Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.554
Filtrar
1.
Nano Lett ; 24(19): 5690-5698, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700237

RESUMO

Long-term tumor starvation may be a potential strategy to elevate the antitumor immune response by depriving nutrients. However, combining long-term starvation therapy with immunotherapy often yields limited efficacy due to the blockage of immune cell migration pathways. Herein, an intelligent blood flow regulator (BFR) is first established through photoactivated in situ formation of the extravascular dynamic hydrogel to compress blood vessels, which can induce long-term tumor starvation to elicit metabolic stress in tumor cells without affecting immune cell migration pathways. By leveraging methacrylate-modified nanophotosensitizers (HMMAN) and biodegradable gelatin methacrylate (GelMA), the developed extravascular hydrogel dynamically regulates blood flow via enzymatic degradation. Additionally, aPD-L1 loaded into HMMAN continuously blocks immune checkpoints. Systematic in vivo experiments demonstrate that the combination of immune checkpoint blockade (ICB) and BFR-induced metabolic stress (BIMS) significantly delays the progression of Lewis lung and breast cancers by reshaping the tumor immunogenic landscape and enhancing antitumor immune responses.


Assuntos
Hidrogéis , Hidrogéis/química , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Feminino , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Imunoterapia , Gelatina/química , Metacrilatos/química , Metacrilatos/farmacologia , Neoplasias da Mama/imunologia
2.
ACS Biomater Sci Eng ; 10(5): 3306-3315, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38634810

RESUMO

Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.


Assuntos
Técnicas de Cocultura , Fator 2 de Crescimento de Fibroblastos , Gelatina , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Metacrilatos , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Gelatina/química , Gelatina/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Metacrilatos/química , Metacrilatos/farmacologia , Engenharia Tecidual/métodos , Neovascularização Fisiológica/efeitos dos fármacos , Tecido Adiposo/citologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
3.
J Agric Food Chem ; 72(17): 9680-9690, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634420

RESUMO

Plant pathogens have frequently shown multidrug resistance (MDR) in the field, often linked to efflux and sometimes metabolism of fungicides. To investigate the potential role of metabolic resistance in B. cinerea strains showing MDR, the azoxystrobin-sensitive strain B05.10 and -resistant strain Bc242 were treated with azoxystrobin. The degradation half-life of azoxystrobin in Bc242 (9.63 days) was shorter than that in B05.10 (28.88 days). Azoxystrobin acid, identified as a metabolite, exhibited significantly lower inhibition rates on colony and conidia (9.34 and 11.98%, respectively) than azoxystrobin. Bc242 exhibited higher expression levels of 34 cytochrome P450s (P450s) and 11 carboxylesterase genes (CarEs) compared to B05.10 according to RNA-seq analysis. The expression of P450 genes Bcin_02g01260 and Bcin_12g06380, along with the CarEs Bcin_12g06360 in Saccharomyces cerevisiae, resulted in reduced sensitivity to various fungicides, including azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin, iprodione, and carbendazim. Thus, the mechanism of B. cinerea MDR is linked to metabolism mediated by the CarE and P450 genes.


Assuntos
Botrytis , Carboxilesterase , Sistema Enzimático do Citocromo P-450 , Farmacorresistência Fúngica , Proteínas Fúngicas , Fungicidas Industriais , Pirimidinas , Estrobilurinas , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Estrobilurinas/farmacologia , Estrobilurinas/metabolismo , Estrobilurinas/química , Pirimidinas/farmacologia , Pirimidinas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Botrytis/genética , Botrytis/efeitos dos fármacos , Carboxilesterase/metabolismo , Carboxilesterase/genética , Farmacorresistência Fúngica/genética , Doenças das Plantas/microbiologia , Metacrilatos/farmacologia , Metacrilatos/metabolismo
4.
Int J Biol Macromol ; 266(Pt 2): 131357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580010

RESUMO

The microenvironment of bone defect site is vital for bone regeneration. Severe bone defect is often accompanied with severe inflammation and elevated generation of reactive oxygen species (ROS) during bone repair. In recent years, the unfriendly local microenvironment has been paid more and more attention. Some bioactive materials with the ability to regulate the microenvironment to promote bone regeneration urgently need to be developed. Here, we develop a multifunctional composite hydrogel composed of photo-responsive methacrylate silk fibroin (SFMA), laponite (LAP) nanocomposite and tannic acid (TA), aiming to endow hydrogel with antioxidant, anti-inflammatory and osteogenic induction ability. Characterization results confirmed that the SFMA-LAP@TA hydrogel could significantly improve the mechanical properties of hydrogel. The ROS-Scavenging ability of the hydrogel enabled bone marrow mesenchymal stem cells (BMSCs) to survive against H2O2-induced oxidative stress. In addition, the SFMA-LAP@TA hydrogel effectively decreased the expression of pro-inflammatory factors in RAW264.7. More importantly, the SFMA-LAP@TA hydrogel could enhance the expression of osteogenic markers of BMSCs under inflammatory condition and greatly promote new bone formation in a critical-sized cranial defect model. Above all, the multifunctional hydrogel could effectively promote bone regeneration in vitro and in vivo by scavenging ROS and reducing inflammation, providing a prospective strategy for bone regeneration.


Assuntos
Regeneração Óssea , Fibroínas , Hidrogéis , Inflamação , Células-Tronco Mesenquimais , Nanocompostos , Osteogênese , Polifenóis , Espécies Reativas de Oxigênio , Taninos , Regeneração Óssea/efeitos dos fármacos , Animais , Fibroínas/química , Fibroínas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Taninos/química , Taninos/farmacologia , Camundongos , Inflamação/tratamento farmacológico , Nanocompostos/química , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células RAW 264.7 , Osteogênese/efeitos dos fármacos , Metacrilatos/química , Metacrilatos/farmacologia , Ratos , Estresse Oxidativo/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química
5.
Int J Biol Macromol ; 265(Pt 1): 130868, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492687

RESUMO

The low oxygen environment of the periodontal pocket favors pathogenic anaerobes' growth, biofilm formation, and quick recurrence after periodontal treatment. In contrast, oxygen is detrimental to anaerobes, such as Porphyromonas gingivalis (P. gingivalis), since they lack a complete anti-oxidation mechanism to detoxify the oxygen challenge. Therefore, consistently feeding pathogenic anaerobes with abundant oxygen would be an effective strategy to combat them. Here, we reported injectable oxygen-generating hydrogels as oxygen mediators to alleviate the local anaerobic environment and eliminate periodontal pathogens. Gelatin methacrylate (GelMA) hydrogels loaded with calcium peroxide (CPO) possessed excellent injectability and exhibited burst releases of oxygen within 24 h with a 40 % oxygen tension peak. CPO-GelMA hydrogels with CPO concentrations of 5, 10, and 15 % reduced 60, 99, and 89.9 % viable P. gingivalis, respectively. Five percentage CPO-GelMA hydrogel downregulated gingipain and fimA gene expression in P. gingivalis without resistance development. Moreover, the CPO-GelMA hydrogels remarkably prevented biofilm formation and eradicated both monospecies and multispecies bacterial biofilms. In conclusion, CPO-GelMA hydrogels exert remarkable antimicrobial and antibiofilm effects on subgingival biofilms, providing a promising strategy for periodontal treatment.


Assuntos
Gelatina , Hidrogéis , Peróxidos , Hidrogéis/farmacologia , Gelatina/farmacologia , Metacrilatos/farmacologia , Oxigênio , Biofilmes
6.
Biomater Adv ; 159: 213826, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479241

RESUMO

Thermosensitive hydrogels based on the N-vinyl caprolactam (VCL), capable of allowing for cell adhesion and proliferation, as well as non-aggressive detachment by controlled temperature drop, were functionalized with 23 % or lower molar percentages of the cationizable hydrophobic unit 2-(diisopropylamino) ethyl methacrylate (DPAEMA), to obtain networks with dual sensitivity to temperature and pH. The swelling analysis of the systems has shown a transition pK (pKb) close to physiological values, dependent on the temperature of the medium (pKb of 6.6 and 6.9 when the temperature of the medium is above and below the transition temperature VPTT, respectively) and little dependence on the degree of functionalization of DPAEMA. In addition, at temperatures below the transition temperature (VPTT), the systems have shown large swelling variations as a function of the pH (i.e. below and above the pKb), exhibiting greater absorption capacity at pHs below pKb, where the DPAEMA units are cationized. Cytocompatibility and transplant capacity have been evaluated using the C166-GFP endothelial cell line. None of the thermosensitive hydrogels with variable DPAEMA content showed a delay with respect to the control without DPAEMA neither in terms of adhesion nor in proliferation. However, by increasing the percentage of DPAEMA functionalization -and decreasing thermosensitivity-, a correlative decrease in mitochondrial activity was obtained in the transplant, with significant differences for the hydrogels with DPAEMA molar percentage of 3 % or higher. Taking advantage of the proximity of the pKb to the physiological value, we have evaluated the cellular response and the capacity for transplantation after lowering the pH to 6.5, below pKb. A direct relationship of the DPAEMA functionalization degree on the detachment efficiency was observed, since the hydrogels with the highest molar load of DPAEMA showed higher mitochondrial metabolic activity after cell detachment.


Assuntos
Hidrogéis , Metacrilatos , Temperatura , Linhagem Celular , Metacrilatos/farmacologia , Metacrilatos/química , Interações Hidrofóbicas e Hidrofílicas
7.
Int J Biol Macromol ; 266(Pt 2): 131231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554918

RESUMO

The enormous potential of multifunctional bilayer wound dressings in various medical interventions for wound healing has led to decades of exploration into this field of medicine. However, it is usually difficult to synthesize a single hydrogel with all the required capabilities simultaneously. This paper proposes a bilayer model with an outer layer intended for hydrogel wound treatment. By adding gelatin methacrylate (GelMA) and tannic acid (TA) to the hydrogel composition and using polyvinyl alcohol-carboxymethyl chitosan (PVA-CMCs) foam layer as supports, a photocrosslinkable hydrogel with an optimal formulation was created. The hydrogels were then examined using a range of analytical procedures, including mechanical testing, rheology, chemical characterization, and in vitro and in vivo tests. The resulting bilayer wound dressing has many desirable properties, namely uniform adhesion and quick crosslinking by UV light. When used against Gram-positive and Gram-negative bacterial strains, bilayer wound dressings demonstrated broad antibacterial efficacy. In bilayer wound dressings with GelMA and TA, better wound healing was observed. Those without these elements showed less effectiveness in healing wounds. Additionally, encouraging collagen production and reducing wound infection has a major therapeutic impact on wounds. The results of this study could have a significant impact on the development of better-performing wound dressings.


Assuntos
Bandagens , Quitosana , Gelatina , Hidrogéis , Metacrilatos , Álcool de Polivinil , Cicatrização , Álcool de Polivinil/química , Gelatina/química , Gelatina/farmacologia , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Metacrilatos/química , Metacrilatos/farmacologia , Pele/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Taninos/química , Taninos/farmacologia , Reagentes de Ligações Cruzadas/química , Regeneração/efeitos dos fármacos , Camundongos , Ratos
8.
Biomacromolecules ; 25(5): 3131-3140, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38554085

RESUMO

The sulfated marine polysaccharides, fucoidan and λ-carrageenan, are known to possess anti-inflammatory, immunomodulatory, and cellular protective properties. Although they hold considerable promise for tissue engineering constructs, their covalent cross-linking in hydrogels and comparative bioactivities to cells are absent from the literature. Thus, fucoidan and λ-carrageenan were modified with methacrylate groups and were covalently cross-linked with the synthetic polymer poly(vinyl alcohol)-methacrylate (PVA-MA) to form 20 wt % biosynthetic hydrogels. Identical degrees of methacrylation were confirmed by 1H NMR, and covalent conjugation was determined by using a colorimetric 1,9-dimethyl-methylene blue (DMMB) assay. Pancreatic beta cells were encapsulated in the hydrogels, followed by culturing in the 3D environment for a prolonged period of 32 days and evaluation of the cellular functionality by live/dead, adenosine 5'-triphosphate (ATP) level, and insulin secretion. The results confirmed that fucoidan and λ-carrageenan exhibited ∼12% methacrylate substitution, which generated hydrogels with stable conjugation of the polysaccharides with PVA-MA. The cells encapsulated in the PVA-fucoidan hydrogels demonstrated consistently high ATP levels over the culture period. Furthermore, only cells in the PVA-fucoidan hydrogels retained glucose responsiveness, demonstrating comparatively higher insulin secretion in response to glucose. In contrast, cells in the PVA-λ-carrageenan and the PVA control hydrogels lost all glucose responsiveness. The present work confirms the superior effects of chemically modified fucoidan over λ-carrageenan on pancreatic beta cell survival and function in covalently cross-linked hydrogels, thereby illustrating the importance of differential polysaccharide structural features on their biological effects.


Assuntos
Carragenina , Hidrogéis , Polissacarídeos , Carragenina/química , Carragenina/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Álcool de Polivinil/química , Reagentes de Ligações Cruzadas/química , Ratos , Metacrilatos/química , Metacrilatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Insulina/química , Insulina/metabolismo
9.
ACS Biomater Sci Eng ; 10(3): 1620-1645, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38345020

RESUMO

Peripheral nerve injuries often result in substantial impairment of the neurostimulatory organs. While the autograft is still largely used as the "gold standard" clinical treatment option, nerve guidance conduits (NGCs) are currently considered a promising approach for promoting peripheral nerve regeneration. While several attempts have been made to construct NGCs using various biomaterial combinations, a comprehensive exploration of the process science associated with three-dimensional (3D) extrusion printing of NGCs with clinically relevant sizes (length: 20 mm; diameter: 2-8 mm), while focusing on tunable buildability using electroactive biomaterial inks, remains unexplored. In addressing this gap, we present here the results of the viscoelastic properties of a range of a multifunctional gelatin methacrylate (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)/carbon nanofiber (CNF)/gellan gum (GG) hydrogel bioink formulations and printability assessment using experiments and quantitative models. Our results clearly established the positive impact of the gellan gum on the enhancement of the rheological properties. Interestingly, the strategic incorporation of PEGDA as a secondary cross-linker led to a remarkable enhancement in the strength and modulus by 3 and 8-fold, respectively. Moreover, conductive CNF addition resulted in a 4-fold improvement in measured electrical conductivity. The use of four-component electroactive biomaterial ink allowed us to obtain high neural cell viability in 3D bioprinted constructs. While the conventionally cast scaffolds can support the differentiation of neuro-2a cells, the most important result has been the excellent cell viability of neural cells in 3D encapsulated structures. Taken together, our findings demonstrate the potential of 3D bioprinting and multimodal biophysical cues in developing functional yet critical-sized nerve conduits for peripheral nerve tissue regeneration.


Assuntos
Bioimpressão , Polietilenoglicóis , Alicerces Teciduais , Alicerces Teciduais/química , Gelatina/química , Metacrilatos/farmacologia , Metacrilatos/química , Bioimpressão/métodos , Materiais Biocompatíveis/farmacologia , Regeneração Nervosa
10.
ACS Biomater Sci Eng ; 10(3): 1796-1807, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38346133

RESUMO

Dental resin composites (DRCs) are commonly used to restore teeth affected by dental caries or defects. These materials must possess excellent properties to withstand the complex oral environment. The objective of this study was to prepare and characterize Boron nitride nanosheets (BNN)/ dimethyl amino hexadecyl methacrylate (DMAHDM) composites (BNN/DMA), and to evaluate them as functional fillers to enhance the mechanical and antimicrobial properties of dental resins. The BNN/DMA composites were successfully prepared under the theoretical guidance of molecular dynamics (MD), and then the physicochemical and morphological characterization of the BNN/DMA composites were carried out by using various test methods, such as FT-IR, XRD, UV-vis spectroscopy, SEM, TEM, and AFM. It was doped into the dental flowable resin in a certain proportion, and the results showed that the flexural strength (FS), elastic modulus (EM), compressive strength (CS), and microhardness (MH) of the modified resin composites were increased by 53.29, 47.8, 97.59, and 37.1%, respectively, with the addition of 0.8 wt % of BNN/DMA composite fillers. It has a good inhibition effect on Streptococcus mutans, with an inhibition rate as high as 90.43%. Furthermore, this effect persists even after one month of aging. In conclusion, the modification of flowable resins with low-concentration BNN/DMA composites favorably integrates the mechanical properties and long-term antimicrobial activity of dental resins. At the same time, they have good biocompatibility and do not affect the aesthetics. The BNN/DMA composite modified flowable resin has the potential to become a new type of antimicrobial dental restorative material.


Assuntos
Compostos de Amônio , Anti-Infecciosos , Compostos de Boro , Cárie Dentária , Humanos , Teste de Materiais , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/farmacologia , Metacrilatos/farmacologia , Metacrilatos/química , Resinas Compostas/farmacologia , Resinas Compostas/química
11.
Macromol Rapid Commun ; 45(8): e2300683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237945

RESUMO

Wound healing in movable parts, including the joints and neck, remains a critical challenge due to frequent motions and poor flexibility of dressings, which may lead to mismatching of mechanical properties and poor fitting between dressings and wounds; thus, increasing the risk of bacterial infection. This study proposes a sprayable zwitterionic antibacterial hydrogel with outstanding flexibility and desirable adhesion. This hydrogel precursor is fabricated by combining zwitterionic sulfobetaine methacrylate (SBMA) with poly(sulfobetaine methacrylate-co-dopamine methacrylamide)-modified silver nanoparticles (PSBDA@AgNPs) through robust electrostatic interactions. About 150 s of exposure to UV light, the SBMA monomer polymerizes to form PSB chains entangled with PSBDA@AgNPs, transformed into a stable and adhesion PSB-PSB@Ag hydrogel at the wound site. The resulting hydrogel has adhesive strength (15-38 kPa), large tensile strain (>400%), suitable shape adaptation, and excellent mechanical resilience. Moreover, the hydrogel displays pH-responsive behavior; the acidic microenvironment at the infected wound sites prompts the hydrogel to rapidly release AgNPs and kill bacteria. Further, the healing effect of the hydrogel is demonstrated on the rat neck skin wound, showing improved wound closing rate due to reduced inflammation and enhanced angiogenesis. Overall, the sprayable zwitterionic antibacterial hydrogel has significant potential to promote joint skin wound healing.


Assuntos
Antibacterianos , Hidrogéis , Nanopartículas Metálicas , Metacrilatos , Prata , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Prata/química , Prata/farmacologia , Ratos , Nanopartículas Metálicas/química , Metacrilatos/química , Metacrilatos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana
12.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(1): 45-53, 2024 Jan 09.
Artigo em Chinês | MEDLINE | ID: mdl-38172061

RESUMO

Objective: To explore the application prospect of a new pH-responsive tertiary amine monomer dodecylmethylaminoethyl methacrylate (DMAEM) modified resin adhesive (DMAEM@RA) in the prevention and treatment of secondary caries. Methods: Five percents DMAEM was added to the resin adhesive to synthesize DMAEM@RA for modifying. Streptococcus mutans (Sm) and Lactobacillus casei (Lc) biofilms were cultured on resin adhesive and DMAEM@RA, respectively. The culture systems were set up at pH=7.4, 6.0, 5.5, and 5.0. The antimicrobial activity of DMAEM@RA was evaluated by quantitative PCR. The effects of DMAEM@RA on biofilm thickness, bacterial amount, and extracellular polysaccharides were studied by scanning electron microscope (SEM) and extracellular polysaccharide staining. Real-time fluorescence quantitative PCR was used to study the effect of DMAEM@RA on the expression levels of cariogenic genes in Sm. Results: DMAEM@RA could significantly reduce the amount of Sm and Lc under acidic conditions, especially Lc. At pH=5.0, the logarithm value of co-cultured Sm bacteria [lg (CFU/ml)] in DMAEM@RA group (7.58±0.01) was significantly lower than that in control group (7.87±0.03) (t=14.32, P<0.001), and the logarithm value of Lc bacteria [lg (CFU/ml)] (7.29±0.04) was also significantly lower than that in control group (7.93±0.15) (t=6.93, P=0.002). SEM observed that the bacteria decreased and the cell fragments appeared in DMAEM@RA group. In addition, DMAEM@RA significantly reduced the biomass of extracellular polysaccharides in the dual-species biofilm under acidic conditions. At pH=5.0, the biomass of extracellular polysaccharides in DMAEM@RA group [(25.13±3.14) mm3/mm2] was significantly lower than that in the control group [(42.66±7.46) mm3/mm2] (t=3.75, P=0.020). DMAEM@RA could significantly up-regulate the expressions of gtfB and gtfC genes in Sm under acidic conditions. At pH=5.0, gtfB and gtfC genes were significantly up-regulated by (14.64± 0.44) times and (2.99±0.20) times, respectively (t=-42.74, P<0.001; t=-13.55, P<0.001). Conclusions: The DMAEM@RA has a good antibacterial effect under acidic conditions, demonstrating that it has a good potential to prevent the occurrence and development of secondary caries.


Assuntos
Cárie Dentária , Lacticaseibacillus casei , Humanos , Streptococcus mutans , Metacrilatos/farmacologia , Metacrilatos/metabolismo , Cimentos Dentários , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Aminas/metabolismo , Aminas/farmacologia , Biofilmes , Concentração de Íons de Hidrogênio
13.
Braz Oral Res ; 38: e001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38198301

RESUMO

The aim of this study was to evaluate the influence of adding quaternary ammonium methacrylates (QAMs) to experimental adhesives by assessing the degree of conversion (DC), cytotoxicity against keratinocytes and fibroblasts, and antibacterial activity against biofilm formation. Two QAMs were added to an experimental adhesive: dimethylaminododecyl methacrylate bromododecane (DMADDM) or dimethylaminododecyl methacrylate bromohexadecane (DMAHDM) at three concentrations each: 1, 2.5, and 5 wt.%. Experimental adhesive without QAMs (control group) and commercially available Transbond XT Primer (3M Unitek, Monrovia, California, USA) were used for comparisons. The adhesives were tested for DC, cytotoxicity against keratinocytes and fibroblasts, and antibacterial activity against biofilm formation. DC, cytotoxicity against fibroblasts, and antibacterial activity were analyzed using one-way ANOVA and Tukey's multiple comparisons. Cytotoxicity against keratinocytes was evaluated using the Kruskal Wallis and Dunn's post-hoc (α = 5%) tests. Transbond showed lower DC as compared to 5% DMAHDM, 1% DMADDM, and 5% DMADDM (p < 0.05). However, all groups presented proper DC when compared to commercial adhesives in the literature. In the evaluation of cytotoxicity against keratinocytes, Transbond induced higher viability than 2.5 wt.% groups (p < 0.05). Against fibroblasts, Transbond induced higher viability as compared to 5 wt.% groups (p < 0.05). DMAHDM at 5 wt.% reduced biofilm formation when compared to all the other groups (p < 0.05). Despite their cytotoxic effect against keratinocytes, gingival fibroblasts showed higher viability. DMAHDM at 5 wt.% decreased Streptococcus mutans viability. The incorporation of DMAHDM at 5 wt.% may be a strategy for reducing the development of white spot lesions.


Assuntos
Antibacterianos , Bis-Fenol A-Glicidil Metacrilato , Hidrocarbonetos Bromados , Metacrilatos , Metilaminas , Compostos de Amônio Quaternário , Metacrilatos/farmacologia , Antibacterianos/farmacologia
14.
Int J Biol Macromol ; 259(Pt 1): 129213, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184052

RESUMO

The wound therapy based on antibiotic delivery inevitably leads to the emergence of drug resistance. Hydrogel biomaterials with inherent antibacterial activities have emerged as promising candidates for addressing this issue. However, developing an inherently antibacterial hydrogel through simple and facile strategies to promote localized wound infection healing remains a challenge. In this study, we successfully constructed antimicrobial cationic hydrogels with self-healing and injectable properties through physically and chemically dual-crosslinked networks. The networks were formed by the copolymers poly[(di(ethylene glycol) methyl ether methacrylate)-co-(4-formylphenyl methacrylate)-co-(2-(methacryloyloxy)ethyl]trimethylammonium chloride solution)] (PDFM) and poly[(di(ethylene glycol) methyl ether methacrylate)-co-(2-aminoethyl methacrylate hydrochloride)-co-(2-(((6-(6-methyl-4[1H]pyrimidionylureido) hexyl)carbamoyl)oxy)ethyl methacrylate)] (PDAU). The hydrogel systems effectively facilitate the regeneration and healing of infected wounds through the contact bactericidal feature of quaternary ammonium cations. The presence of Schiff base bonds in the injectable hydrogels imparts remarkable pH responsiveness and self-healing properties. In vitro experiments verified their intrinsic antibacterial activities along with their favorable cytocompatibility and hemocompatibility in both in vitro and in vivo. In addition, the hydrogel significantly accelerated the healing of bacterially infected in a full-thickness skin wound. This facilely prepared dual-crosslinked hydrogel, without antibiotics loading, holds significant prospects for treating infected wounds.


Assuntos
Anti-Infecciosos , Éteres Metílicos , Hidrogéis/farmacologia , Hidrogéis/química , Anti-Infecciosos/farmacologia , Cicatrização , Antibacterianos/química , Metacrilatos/farmacologia , Etilenoglicóis
15.
J Mater Chem B ; 12(3): 814-827, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38189164

RESUMO

Polymerisation shrinkage and biofilm accumulation are the two main problems associated with dental resin composites (DRCs) that induce secondary caries, which can cause restoration failure. Polymerisation shrinkage can lead to microleakage gaps between the tooth and the DRCs, causing the aggregation of bacteria and development of secondary caries. Reducing the shrinkage stress (SS) and improving the resistance to bacterial adhesion have always been the focus of this field in modifying DRCs. A thiol-ene resin system can effectively reduce the polymerisation SS via its step-growth mechanism for delaying the gel point. Fluorinated compounds can reduce the surface free energies, thereby reducing bacterial adhesion. Thus, in this study, a range of mass fractions (0, 10, 20, 30, and 40 wt%) of a fluorinated thiol-ene resin system were added to a fluorinated dimethacrylate resin system/tricyclo decanedimethanol diacrylate to create a fluorinated methacrylate-thiol-ene ternary resin matrix. DRCs were prepared using the obtained ternary resin matrix, and their physical and chemical properties, effect on bacterial adhesion, and biocompatibility were investigated. The results demonstrated that the volumetric shrinkage and SS of the DRCs were reduced with no reduction in conversion degree even after the thiol-ene resin system was added. All DRC-based fluorinated resin systems exhibited an excellent anti-bacterial adhesion effect, as evidenced by the colony-forming unit counts, live/dead bacterial staining, and crystal violet staining tests against Streptococcus mutans (S. mutans). The genetic expressions associated with the bacterial adhesion of S. mutans were substantially affected after being cultured with fluorinated DRCs. All fluorinated DRCs demonstrated good biocompatibility through the in vitro cytotoxicity test and live/dead staining images of the L-929 cells. The above results illustrate that the DRCs based on the fluorinated methacrylate-thiol-ene resin matrix can be potentially applied in clinical practice due to their low SS and anti-bacterial adhesion effect.


Assuntos
Resinas Compostas , Metacrilatos , Resinas Compostas/farmacologia , Teste de Materiais , Metacrilatos/farmacologia , Metacrilatos/química , Compostos de Sulfidrila/química , Bactérias
16.
Dent Mater ; 40(1): 59-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37903663

RESUMO

OBJECTIVE: To determine the effects of using K18-methyl methacrylate (K18-MMA) and K18-Filler on composite cure, esthetic, mechanical, polymerization shrinkage, and antimicrobial properties. METHODS: K18-MMA (0-20% w/w) was used to replace TEGDMA in a 70:30 Bis-GMA:TEGDMA composite filled to 70% w/w with barium glass or K18-Filler. Composite degree of cure (Rockwell15T hardness and near Infrared FTIR), hydrophilicity (contact angle measurements), translucency (transparency parameter measurements, TP), mechanical (3-point bend test), polymerization shrinkage (volumetric shrinkage and shrinkage stress), and antimicrobial properties (colony counting assay) against Streptococcus mutans, Streptococcus sanguinis, and Candida albicans were determined. RESULTS: All experimental groups had comparable degrees of cure (near Infrared FTIR and Rockwell15T Hardness), TP, moduli, polymerization volumetric shrinkages and shrinkage stresses to those of controls (Bonferroni corrected p > 0.0018). Only one group (15% K18-MMA+K18-Filler) had significantly different (lower) contact angles as compared to that of controls (Bonferroni corrected p < 0.0018). Most of the K18-Filler-containing composites had significantly lower ultimate transverse strengths (UTS) than controls (Bonferroni corrected p < 0.0018). Controls had significantly greater S mutans colony counts than 15% and 20% w/w K18-MMA+K18-Filler groups, and greater S sanguinis and C albicans colony counts than K18-containing groups. Of the composites with that provided significant antimicrobial properties against S. mutans, S. sanguinis, and C. albicans, only the 20% K18-MMA+K18-Filler group had significantly lower UTS than controls. SIGNIFICANCE: Composites with K18-MMA and K18-Filler with comparable physical properties to control composites and significant antimicrobial properties have been developed. K18-MMA and K18-Filler seem to be suitable for incorporation into commercial dental resins.


Assuntos
Anti-Infecciosos , Resinas Compostas , Resinas Compostas/farmacologia , Metilmetacrilato , Teste de Materiais , Ácidos Polimetacrílicos/farmacologia , Polietilenoglicóis , Bis-Fenol A-Glicidil Metacrilato , Metacrilatos/farmacologia , Anti-Infecciosos/farmacologia , Polimerização , Propriedades de Superfície
17.
J Mech Behav Biomed Mater ; 150: 106280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043260

RESUMO

OBJECTIVE: To investigate whether urethane dimethacrylate (UDMA) -based dental restorative materials biodegrade in the presence of Streptococcus mutans (S. mutans) and whether the monomers affect the adhesion and proliferation of S. mutans in turn. METHODS: Cholesterol esterase and pseudocholinesterase-like activities in S. mutans were detected using p-nitrophenyl substrate. Two UDMA-based CAD/CAM resin-ceramic composites, Lava Ultimate (LU) and Vita Enamic (VE), and a light-cured UDMA resin block were co-cultured with S. mutans for 14 days. Their surfaces were characterized by scanning electron microscopy and laser microscopy, and the byproducts of biodegradation were examined by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Then, the antimicrobial components (silver nanoparticles with quaternary ammonium salts) were added to the UDMA resin block to detect whether the biodegradation was restrained. Finally, the effect of UDMA on biofilm formation and virulence expression of S. mutans was assessed. RESULTS: Following a 14-day immersion, the LU and UDMA resin blocks' surface roughness increased. The LU and VE groups had no UDMA or its byproducts discovered, according to the UPLC-MS/MS data, whereas the light-cured UDMA block group had UDMA, urethane methacrylate (UMA), and urethane detected. The addition of antimicrobial agents showed a significant reduction in the release of UDMA. Biofilm staining experiments showed that UDMA promoted the growth of S. mutans biofilm and quantitative real-time polymerase chain reaction results indicated that 50 µg/mL UDMA significantly increase the expression of gtfB, comC, comD, comE, and gbpB genes within the biofilm. CONCLUSIONS: UDMA in the light-cured resin can be biodegraded to produce UMA and urethane under the influence of S. mutans. The formation of early biofilm can be promoted and the expression of cariogenic genes can be up-regulated by UDMA. CLINICAL SIGNIFICANCE: This study focuses for the first time on whether UDMA-based materials can undergo biodegradation and verifies from a genetic perspective that UDMA can promote the formation of S. mutans biofilms, providing a reference for the rational use of UDMA-based materials in clinical practice.


Assuntos
Nanopartículas Metálicas , Streptococcus mutans , Cromatografia Líquida , Prata , Espectrometria de Massas em Tandem , Resinas Compostas/química , Metacrilatos/farmacologia , Poliuretanos/farmacologia , Biofilmes , Cerâmica , Proliferação de Células , Teste de Materiais , Materiais Dentários/farmacologia , Propriedades de Superfície
18.
Biomater Adv ; 156: 213677, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056111

RESUMO

This study developed a biomimetic composite bioink consisting of gelatin methacrylate (GelMA) /chitosan nanoparticles (CSNPs) for extrusion-based 3D bioprinting. Additionally, curcumin(Cur)-loaded nanoparticles were incorporated which increased the proliferation and antibacterial activity of biomimetic skin constructs. The hydrogel, curcumin-loaded NPs, and the biocomposite was characterized chemically and physically. The results indicated proper modified gelatin with tunable physical characteristics, e.g., swelling ratio and biodegradability up to 1200 % and 25 days, respectively. In addition, the characterized CSNPs showed good distribution with a size of 370 nm and a zeta potential of 41.1 mV. We investigated the mechanical and cytocompatibility properties of chitosan nanoparticles encapsulated in hydrogel for emulating an extracellular matrix suitable for skin tissue engineering. CSNPs entrapped in GelMA (15 % w/v) exhibited controlled drug release during 5 days, which was fitted into various kinetic models to study the mass transfer mechanism behavior. Also, the composite hydrogels were effective as a barrier against both gram-positive and gram-negative bacteria at a concentration of 50 µg/ml nanoparticles in GelMA 15 %. Furthermore, the biocomposite was applied on Wistar rats for wound healing. As a result, this study provides a GelMA-NP50-Cur3 scaffold that promotes cell proliferation and decreases microbial infections in wounds.


Assuntos
Quitosana , Curcumina , Nanopartículas , Ratos , Animais , Quitosana/química , Quitosana/farmacologia , Gelatina/química , Curcumina/farmacologia , Hidrogéis/farmacologia , Metacrilatos/química , Metacrilatos/farmacologia , Antibacterianos/farmacologia , Ratos Wistar , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cicatrização , Nanopartículas/química
19.
Dent Mater ; 40(2): 244-253, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981511

RESUMO

OBJECTIVE: Implant-related infections from the adhesion and proliferation of dental plaque are a major challenge for dental implants. The objectives of this study were to: (1) develop novel antibacterial titanium (Ti) healing abutment; (2) investigate the inhibition of implant infection-related pathogenic bacteria and saliva-derived biofilm, and evaluate the biocompatibility of the new material for the first time. METHODS: Dimethylaminohexadecyl methacrylate (DMAHDM) and hydroxyapatite (HAP) were polymerized via polydopamine (PDA) on Ti. Staphylococcus aureus (S. aureus), Streptococcus sanguinis (S. sanguinis) and human saliva-derived biofilms were tested. After 4 weeks of DMAHDM release, the antibacterial efficacy of the DMAHDM remaining on Ti surface and the DMADHM in medium was tested. Biocompatibility was determined using human gingival fibroblasts (HGFs) and periodontal ligament stem cells (PDLSCs). RESULTS: The DMAHDM-loaded coating filled into the nano-voids in Ti surfaces. The modified Ti showed potent antibacterial activity, reducing the CFU of S. aureus, S. sanguinis and saliva-derived biofilms by 8, 7 and 4 log, respectively (P < 0.05). After 4 weeks of release, the modified Ti was still able to reduce S. aureus and S. sanguinis biofilm CFU by 1-3 log (P < 0.05). This provided strong antibacterial function for more than 4 weeks, which were the high-risk period for implant infections. The new material showed excellent biocompatibility when compared to control (P > 0.05). CONCLUSION: Novel DMAHDM-loaded Ti healing abutment had strong antibacterial effects, reducing biofilm CFUs by orders of magnitude, and lasting for over four weeks to cover the high-risk period for implant infections. The novel antibacterial Ti is promising to combat implant-related infections in dental, craniofacial and orthopedic applications.


Assuntos
Implantes Dentários , Metilaminas , Titânio , Humanos , Titânio/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Metacrilatos/farmacologia , Biofilmes
20.
Macromol Biosci ; 24(3): e2300408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37916483

RESUMO

The authors report on a mild, label-free, and fast method for the separation of human umbilical vein endothelial cells (HUVEC), which are relevant cells, whose use is not limited to studies of endothelial dysfunction, from cocultures with macrophages to afford HUVEC in ≈100% purity. Poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes with a dry thickness of (5 ± 1) nm afford the highly effective one-step separation by selective HUVEC detachment, which is based on the brushes' thermoresponsive behavior. Below the thermal transition at 32 °C the brushes swells and desorbs attached proteins, resulting in markedly decreased cell adhesion. Specifically, HUVEC and macrophages, which are differentiated from THP-1 monocytes, are seeded and attached to PDEGMA brushes at 37°C. After decreasing the temperature to 22°C, HUVEC shows a decrease in their cell area, while the macrophages are not markedly affected by the temperature change. After mild flushing with a cell culture medium, the HUVEC can be released from the surface and reseeded again with ≈100% purity on a new surface. With this selective cell separation and removal method, it is possible to separate and thereby purify HUVEC from macrophages without the use of any releasing reagent or expensive labels, such as antibodies.


Assuntos
Metacrilatos , Éteres Metílicos , Polietilenoglicóis , Humanos , Metacrilatos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Éter , Técnicas de Cocultura , Etilenoglicol , Éteres , Adesão Celular , Etil-Éteres , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...