDT is based on the oxidation of cellular components which occurs when a light-excited photosensitizer generates reactive oxygen species (ROS). In this study the effect of mTHPC mediated PDT (mTHPC-PDT) on 5-FU resistant colorectal cancer (CRC) cells HCT116 was investigated. The results show that mTHPC-PDT overcomes 5-FU resistance and is effective against chemoresistant colorectal carcinoma cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Mesoporfirinas/farmacologia , Fotoquimioterapia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/química , Células HCT116 , Humanos , Luz , Mesoporfirinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...