Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 58(8): 1189-98, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20211192

RESUMO

Currently the only therapy for botulinum neurotoxin A (BoNT/A) poisoning is antitoxin. Antidotes that are effective after BoNT/A has entered the motor nerve terminals would dramatically benefit BoNT/A therapy. Inhibition of proteolytic activity of BoNT/A light chain by metalloendoprotease inhibitors (MEIs) is under development. We tested the effects of MEIs on in vitro as well as in vivo BoNT/A poisoned mouse nerve-muscle preparations (NMPs). The K(i) for inhibition of BoNT/A metalloendoprotease was 0.40 and 0.36 muM, respectively, for 2,4-dichlorocinnamic acid hydroxamate (DCH) and its methyl derivative, ABS 130. Acute treatment of nerve-muscle preparations with 10 pM BoNT/A inhibited nerve-evoked muscle twitches, reduced mean quantal content, and induced failures of endplate currents (EPCs). Bath application of 10 muM DCH or 5 muM ABS 130 reduced failures, increased the quantal content of EPCs, and partially restored muscle twitches after a delay of 40-90 min. The restorative effects of DCH and ABS 130, as well as 3,4 diaminopyridine (DAP) on twitch tension were greater at 22 degrees C compared to 37 degrees C. Unlike DAP, neither DCH nor ABS 130 increased Ca(2+) levels in cholinergic Neuro 2a cells. Injection of MEIs into mouse hind limbs before or after BoNT/A injection neither prevented the toe spread reflex inhibition nor improved muscle functions. We suggest that hydroxamate MEIs partially restore neurotransmission of acutely BoNT/A poisoned nerve-muscle preparations in vitro in a temperature dependent manner without increasing the Ca(2+) levels within motor nerve endings.


Assuntos
Antídotos/farmacologia , Toxinas Botulínicas Tipo A/intoxicação , Cinamatos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Metaloexopeptidases/antagonistas & inibidores , Junção Neuromuscular/efeitos dos fármacos , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/farmacologia , Acetilcolina/metabolismo , Amifampridina , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Técnicas In Vitro , Camundongos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiopatologia , Reflexo/efeitos dos fármacos
2.
FEBS Lett ; 582(17): 2527-31, 2008 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-18571504

RESUMO

Aminopeptidase B (AP-B) is a metallopeptidase that removes basic residues from the N-termini of neuropeptide substrates in secretory vesicles. This study assessed zinc regulation of AP-B activity, since secretory vesicles contain endogenous zinc. AP-B was inhibited by zinc at concentrations typically present in secretory vesicles. Zinc effects were dependent on concentration, incubation time, and the molar ratio of zinc to enzyme. AP-B activity was recovered upon removal of zinc. AP-B with zinc became susceptible to degradation by trypsin, suggesting that zinc alters enzyme conformation. Zinc regulation demonstrates the metallopeptidase property of AP-B.


Assuntos
Aminopeptidases/metabolismo , Metaloexopeptidases/metabolismo , Neuropeptídeos/biossíntese , Zinco/metabolismo , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/química , Animais , Metaloexopeptidases/antagonistas & inibidores , Metaloexopeptidases/química , Conformação Proteica , Ratos , Vesículas Secretórias/metabolismo , Tripsina/química , Zinco/farmacologia
3.
J Biol Chem ; 283(40): 27289-99, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18550540

RESUMO

L-carnosine is a bioactive dipeptide (beta-alanyl-L-histidine) present in mammalian tissues, including the central nervous system, and has potential neuroprotective and neurotransmitter functions. In mammals, two types of L-carnosine-hydrolyzing enzymes (CN1 and CN2) have been cloned thus far, and they have been classified as metallopeptidases of the M20 family. The enzymatic activity of CN2 requires Mn(2+), and CN2 is inhibited by a nonhydrolyzable substrate analog, bestatin. Here, we present the crystal structures of mouse CN2 complexed with bestatin together with Zn(2+) at a resolution of 1.7 A and that with Mn(2+) at 2.3 A CN2 is a homodimer in a noncrystallographic asymmetric unit, and the Mn(2+) and Zn(2+) complexes closely resemble each other in the overall structure. Each subunit is composed of two domains: domain A, which is complexed with bestatin and two metal ions, and domain B, which provides the major interface for dimer formation. The bestatin molecule bound to domain A interacts with several residues of domain B of the other subunit, and these interactions are likely to be essential for enzyme activity. Since the bestatin molecule is not accessible to the bulk water, substrate binding would require conformational flexibility between domains A and B. The active site structure and substrate-binding model provide a structural basis for the enzymatic activity and substrate specificity of CN2 and related enzymes.


Assuntos
Dipeptidases/química , Leucina/análogos & derivados , Metaloexopeptidases/química , Modelos Moleculares , Animais , Sítios de Ligação , Dimerização , Dipeptidases/antagonistas & inibidores , Dipeptidases/genética , Dipeptidases/metabolismo , Leucina/química , Manganês/química , Manganês/metabolismo , Metaloexopeptidases/antagonistas & inibidores , Metaloexopeptidases/genética , Metaloexopeptidases/metabolismo , Camundongos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Zinco/química , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA