Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 101, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331759

RESUMO

BACKGROUND: The cultivation of bananas encounters substantial obstacles, particularly due to the detrimental effects of cold stress on their growth and productivity. A potential remedy that has gained attention is the utilization of ethyl mesylate (EMS)-induced mutagenesis technology, which enables the creation of a genetically varied group of banana mutants. This complex procedure entails subjecting the mutants to further stress screening utilizing L-Hyp in order to identify those exhibiting improved resistance to cold. This study conducted a comprehensive optimization of the screening conditions for EMS mutagenesis and L-Hyp, resulting in the identification of the mutant cm784, which exhibited remarkable cold resistance. Subsequent investigations further elucidated the physiological and transcriptomic responses of cm784 to low-temperature stress. RESULTS: EMS mutagenesis had a substantial effect on banana seedlings, resulting in modifications in shoot and root traits, wherein a majority of seedlings exhibited delayed differentiation and limited elongation. Notably, mutant leaves displayed altered biomass composition, with starch content exhibiting the most pronounced variation. The application of L-Hyp pressure selection aided in the identification of cold-resistant mutants among seedling-lethal phenotypes. The mutant cm784 demonstrated enhanced cold resistance, as evidenced by improved survival rates and reduced symptoms of chilling injury. Physiological analyses demonstrated heightened activities of antioxidant enzymes and increased proline production in cm784 when subjected to cold stress. Transcriptome analysis unveiled 946 genes that were differentially expressed in cm784, with a notable enrichment in categories related to 'Carbohydrate transport and metabolism' and 'Secondary metabolites biosynthesis, transport, and catabolism'. CONCLUSION: The present findings provide insights into the molecular mechanisms that contribute to the heightened cold resistance observed in banana mutants. These mechanisms encompass enhanced carbohydrate metabolism and secondary metabolite biosynthesis, thereby emphasizing the adaptive strategies employed to mitigate the detrimental effects induced by cold stress.


Assuntos
Musa , Musa/metabolismo , Metanossulfonato de Etila/metabolismo , Metanossulfonato de Etila/farmacologia , Biomassa , Perfilação da Expressão Gênica , Mutagênese , Fenótipo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511578

RESUMO

Garlic (Allium sativum L.) is a popular condiment used as both medicine and food. Garlic production in China is severely affected by continuous cropping and is especially affected by leaf blight disease. Garlic is sterile, so it is very important to develop specialized genotypes, such as those for disease resistance, nutritional quality, and plant architecture, through genetic modification and innovation. In this experiment, we applied the induction method using EMS to mutate garlic cloves of cultivar G024. From the mutations, 5000 M0 mutants were generated and planted in the field. Then, 199 M1 mutant lines were screened according to growth potential and resistance to leaf blight. From M2 to M3, 169 generational lines were selected that grew well and were resistant to leaf blight in the field. Thereafter, their resistance to leaf blight was further analyzed in the lab; 21 lines resistant to leaf blight that had good growth potential were identified, among which 3 mutants were significantly different, and these were further screened. Also, transcriptome analysis of two mutants infected with Pleospora herbarum, A150 and G024, was performed, and the results revealed 2026 and 4678 differentially expressed genes (DEGs), respectively. These DEGs were highly enriched in hormone signaling pathway, plant-pathogen interaction, and MAPK signaling pathway. Therefore, the results provide a theoretical and technical basis for the creation of garlic germplasm resistant to leaf blight.


Assuntos
Ascomicetos , Alho , Alho/genética , Metanossulfonato de Etila/metabolismo , Plantas , Metano/metabolismo
3.
Planta ; 256(5): 98, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222916

RESUMO

MAIN CONCLUSION: A G to T nucleotide substitution of OsTSG2 led to more tillers and smaller grains in rice by participating in phytohormone signal transduction and starch and sucrose metabolism. Rice is one of the most important food crops worldwide. Grain size and tiller number are the most important factors determining rice yield. The more-tiller and small-grain 2 (tsg2) mutant in rice, developed by ethyl methanesulfonate (EMS) mutagenesis, has smaller grains, more tillers, and a higher yield per plant relative to the wild-type (WT). Based on the genetic analysis, the tsg2 traits were conferred by a single recessive nuclear gene located on the long arm of chromosome 2. After fine-mapping the OsTSG2 locus, a G to T nucleotide substitution was identified, which resulted in an A to S mutation in a highly conserved domain of the growth-regulation factor protein. The single-strand conformation polymorphism (SSCP) marker was developed based on the SNP associated with the phenotypic segregation of traits. The functional complementation of OsTSG2 from the tsg2 mutant to the WT led to an increase in grain size and weight. The differentially expressed genes (DEGs) identified by RNA sequencing were involved in phytohormone signal transduction and starch and sucrose metabolism. Enzyme-linked immunosorbent assay (ELISA) analysis detected variation in the indole acetic acid (IAA) and jasmonic acid (JA) content in the tsg2 inflorescence, while the cellular organization, degree of chalkiness, gel consistency, amylose content, and alkaline spreading value were affected in the tsg2 grains. The findings elucidated the regulatory mechanisms of the tsg2 traits. This mutant could be used in marker-assisted breeding for high-yield and good-quality rice.


Assuntos
Oryza , Amilose/metabolismo , Clonagem Molecular , Grão Comestível/genética , Grão Comestível/metabolismo , Metanossulfonato de Etila/metabolismo , Perfilação da Expressão Gênica , Nucleotídeos/metabolismo , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Amido/metabolismo , Sacarose/metabolismo
4.
Phytochemistry ; 203: 113422, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36055422

RESUMO

Catharanthus roseus is a medicinal plant that produces an abundance of monoterpenoid indole alkaloids (MIAs), notably including the anticancer compounds vinblastine and vincristine. While the canonical pathway leading to these drugs has been resolved, the regulatory and catalytic mechanisms controlling many lateral branches of MIA biosynthesis remain largely unknown. Here, we describe an ethyl methanesulfonate (EMS) C. roseus mutant (M2-117523) that accumulates high levels of MIAs. The mutant exhibited stunted growth, partially chlorotic leaves, with deficiencies in chlorophyll biosynthesis, and a lesion-mimic phenotype. The lesions were sporadic and spontaneous, appearing after the first true bifoliate and continuing throughout development. The lesions are also the site of high concentrations of akuammicine, a minor constituent of wild type C. roseus leaves. In addition to akuammicine, the lesions were enriched in 25 other MIAs, resulting, in part, from a higher metabolic flux through the pathway. The unique metabolic shift was associated with significant upregulation of biosynthetic and regulatory genes involved in the MIA pathway, including the transcription factors WRKY1, CrMYC2, and ORCA2, and the biosynthetic genes STR, GO, and Redox1. Following the lesion-mimic mutant (LMM) phenotype, the accumulation of akuammicine is jasmonate (JA)-inducible, suggesting a role in plant defence response. Akuammicine is medicinally significant, as a weak opioid agonist, with a preference for the κ-opioid receptor, and a potential anti-diabetic. Further study of akuammicine biosynthesis and regulation can guide plant and heterologous engineering for medicinal uses.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Alcaloides , Analgésicos Opioides/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Clorofila/metabolismo , Metanossulfonato de Etila/metabolismo , Regulação da Expressão Gênica de Plantas , Indóis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores Opioides/genética , Receptores Opioides/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Alcaloides de Triptamina e Secologanina/farmacologia , Fatores de Transcrição/genética , Vimblastina , Vincristina
5.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142679

RESUMO

Grain yield (GY) and grain protein content (GPC) are important traits for wheat breeding and production; however, they are usually negatively correlated. The Q gene is the most important domestication gene in cultivated wheat because it influences many traits, including GY and GPC. Allelic variations in the Q gene may positively affect both GY and GPC. Accordingly, we characterized two new Q alleles (Qs1 and Qc1-N8) obtained through ethyl methanesulfonate-induced mutagenesis. Compared with the wild-type Q allele, Qs1 contains a missense mutation in the sequence encoding the first AP2 domain, whereas Qc1-N8 has two missense mutations: one in the sequence encoding the second AP2 domain and the other in the microRNA172-binding site. The Qs1 allele did not significantly affect GPC or other processing quality parameters, but it adversely affected GY by decreasing the thousand kernel weight and grain number per spike. In contrast, Qc1-N8 positively affected GPC and GY by increasing the thousand kernel weight and grain number per spike. Thus, we generated novel germplasm relevant for wheat breeding. A specific molecular marker was developed to facilitate the use of the Qc1-N8 allele in breeding. Furthermore, our findings provide useful new information for enhancing cereal crops via non-transgenic approaches.


Assuntos
Proteínas de Grãos , Triticum , Alelos , Grão Comestível/química , Grão Comestível/genética , Metanossulfonato de Etila/metabolismo , Genes vif , Proteínas de Grãos/metabolismo , Mutação de Sentido Incorreto , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética , Triticum/metabolismo
6.
Plant J ; 111(6): 1660-1675, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861696

RESUMO

Maize (Zea mays) is an important cereal crop worldwide. However, its yield and quality are adversely affected by salt stress resulting from soil hypersalinity. Exploring the regulatory mechanisms of stress responses is of vital importance to increase maize seed production. In the present study, we screened ethyl methanesulfonate-induced maize mutants and identified a salt-tolerant mutant. A single base was mutated in ZmWRKY20, leading to the formation of a truncated protein variant. A detailed phenotypic analysis revealed that this mutant had significantly higher resistance to wilting and lower reactive oxygen species levels than the inbred line B73. ZmWRKY20 showed transcriptional activity in yeast and specifically bound W-boxes according to the results of our yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays. Overexpression of ZmWRKY20 decreased salt tolerance in maize. Transcriptome profiling revealed that ZmWRKY20 overexpression extensively reprogrammed genes involved in regulating defense and oxidation-reduction responses. The results substantiate that ZmWRKY20 is directly targeted to the basic leucine zipper (bZIP) motif in the transcription factor ZmbZIP111. It was also verified that ZmWRKY20 interacts with ZmWRKY115 and both proteins act jointly to enhance ZmbZIP111 repression. The results indicate that the ZmWRKY20 and ZmWRKY115 transcription factors interact in the nucleus, leading to repression of ZmbZIP111 expression by directly binding its promoter, and increase the sensitivity of maize seedlings to salt stress. The current study improves our understanding of the complicated responses of maize to salt stress.


Assuntos
Tolerância ao Sal , Zea mays , Metanossulfonato de Etila/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Tolerância ao Sal/genética , Solo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/metabolismo
7.
J Sci Food Agric ; 102(5): 2012-2022, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34558070

RESUMO

BACKGROUND: Wheat is an essential source of starch. The GBSS or waxy genes are responsible for synthesizing amylose in cereals. The present study identified a novel Wx-A1 null mutant line from an ethyl methanesulfonate (EMS)-mutagenized population of common wheat cv. SM126 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and agarose gel analyses. RESULTS: The alignment of the Wx-A1 gene sequences from the mutant and parental SM126 lines showed only one single nucleotide polymorphism causing the appearance of a premature stop codon and Wx-A1 inactivation. The lack of Wx-A1 protein resulted in decreased amylose, total starch and resistant starch. The starch morphology assessment revealed that starch from mutant seeds was more wrinkled, increasing its susceptibility to digestion. Regarding the starch thermodynamic properties, the gelatinization temperature was remarkably reduced in the mutant compared to parental line SM126. The digestibility of native, gelatinized, and retrograded starches was analyzed for mutant M4-627 and the parental SM126 line. In the M4-627 line, rapidly digestible starch contents were increased, whereas resistant starch was decreased in the three types of starch. CONCLUSION: Waxy protein is essential for starch synthesis. The thermodynamic characteristics were decreased in the Wx-A1 mutant line. The digestibility properties of starch were also affected. Therefore, the partial waxy mutant M3-627 might play a significant role in food improvement. Furthermore, it might also be used to produce high-quality noodles. © 2021 Society of Chemical Industry.


Assuntos
Sintase do Amido , Triticum , Amilose/análise , Metanossulfonato de Etila/metabolismo , Éxons , Inativação Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/química , Sintase do Amido/genética , Sintase do Amido/metabolismo , Triticum/genética , Triticum/metabolismo
8.
Plant Physiol ; 185(4): 1903-1923, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33793930

RESUMO

The R2R3 transcription factor MdMYB88 has previously been reported to function in biotic and abiotic stress responses. Here, we identify BRI1 ETHYLMETHANE SULFONATE SUPRESSOR1 (MdBES1), a vital component of brassinosteroid (BR) signaling in apple (Malus × domestica) that directly binds to the MdMYB88 promoter, regulating the expression of MdMYB88 in a dynamic and multifaceted mode. MdBES1 positively regulated expression of MdMYB88 under cold stress and pathogen attack, but negatively regulated its expression under control and drought conditions. Consistently, MdBES1 was a positive regulator for cold tolerance and disease resistance in apple, but a negative regulator for drought tolerance. In addition, MdMYB88 participated in BR biosynthesis by directly regulating the BR biosynthetic genes DE ETIOLATED 2 (MdDET2), DWARF 4 (MdDWF4), and BRASSINOSTEROID 6 OXIDASE 2 (MdBR6OX2). Applying exogenous BR partially rescued the erect leaf and dwarf phenotypes, as well as defects in stress tolerance in MdMYB88/124 RNAi plants. Moreover, knockdown of MdMYB88 in MdBES1 overexpression (OE) plants decreased resistance to a pathogen and C-REPEAT BINDING FACTOR1 expression, whereas overexpressing MdMYB88 in MdBES1 OE plants increased expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 (MdSPL3) and BR biosynthetic genes, suggesting that MdMYB88 contributes to MdBES1 function during BR biosynthesis and the stress response. Taken together, our results reveal multifaceted regulation of MdBES1 on MdMYB88 in BR biosynthesis and stress tolerance.


Assuntos
Absorção Fisiológica/genética , Absorção Fisiológica/fisiologia , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Metanossulfonato de Etila/metabolismo , Malus/crescimento & desenvolvimento , Malus/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Supressores , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
9.
Plant J ; 103(2): 858-868, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239588

RESUMO

As the gene pool is exposed to both strain on land resources and a lack of diversity in elite allotetraploid cotton, the acquisition and identification of novel alleles has taken on epic importance in facilitating cotton genetic improvement and functional genomics research. Ethyl methanesulfonate (EMS) is an excellent mutagen that induces genome-wide efficient mutations to activate the mutagenic potential of plants with many advantages. The present study established, determined and verified the experimental procedure suitable for EMS-based mutant library construction as the general reference guide in allotetraploid upland cotton. This optimized method and procedure are efficient, and abundant EMS mutant libraries (approximately 12 000) in allotetraploid cotton were successfully obtained. More than 20 mutant phenotypes were observed and screened, including phenotypes of the leaf, flower, fruit, fiber and plant architecture. Through the plants mutant library, high-throughput and high-resolution melting technology-based variation evaluation detected the EMS-induced site mutation. Additionally, based on overall genome-wide mutation analyses by re-sequencing and mutant library assessment, the examination results demonstrated the ideal quality of the cotton EMS-treated mutant library constructed in this study with appropriate high mutation density and saturated genome. What is more, the collection is composed of a broad repertoire of mutants, which is the valuable resource for basic genetic research and functional genomics underlying complex allotetraploid traits, as well as cotton breeding.


Assuntos
Metanossulfonato de Etila/metabolismo , Genoma de Planta/genética , Gossypium/genética , Mutagênicos/metabolismo , Mutação/genética , Tetraploidia , Metanossulfonato de Etila/farmacologia , Fertilidade/genética , Biblioteca Gênica , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Células Germinativas Vegetais , Germinação/genética , Gossypium/anatomia & histologia , Mutagênicos/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável
10.
Plant Signal Behav ; 15(2): 1710053, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31900036

RESUMO

Substantial progress had been made in reducing nornicotine accumulation in burley tobacco, as nornicotine is a precursor of the carcinogen N-nitrosonornicotine (NNN). Three members of the CYP82E2 family encoding nicotine N-demethylase (NND) have been reported to be responsible for the majority of nicotine demethylation that forms nornicotine in burley tobacco. We had obtained a nonsense mutant of each NND member in flue-cured tobacco from an ethyl methanesulfonate (EMS)-mutagenized population. In this study, we developed dCAPS markers for each nonsense mutation. Using marker-assisted selection, NND mutants were crossed with each other to generate a triple mutant GP449. In line with previous reports, the triple knockout caused significantly decreased levels of nornicotine and NNN in flue-cured tobacco. With the decreased nornicotine, the nicotine level was expected to accumulate. However, the nicotine level in GP449 was significantly decreased to 72.80% of wild type. Realtime RT-PCR analysis showed that the nicotine reduction was correlated with inhibited expression of nicotine biosynthetic pathway genes. The triple mutant and dCAPS markers can be utilized to develop new flue-cured tobacco varieties with lower levels of nornicotine and NNN.


Assuntos
Nicotiana/metabolismo , Nicotina/análogos & derivados , Nitrosaminas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Metanossulfonato de Etila/metabolismo , Nicotina/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Interferência de RNA , Nicotiana/enzimologia
11.
J Integr Plant Biol ; 62(2): 165-180, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30697931

RESUMO

Targeting-induced local lesions in genomes (TILLING) is a powerful reverse-genetics tool that enables high-throughput screening of genomic variations in plants. Although TILLING has been developed for many diploid plants, the technology has been used in very few polyploid species due to their genomic complexity. Here, we established an efficient capillary electrophoresis-based TILLING platform for allotetraploid cultivated tobacco (Nicotiana tabacum L.) using an ethyl methanesulfonate (EMS)-mutagenized population of 1,536 individuals. We optimized the procedures for endonuclease preparation, leaf tissue sampling, DNA extraction, normalization, pooling, PCR amplification, heteroduplex formation, and capillary electrophoresis. In a test screen using seven target genes with eight PCR fragments, we obtained 118 mutants. The mutation density was estimated to be approximately one mutation per 106 kb on average. Phenotypic analyses showed that mutations in two heavy metal transporter genes, HMA2S and HMA4T, led to reduced accumulation of cadmium and zinc, which was confirmed independently using CRISPR/Cas9 to generate knockout mutants. Our results demonstrate that this powerful TILLING platform (available at http://www.croptilling.org) can be used in tobacco to facilitate functional genomics applications.


Assuntos
Nicotiana/metabolismo , Sistemas CRISPR-Cas , Cádmio/metabolismo , Eletroforese Capilar , Metanossulfonato de Etila/metabolismo , Mutagênese/genética , Mutagênese/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase , Poliploidia , Nicotiana/genética , Zinco/metabolismo
12.
Theor Appl Genet ; 133(1): 271-282, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31624873

RESUMO

KEY MESSAGE: The EMS-induced threonine/isoleucine substitution in a tetratricopeptide repeat-like superfamily protein encoded by gene Ghir_A12G008870 is responsible for the Ligon-lintless-y (liy) short fiber phenotype in cotton. A short fiber mutant Ligon-lintless-y was created through treating the seeds of the cotton line MD15 with ethyl methanesulfonate. Genetic analysis indicated that the short fiber phenotype is controlled by a single recessive locus designated liy. From F2 populations derived from crosses between the mutant and its wild type (WT), we selected 132 short fiber progeny (liy/liy) and made two DNA bulks. We sequenced these DNA bulks along with the two parents of the population. The liy locus was located on chromosome A12. Using multiple F2 populations and F3 progeny plants, we mapped the liy locus within a genomic region of 1.18 Mb. In this region, there is only one gene, i.e., Ghir_A12G008870 encoding a tetratricopeptide repeat-like superfamily protein that has a non-synonymous mutation between the liy mutant and its WT. Analysis of a SNP marker representing this gene in the F2 and F3 progeny plants demonstrated its complete linkage with the liy short fiber phenotype. We further analyzed this SNP marker in a panel of 384 cotton varieties. The mutant allele is absent in all varieties analyzed. RNAseq and RT-qPCR analysis of the gene Ghir_A12G008870 during fiber development showed a significant expression difference between the liy mutant and its WT in developing fiber cells beginning at 12 days post-anthesis. Virus-induced gene silencing of the gene Ghir_A12G008870 significantly reduced the fiber length of the WT cotton line MD15. Taken together, our results suggest that the gene Ghir_A12G008870 is involved in the cotton fiber cell elongation process and is a promising candidate gene responsible for the liy short fiber phenotype.


Assuntos
Cromossomos de Plantas/genética , Fibra de Algodão , Metanossulfonato de Etila/metabolismo , Genes de Plantas , Gossypium/genética , Mutação/genética , Repetições de Tetratricopeptídeos , Sequência de Bases , Mapeamento Cromossômico , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Loci Gênicos , Marcadores Genéticos , Fenótipo , Polimorfismo Genético , Fatores de Tempo
13.
World J Microbiol Biotechnol ; 35(2): 28, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30689125

RESUMO

Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungal pathogen causing stripe rust, one of the most important diseases of wheat worldwide. Mutation is considered as one of the major mechanisms causing virulence changes in the pathogen population, but experimental evidence is limited. To study the effect of mutation on pathogen variation, we developed 33 mutant isolates by treating urediniospores of Pst race PSTv-18, avirulent to all of the 18 Yr single-gene lines used to differentiate Pst races, with ethyl methanesulfonate (EMS). These isolates were characterized as 24 races, including 19 new races, through virulence testing on the set of 18 wheat Yr single-gene differential lines; and as 21 multi-locus genotypes with 19 simple sequence repeat and 48 single-nucleotide polymorphism markers. Most of the mutant isolates had more than one avirulence gene and more than one marker locus changed compared to the wild type isolate, indicating that EMS is able to cause mutations at multiple genome sites. The results showed that mutation can cause substantial changes in both avirulence and other genomic regions. The different frequencies of virulence among the mutant isolates suggested homozygous or heterozygous avirulence loci in the parental isolate, or relative ease of mutation at some avirulence loci. The results are useful for understanding evolutionary mechanisms of the important fungal pathogen.


Assuntos
Basidiomycota/genética , Basidiomycota/isolamento & purificação , Metanossulfonato de Etila/metabolismo , Genótipo , Mutagênicos/metabolismo , Mutação , Triticum/microbiologia , Antineoplásicos Alquilantes , Basidiomycota/efeitos dos fármacos , Basidiomycota/patogenicidade , Mutagênese , Doenças das Plantas/microbiologia , Virulência
14.
Cold Spring Harb Protoc ; 2017(8): pdb.prot091736, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765296

RESUMO

Here we provide an ethyl methanesulfonate (EMS) mutagenesis protocol for Schizosaccharomyces pombe cells.


Assuntos
Metanossulfonato de Etila/metabolismo , Genética Microbiana/métodos , Mutagênese , Mutagênicos/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética
15.
Int J Mol Sci ; 18(7)2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28640193

RESUMO

The epidermis of swollen storage roots in purple cultivars of turnip "Tsuda" (Brassica rapa) accumulates anthocyanin in a light-dependent manner, especially in response to UV-A light, of which the mechanism is unclear. In this study, we mutagenized 15,000 seeds by 0.5% (v/v) ethyl methane sulfonate (EMS) and obtained 14 mutants with abnormal anthocyanin production in their epidermis of swollen storage roots. These mutants were classified into two groups: the red mutants with constitutive anthocyanin accumulation in their epidermis of storage roots even in underground parts in darkness and the white mutants without anthocyanin accumulation in the epidermis of storage roots in aboveground parts exposed to sunlight. Test cross analysis demonstrated that w9, w68, w204, r15, r21, r30 and r57 contained different mutations responsible for their phenotypic variations. Further genetic analysis of four target mutants (w9, w68, w204 and r15) indicated that each of them was controlled by a different recessive gene. Intriguingly, the expression profiles of anthocyanin biosynthesis genes, including structural and regulatory genes, coincided with their anthocyanin levels in the epidermis of storage roots in the four target mutants. We proposed that potential genes responsible for the mutations should be upstream factors of the anthocyanin biosynthesis pathway in turnips, which provided resources to further investigate the mechanisms of light-induced anthocyanin accumulation.


Assuntos
Antocianinas/genética , Vias Biossintéticas , Brassica rapa/genética , Mutação , Antocianinas/metabolismo , Brassica rapa/metabolismo , Brassica rapa/efeitos da radiação , Metanossulfonato de Etila/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutagênese , Mutagênicos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Luz Solar , Raios Ultravioleta
16.
J Toxicol Environ Health A ; 80(4): 208-217, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28304234

RESUMO

Peumus boldus Mol. ("Boldo") and Cryptocarya alba Mol. Looser ("Peumo") are medicinal shrubs with wide geographical distribution in South America. Their leaves and fruits are commonly used in traditional medicine because they exhibit natural medicinal properties for treatment of liver disorders and rheumatism. However, there are no apparent data regarding potential protective effects on cellular genetic components. In order to examine potential mutagenic and/or antimutagenic effects of these medicinal plants, the Drosophila melanogaster (D. melanogaster) wing-spot test was employed. This assay detects a wide range of mutational events, including point mutations, deletions, certain types of chromosomal aberrations (nondisjunction), and mitotic recombination. Qualitative and quantitative analyses of phenolic and anthocyanin compounds were carried out using biochemical and high-performance liquid chromatography methodologies. In addition, the antioxidant capacity of P. boldus and C. alba leaf extracts was also analyzed. P. boldus and C. alba extracts did not induce significant mutagenic effects in the D. melanogaster model. However, simultaneous treatment of extracts concurrently with the mutagen ethyl methane sulphonate showed a decrease of mutant spots in somatic cells of D. melanogaster, indicating desmutagenic effects in this in vivo model. Flavonoids and anthocyanins were detected predominantly in the extracts, and these compounds exerted significant antioxidant capacity. The observed antimutagenic effects may be related to the presence of phytochemicals with high antioxidant capacity, such as flavonoids and antohocyanins, in the extracts.


Assuntos
Antimutagênicos/farmacologia , Cryptocarya/química , Drosophila melanogaster/efeitos dos fármacos , Peumus/química , Plantas Medicinais/química , Animais , Antocianinas/análise , Antocianinas/farmacologia , Antioxidantes/análise , Antioxidantes/farmacologia , Chile , Drosophila melanogaster/crescimento & desenvolvimento , Metanossulfonato de Etila/metabolismo , Larva/efeitos dos fármacos , Mutagênicos/metabolismo , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Asas de Animais/efeitos dos fármacos
17.
Nat Protoc ; 11(12): 2401-2418, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27809315

RESUMO

The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping.


Assuntos
Análise Mutacional de DNA/métodos , Metanossulfonato de Etila/metabolismo , Mutação , Solanum lycopersicum/genética , Variação Genética , Fatores de Tempo
18.
Plant Physiol ; 170(2): 807-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26676255

RESUMO

Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance.


Assuntos
Lipase/metabolismo , Lipídeos de Membrana/química , Solanum lycopersicum/enzimologia , Esterificação , Ésteres/química , Metanossulfonato de Etila/metabolismo , Ácidos Graxos/química , Frutas/enzimologia , Frutas/genética , Glicerol/química , Lipase/genética , Solanum lycopersicum/genética , Lipídeos de Membrana/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliésteres/química , Polimerização , Polímeros/química
19.
Theor Appl Genet ; 127(4): 821-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24374351

RESUMO

KEY MESSAGE: Genetic improvements for many fiber traits are obtained by mutagenesis of elite cottons, mitigating genetic uniformity in this inbred polyploid by contributing novel alleles important to ongoing crop improvement. The elite gene pool of cotton (Gossypium spp.) has less diversity than those of most other major crops, making identification of novel alleles important to ongoing crop improvement. A total of 3,164 M5 lines resulting from ethyl methanesulfonate (EMS) mutagenesis of two G. hirsutum breeding lines, TAM 94L-25 and Acala 1517-99, were characterized for basic components of fiber quality and selected yield components. Across all measured traits, the ranges of phenotypic values among the mutant lines were consistently larger than could be explained by chance (5.27-10.1 for TAM 94 L-25 and 5.29-7.94 standard deviations for Acala 1517-99-derived lines). Multi-year replicated studies confirmed a genetic basis for these differences, showing significant correlations between lines across years and environments. A subset of 157 lines selected for superior fiber qualities, including fiber elongation (22 lines), length (22), lint percent (17), fineness (23), Rd value (21), strength (19), uniformity (21) and multiple attributes in a selection index (26) were compared to 55 control lines in replicated trials in both Texas and Georgia. For all traits, mutant lines showing substantial and statistically significant improvements over control lines were found, in most cases from each of the two genetic backgrounds. This indicates that genetic improvements for a wide range of fiber traits may be obtained from mutagenesis of elite cottons. Indeed, lines selected for one fiber trait sometimes conferred additional attributes, suggesting pleiotropic effects of some mutations and offering multiple benefits for the incorporation of some alleles into mainstream breeding programs.


Assuntos
Alelos , Fibra de Algodão/normas , Metanossulfonato de Etila/metabolismo , Gossypium/genética , Mutagênese/genética , Análise de Variância , Genótipo , Mutação/genética , Característica Quantitativa Herdável , Seleção Genética
20.
Biophys J ; 104(6): 1230-7, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23528082

RESUMO

Channelrhodopsin-2 (ChR2) is a light-activated nonselective cation channel that is found in the eyespot of the unicellular green alga Chlamydomonas reinhardtii. Despite the wide employment of this protein to control the membrane potential of excitable membranes, the molecular determinants that define the unique ion conductance properties of this protein are not well understood. To elucidate the cation permeability pathway of ion conductance, we performed cysteine scanning mutagenesis of transmembrane domain three followed by labeling with methanethiosulfonate derivatives. An analysis of our experimental results as modeled onto the crystal structure of the C1C2 chimera demonstrate that the ion permeation pathway includes residues on one face of transmembrane domain three at the extracellular side of the channel that face the center of ChR2. Furthermore, we examined the role of a residue at the extracellular side of transmembrane domain three in ion conductance. We show that ion conductance is mediated, in part, by hydrogen bonding at the extracellular side of transmembrane domain three. These results provide a starting point for examining the cation permeability pathway for ChR2.


Assuntos
Membrana Celular/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/metabolismo , Espaço Extracelular/metabolismo , Feminino , Íons/metabolismo , Mesilatos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Permeabilidade , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Rodopsina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...