Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Basic Microbiol ; 64(5): e2300744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466146

RESUMO

Tenebrio molitor L., also known as the mealworm, is a polyphagous insect pest that infests various stored grains worldwide. Both the adult and larval stages can cause significant damage to stored grains. The present study focused on isolating entomopathogenic fungi from an infected larval cadaver under environmental conditions. Fungal pathogenicity was tested on T. molitor larvae and pupae for 12 days. Entomopathogenic fungi were identified using biotechnological methods based on their morphology and the sequence of their nuclear ribosomal internal transcribed spacer (ITS). The results of the insecticidal activity indicate that the virulence of fungi varies between the larval and pupal stages. In comparison to the larval stage, the pupal stage is highly susceptible to Metarhizium rileyi, exhibiting 100% mortality rates after 12 days (lethal concentration 50 [LC50] = 7.8 × 106 and lethal concentration 90 (LC90) = 2.1 × 1013 conidia/mL), whereas larvae showed 92% mortality rates at 12 days posttreatment (LC50 = 1.0 × 106 and LC90 = 3.0 × 109 conidia/mL). The enzymatic analyses revealed a significant increase in the levels of the insect enzymes superoxide dismutase (4.76-10.5 mg-1) and glutathione S-transferase (0.46-6.53 mg-1) 3 days after exposure to M. rileyi conidia (1.5 × 105 conidia/mL) compared to the control group. The findings clearly show that M. rileyi is an environmentally friendly and effective microbial agent for controlling the larvae and pupae of T. molitor.


Assuntos
Larva , Metarhizium , Controle Biológico de Vetores , Pupa , Tenebrio , Animais , Tenebrio/microbiologia , Metarhizium/patogenicidade , Metarhizium/crescimento & desenvolvimento , Larva/microbiologia , Pupa/microbiologia , Virulência , Superóxido Dismutase/metabolismo , Glutationa Transferase/metabolismo
2.
Microbiol Spectr ; 9(2): e0082321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34494863

RESUMO

Conidiation is a pivotal strategy for fungi to resist adverse environments and disperse to new habitats, which is especially important for entomopathogenic fungi whose conidia are infective as fungal pesticide propagules. However, the molecular mechanism for regulating conidiation in entomopathogenic fungi is not fully understood. Here, we characterized the regulatory mechanism of the key developmental transcription factor Mr-AbaA. Bioinformatic analysis, transcriptional profiles, and subcellular localization of Mr-abaA indicated that AbaA functioned as a transcription factor in the conidiophore development and conidium stages. Microscopic examination showed that the null mutant of Mr-abaA differentiated into defective phialides to produce an abacus structure instead of conidia. Loss of Mr-abaA resulted in the inhibition of submerged blastospore separation in vitro. Moreover, yeast (Saccharomyces cerevisiae) one-hybrid assays of interactions between genes and deletion of Mr-veA showed that Mr-AbaA regulates conidiation by interacting with the promoter regions of Mr-veA and Mr-wetA. These results demonstrate that Mr-AbaA positively regulates conidiation in Metarhizium robertsii by regulating the velvet family ortholog gene Mr-veA and contributes to the separation of blastospores in submerged culture. IMPORTANCE Metarhizium robertsii is an emerging model entomopathogenic fungus for developing biopesticides; therefore, a comprehensive understanding of its conidiation is very important for its application. In this study, we revealed that the transcription factor Mr-AbaA is involved in the control of aerial conidiation and blastospore separation in submerged culture. Further yeast one-hybrid assays demonstrated that Mr-AbaA interacts with the promoter regions of Mr-veA and Mr-wetA, which code for proteins involved in the control of conidiation. This finding provides new insight into the regulation of the conidiation of this important entomopathogenic fungi.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Metarhizium/genética , Esporos Fúngicos/crescimento & desenvolvimento , Fatores de Transcrição/genética , Agentes de Controle Biológico , Proteínas Fúngicas/metabolismo , Metarhizium/crescimento & desenvolvimento , Metarhizium/metabolismo , Regiões Promotoras Genéticas/genética , Esporos Fúngicos/genética
3.
J Invertebr Pathol ; 184: 107648, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331911

RESUMO

The entomopathogenic fungus Metarhizium humberi affects Aedes aegypti adults, larvae and eggs, but its ovicidal activity is not yet well documented. Conidia of this fungus adhered to the chorion, initiated germination within 12 h, and germinating conidia were detected for up to 10 d after contact with the egg. Germ tubes either penetrated the chorion directly or formed appressoria at the end of a short hypha (<5 µm) or, subsequently, on longer, branched hyphae. Thin layers of what was most probably a fungal mucilaginous excretion were detected on the chorion adjacent to germ tubes, appressoria and hyphae. After 5 d eggs frequently appeared shriveled with ruptures in the chorion, and with the interior filled with hyphae that eventually produced mycelium and new conidia on the egg surfaces. Findings demonstrated that this fungus can infect A. aegypti eggs and subsequently recycle on their surface by producing large numbers of new conidia that should be infective for further generations of eggs, larvae and adults.


Assuntos
Aedes/microbiologia , Metarhizium/crescimento & desenvolvimento , Controle de Mosquitos , Controle Biológico de Vetores , Animais , Óvulo/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento
4.
Fungal Biol ; 125(8): 596-608, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34281653

RESUMO

Fungal dimorphism is the ability of certain fungi to switch between two different cellular forms, yeast and mycelial forms, in response to external environmental factors. The pacC/Pal signal transduction pathway responds to neutral and alkaline environments and is also involved in the fungal dimorphic transition. In this study, we investigated the function of the pacC homolog, MripacC, which regulates the dimorphic transition and modulates virulence of the insect pathogenic fungus Metarhizium rileyi. MripacC expression was upregulated under alkaline condition, with increased number of yeast-like cells compared to the number of hyphae cells. A MripacC deletion mutant (ΔMripacC) was obtained by homologous replacement and exhibited decreased blastospore budding, with direct development of conidia into hyphae without entering the yeast-like stage when cultured on alkaline medium. Observation of host hemolymph morphology and analysis of samples to detect the main immune factors revealed a decreased ability of ΔMripacC to evade the host immune system. The results of insect bioassays showed that ΔMripacC had decreased virulence with extended median lethality time. Together, the results suggested that MripacC not only regulated adaptation to acidic and alkaline environments, but also influenced virulence by budding blastospores. This elucidation of the function of MripacC adds to our understanding of blastospore budding and virulence of this fungal pathogen.


Assuntos
Metarhizium , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/genética , Hifas/metabolismo , Metarhizium/genética , Metarhizium/crescimento & desenvolvimento , Metarhizium/metabolismo , Deleção de Sequência , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Virulência/genética
5.
J Invertebr Pathol ; 183: 107627, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34081962

RESUMO

G-protein-coupled receptor K (GPRK), which is a class VI fungal G-protein-coupled receptor (GPCR), plays a critical role in plant immunity against pathogens by mediating the endocytic pathway, influencing metabolism in response to environmental signals, and regulating asexual reproduction and pathogenic development. However, the function of these proteins in entomopathogenic fungi has rarely been investigated. Accordingly, we characterized MrGPRK, a GPCR in the entomopathogenic fungus Metarhizium robertsii containing a C-terminal seven-transmembrane and a conserved regulator of G protein signaling domain, and found that it localized to endosomes. Mutant phenotype assays showed that a ΔMrGprk strain displayed increased defects in radial growth (~28%) and decreased conidial production (~80%) compared with a wild-type strain. Decreased conidiation rates coincided well with the repression of conidiation-related regulatory genes, including three key conidial transcription factors: brlA, abaA, and wetA. MrGprk deficiency impaired full virulence (both topical and injectable inoculations). Further analysis demonstrated that deleting fungal MrGprk decreased the rates of appressorium formation and suppressed the transcription of several genes contributing to appressorial turgor pressure, cuticle penetration, and pH regulation. Additionally, the ΔMrGprk strain showed higher cyclic (cAMP) levels, suggesting that this GPCR is critical for cAMP signal transduction. In summary, MrGPRK was found to contribute to vegetative growth, conidial production, and full virulence of M. robertsii. These findings are conducive to a better understanding of the roles of GPCRs in the development and pathogenicity of entomopathogenic fungi.


Assuntos
Proteínas Fúngicas/genética , Metarhizium/genética , Metarhizium/patogenicidade , Receptores Acoplados a Proteínas G/genética , Proteínas Fúngicas/metabolismo , Metarhizium/crescimento & desenvolvimento , Receptores Acoplados a Proteínas G/metabolismo , Virulência
6.
Artigo em Espanhol | LILACS | ID: biblio-1381112

RESUMO

Las dermatofitosis corresponden a un grupo de enfermedades micóticas comunes en piel y fanéreas, donde Trichophyton rubrum es el agente causante más frecuente a nivel mundial y presente en nuestros 2 casos de pacientes masculinos con estas micosis, una en uñas y la otra en piel. Sin embargo, el enfoque de esta publicación se basa principalmente en la presencia de 2 interesantes contaminantes (uno en cada caso clínico) presentes solo en los cultivos de las primeras siembras como saprófitos y por ende como propágulos de dispersión, asociados al ambiente y sin intervención clínica demostrada en ambas micosis. La descripción morfofisiológica de estos 2 contaminantes Metarhizium purpureo-genum(similis) y Monascus ruber fue más bien una curiosidad esencial que el micólogo clínico adquiere en su contínua formación y ante la posibilidad de infecciones mixtas, pudiendo conjugar sus hallazgos junto al análisis taxonómico y los factores geográficos y edáficos asociados a su distribución. (AU)


Dermatophytoses belongs to a group of common mycotic diseases in skin and pharynals, where Trichophyton rubrum is the most frequent causative agent worldwide and present in our 2 cases of male patients with these mycoses, one in nails and the other in skin. However, the focus of this publication is mainly about the presence of 2 interesting contaminants (one in each clinical case) present only in the crops of the first sowings as saprophytes and therefore as dispersal propagules, associated with the environment and without clinical intervention demonstrated in both mycoses. The morphophysiological description of these 2 contaminants, Metarhizium purpureogenum (similis) and Monascus ruber was rather an essential curiosity that the clinical mycologist acquires in his continuous training and in the face of the possibility of mixed infections, being able to combine his findings together with the taxonomic analysis and the geographic and edaphic factors associated with its distribution. (AU)


Assuntos
Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Trichophyton/crescimento & desenvolvimento , Monascus/crescimento & desenvolvimento , Metarhizium/crescimento & desenvolvimento , Tinha/microbiologia , Trichophyton/isolamento & purificação , Trichophyton/ultraestrutura , Cladosporium/crescimento & desenvolvimento , Monascus/isolamento & purificação , Olea/microbiologia , Metarhizium/isolamento & purificação
7.
Dev Comp Immunol ; 122: 104126, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33965446

RESUMO

The co-evolutionary arms race between disease-causing agents and their insect victims is ancient and complex - leading to the development of specialised attack and defence strategies. Among such strategies is the capacity of fungal and oomycete pathogens to deploy degradative enzymes, notably proteases, to facilitate infection directly across the integument. To counter these proteases, insects such as the greater wax moth Galleria mellonella release metalloprotease inhibitors and other immune factors to thwart the invading fungus. To date, molecular-based confirmation of insect metalloprotease inhibitor's incontrovertible role in antifungal defence has been lacking. We targeted the IMPI gene for suppression using RNAi and exposed those insects to the entomopathogenic fungus Metarhizium brunneum ARSEF4556. Levels of IMPI were reduced significantly in the integument (10-fold) and fat body (5-fold) of RNAi-treated insects when compared to control larvae, and displayed a significantly higher mortality rate. We also surveyed candidate immune/detoxification gene expression levels (e.g., DOPA decarboxylase, galiomycin) in three tissues (integument, midgut, fat body) in order to gauge any potential non-target effects of RNAi. The loss of IMPI via RNAi compromises antifungal defences and leaves G. mellonella vulnerable to infection.


Assuntos
Imunidade Inata/genética , Proteínas de Insetos/antagonistas & inibidores , Metarhizium/crescimento & desenvolvimento , Mariposas/imunologia , Animais , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/genética , Larva/imunologia , Larva/microbiologia , Metarhizium/imunologia , Mariposas/genética , Mariposas/microbiologia , Micoses/imunologia , Micoses/prevenção & controle , Interferência de RNA
8.
Sci Rep ; 11(1): 7233, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790337

RESUMO

The eucalyptus snout beetle (ESB), Gonipterus platensis, is endemic to Australia but has become a major invasive, destructive pest of Brazilian eucalyptus plantations. Efforts to develop insecticides based on entomopathogenic fungi against ESB are limited by the lack of known virulent strains. We therefore explored the virulence of indigenous Brazilian strains of major entomopathogenic fungi-Beauveria spp. and Metarhizium anisopliae-against ESB adults. We found widely varying virulence and later capacities for conidial production on infected adult cadavers. Two strains stood out, B. bassiana IBCB-240 and M. anisopliae IBCB-364, as especially lethal for ESB adults under laboratory conditions, sporulated abundantly on infected insects, and also outperformed comparable strains used in commercial mycoinsecticides. Notably, B. bassiana IBCB-240 exhibited lower LT50 values at low inoculum levels (≤ 107 conidia mL-1) and smaller LC50 values than M. anisopliae IBCB-364. Taken together, this study emphasizes natural variation in virulence among indigenous Beauveria and Metarhizium strains against ESB adults and identifies fungal strains with superior lethality to existing commercialized strains for managing this eucalyptus pest in Brazil.


Assuntos
Beauveria/crescimento & desenvolvimento , Besouros/microbiologia , Eucalyptus/parasitologia , Metarhizium/crescimento & desenvolvimento , Controle Biológico de Vetores , Animais , Brasil , Besouros/crescimento & desenvolvimento
9.
Fungal Genet Biol ; 150: 103508, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675988

RESUMO

The pathogenicity of Metarhizium rileyi is a multi-faceted process that depends on many factors. This study attempts to decipher those factors of M. rileyi by investigating its pathogenicity against Spodoptera litura (Lepidoptera: Noctuidae) larvae. Through morphogenesis analysis, we for the first time demonstrated the infection structure, appressorium, of M. rileyi that can generate a more than 4 MPa turgor pressure. The Mrpmk1 gene was found to be essential for appressorium differentiation and mycelium reemerging, ΔMrpmk1 mutant exhibited no pathogenicity towards S. litura by natural infection process. Delayed appressorium formation time, decreased appressorium formation rate and turgor pressure of ΔMrpbs2 mutant manifested itself in postponed death time and lower mortality against S. litura. Following invasion into the larval hemocoel, M. rileyi cells transformed into blastospores, which may be conducive to dispersal and propagation, moreover, the blastospore form M. rileyi may subverted phagocytic defenses. Then M. rileyi cells morphed into extended hyphal body to cope with elongated hemocytes that participated in encapsulation. In the end, M. rileyi mycelia reemerged from the larval cadaver evenly to form muscardine cadaver. Eventually, conidia were produced to complete the infection cycle. During the infection, M. rileyi triggered both cellular and humoral immunity of S. litura. Besides morphological changes, stage-specifically produced oxalic acid and F-actin arrangement may play roles in nutrient acquisition and mycelium reemerging, respectively.


Assuntos
Proliferação de Células , Hemolinfa/microbiologia , Larva/imunologia , Larva/fisiologia , Metarhizium/patogenicidade , Micélio/crescimento & desenvolvimento , Spodoptera/fisiologia , Animais , Imunidade Celular , Imunidade Humoral , Metarhizium/genética , Metarhizium/crescimento & desenvolvimento , Spodoptera/imunologia , Virulência
10.
J Appl Microbiol ; 131(1): 307-320, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32989893

RESUMO

AIM: Granule-based products of solid state fermented micro-organisms are available for biocontrol. Because liquid fermentation has several advantages, we investigated fluid-bed coating with liquid fermented biomass. METHODS AND RESULTS: Biomass containing mycelium or mycelium and submerged spores of the entomopathogenic fungi Metarhizium brunneum, Cordyceps fumosorosea and Beauveria bassiana were produced in liquid culture, separated and different biomass concentrations were adjusted. Based on the examined thermo-tolerance, we defined fluid-bed coating adjustments and investigated granule colonization and sporulation on granules. Granule colonization depended on the biomass concentration and strain. For C. fumosorosea and B. bassiana, concentrations of 0·003%dry weight resulted in nearly 100% granule colonization, for M. brunneum with concentrations of 0·7%dry weight in only 50%. The conidiation on granules in sterile soil was highly influenced by the moisture content. Because the granule colonization of M. brunneum was unsatisfactory, we pre-coated nutrients followed by coating with biomass, submerged spores or conidia. Malt extract had a positive effect on the granule colonization for biomass and submerged spores. Furthermore, aerial conidia can also be coated. CONCLUSIONS: Fluid-bed coating of fungal biomass is suitable for the development of granules. SIGNIFICANCE AND IMPACT OF THIS STUDY: With this technology, cost-efficient biocontrol products can be developed.


Assuntos
Beauveria , Cordyceps , Metarhizium , Controle Biológico de Vetores/métodos , Animais , Beauveria/crescimento & desenvolvimento , Biomassa , Cordyceps/crescimento & desenvolvimento , Fermentação , Metarhizium/crescimento & desenvolvimento , Solo , Esporos Fúngicos/crescimento & desenvolvimento
11.
Fungal Genet Biol ; 145: 103480, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130254

RESUMO

O-glycosylation is a very important post-translational modification of protein and involved in many cell processes in fungi. There exist three protein O-manosyltransferanse genes (MaPmt1, MaPmt2, MaPmt4) in Metarhizium acridum based on sequence homology. Here, MaPmt1, a gene for Pmt1 O-manosyltransferanse in M. acridum, was characterized and functionally analyzed through targeted gene disruption and complementation methods. Deletion of MaPmt1 had no effect on conidial germination, but slightly increased the conidial yield and significantly impaired fungal tolerances to UV-B radiation and wet-heat. Deletion of MaPmt1 made the fungus become more sensitive to cell wall disturbing agents and exhibit a thinner cell wall with changed components. Insect bioassays showed that disruption of MaPmt1 attenuated the fungal virulence significantly by topical inoculation but not by injection, indicating that MaPmt1 is required for penetration during the infection of M. acridum. Interestingly, deletion of MaPmt1 did not affect appressorium formation but significantly decreased appressorium turgor pressure. Moreover, the decreased virulence of MaPmt1 disruptant is mainly due to the reduced appressorium turgor pressure, which may be resulted from the declined glycerol concentration, combined with the weakened cell wall that could not hold the normal appressorium turgor pressure to penetrate the host cuticle.


Assuntos
Proteínas Fúngicas/genética , Manosiltransferases/genética , Metarhizium/genética , Processamento de Proteína Pós-Traducional/genética , Parede Celular/genética , Regulação Fúngica da Expressão Gênica , Germinação/genética , Glicosilação , Metarhizium/crescimento & desenvolvimento , Metarhizium/patogenicidade , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Virulência/genética
12.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32769188

RESUMO

Metarhizium spp. are well-known biocontrol agents used worldwide to control different insect pests. Keto-acid reductoisomerase (ILVC) is a key enzyme for branched-chain amino acid (BCAA) biosynthesis, and it regulates many physiological activities. However, its functions in insect-pathogenic fungi are poorly understood. In this work, we identified MrilvC in M. robertsii and dissected its roles in fungal growth, conidiation, germination, destruxin biosynthesis, environmental stress response, and insecticidal virulence. BCAA metabolism affects conidial yields and germination. However, BCAAs cannot recover the conidial germination of an MrilvC-deficient strain. Further feeding assays with intermediates showed that some conidia of the ΔMrilvC mutant start to germinate. Therefore, it is the germination defect that causes the complete failures of conidial penetration and pathogenicity in the ΔMrilvC mutant. In conclusion, we found intermediates in BCAA biosynthesis are indispensable for Metarhizium robertsii conidial germination. This study will advance our understanding of the fungal germination mechanism.IMPORTANCE Branched-chain amino acid (BCAA) metabolism plays a significant role in many biological activities beyond protein synthesis. Spore germination initiates the first stage of vegetative growth, which is critical for the virulence of pathogenic fungi. In this study, we demonstrated that the keto-acid reductoisomerase MrILVC, a key enzyme for BCAA biosynthesis, from the insect-pathogenic fungus Metarhizium robertsii is associated with conidial germination and fungal pathogenicity. Surprisingly, the germination of the ΔMrilvC mutant was restored when supplemented with the intermediates of BCAA metabolism rather than three BCAAs. The result was significantly different from that of plant-pathogenic fungi. Therefore, this report highlights that the intermediates in BCAA biosynthesis are indispensable for conidial germination of M. robertsii.


Assuntos
Aminoácidos de Cadeia Ramificada/biossíntese , Metarhizium/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento , Metarhizium/enzimologia , Metarhizium/crescimento & desenvolvimento
13.
Salud pública Méx ; 62(4): 410-416, jul.-ago. 2020. graf
Artigo em Espanhol | LILACS | ID: biblio-1377332

RESUMO

Resumen: Objetivo: Evaluar el efecto de la combinación de Metarhizium anisopliae y Gliocladium virens, ambos con Aqua Reslin Super, sobre oviposición, eclosión y emergencia de Aedes aegypti. Material y métodos: Se realizaron evaluaciones para determinar el efecto de los tratamientos impregnados en papel filtro y expuestos dentro de recipientes de plástico sobre la oviposición, eclosión y emergencia de Aedes aegypti. Resultados: Los resultados indicaron que las combinaciones hongo e insecticida no afectaron el comportamiento de oviposición, pero sí la eclosión de los huevos y la emergencia del adulto. Conclusión: Con los resultados se puede concluir que la combinación de hongos + insecticida puede ser una buena opción para aplicarse en sitios de oviposición con miras al desarrollo de una ovitrampa letal.


Abstract: Objective: To evaluate the effect of the combination of Metarhizium anisopliae and Gliocladium virens, both with Aqua Reslin Super, on the oviposition, hatching and emergence of Aedes aegypti. Materials and methods: Evaluations were carried out to determine the effect of treatments impregnated on filter paper and exposed within plastic containers on the oviposition, hatching and emergency of Aedes aegypti. Results: The results indicated that the fungus and insecticide combinations did not affect the oviposition behavior, but if the hatching of the eggs and the adult's emergency. Conclusion: With the results it can be concluded that the combination of fungi + insecticide can be a good option to be applied in oviposition sites with a view to the development of a lethal ovitrap.


Assuntos
Animais , Feminino , Oviposição , Butóxido de Piperonila , Piretrinas , Aedes/anatomia & histologia , Hypocrea , Metarhizium , Inseticidas , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Controle de Mosquitos/métodos , Hypocrea/efeitos dos fármacos , Hypocrea/crescimento & desenvolvimento , Metarhizium/efeitos dos fármacos , Metarhizium/crescimento & desenvolvimento
14.
Fungal Biol ; 124(8): 689-699, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690250

RESUMO

The fungal genus Metarhizium comprises entomopathogenic species capable of producing overwintering structures known as microsclerotia. These structures offer many advantages in pest control due to the formation of infective conidia in situ and their persistence in the environment under adverse conditions. In addition, the in vitro production of Metarhizium microsclerotia under controlled liquid fermentation is faster and with greater process control than the production of aerial conidia. However, the potential of Metarhizium microsclerotia to control pests from the orders Lepidoptera and Hemiptera is unexplored. In this study, we examined the ability of Metarhizium spp. microsclerotia to promote corn growth and to provide plant protection against Spodoptera frugiperda (Lepidoptera: Noctuidae) and Dalbulus maidis (Hemiptera: Cicadellidae), through seed coating using microsclerotial granules. A screening to find higher microsclerotia producers was conducted by culturing 48 native Brazilian isolates of Metarhizium spp. (Metarhizium anisopliae, Metarhizium robertsii, Metarhizium humberi and Metarhizium sp. indeterminate). The best microsclerotia producers, M. anisopliae ESALQ1814, M. robertsii ESALQ2450 and M. humberi ESALQ1638 improved the leaf area, plant height, root length, and dry weight of plants compared to un-inoculated plants. Significant reduction in S. frugiperda survival (mortality > 55% after 7 days) was observed when larvae were fed on corn plants treated with any of the three Metarhizium species. Conversely, survival of D. maidis adults were unaffected by feeding on fungus-inoculated plants. Our results suggest that microsclerotia of Metarhizium spp. may act as biostimulants and to provide protection against S. frugiperda in corn through seed coating, thus adding an innovative strategy into the integrated management of this major worldwide pest.


Assuntos
Metarhizium/crescimento & desenvolvimento , Sementes/química , Spodoptera/fisiologia , Zea mays/química , Animais , Brasil , Larva , Controle Biológico de Vetores
15.
Fungal Biol ; 124(8): 714-722, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690253

RESUMO

We investigated the comparative susceptibility to heat and UV-B radiation of blastospores and aerial conidia of Metarhizium spp. (Metarhizium robertsii IP 146, Metarhizium anisopliae s.l. IP 363 and Metarhizium acridum ARSEF 324) and Beauveria bassiana s.l. (IP 361 and CG 307). Conidia and blastospores were produced in solid or liquid Adámek-modified medium, respectively, and then exposed to heat (45 ± 0.2 °C) in a range of 0 (control) to 360 min; the susceptibility of fungal propagules to heat exposures was assessed to express relative viability. Similarly, both propagules of each isolate were also exposed to a range of 0 (control) to 8.1 kJ m-2 under artificial UV-B radiation. Our results showed that fungal isolates, propagule types and exposure time or dose of the stressor source play critical roles in fungal survival challenged with UV-B and heat. Conidia of ARSEF 324, IP 363, IP 146 and IP 361 exposed to heat survived significantly longer than their blastospores, except for blastospores of CG 307. Conidia and blastospores of IP 146 and IP 363 were equally tolerant to UV-B radiation. We claim that blastospores of certain isolates may be promising candidates to control arthropod pests in regions where heat and UV-B are limiting environmental factors.


Assuntos
Beauveria/fisiologia , Temperatura Alta , Metarhizium/fisiologia , Raios Ultravioleta , Beauveria/crescimento & desenvolvimento , Beauveria/efeitos da radiação , Metarhizium/crescimento & desenvolvimento , Metarhizium/efeitos da radiação , Controle Biológico de Vetores , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos da radiação
16.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32631867

RESUMO

Although dynamins and dynamin-related proteins (DRPs), a large GTPase superfamily, are involved in the budding of transport vesicles and division of organelles in eukaryotic cells, the function of these proteins in entomopathogenic fungi has not been reported to date. Here, DNM1, a DRP in Metarhizium robertsii, was characterized using gene disruption and complementation strategies. Mutant phenotype assays showed that the ΔDnm1 strain displayed increased defects in radial growth (∼24%) and conidial production (∼42%) compared to those of the wild type (WT), and reduced conidiation levels were accompanied by the repression of several key conidiation-related genes, including flbA, wetA, and flbD Additionally, mutant bioassays revealed that disruption of Dnm1 impaired the virulence (both topical inoculation and injection) of M. robertsii in the insect Galleria mellonella Further analysis demonstrated that deleting Dnm1 in fungi suppressed the transcriptional levels of several virulence genes in the insect hemocoel. Moreover, we found that DNM1 colocalized with peroxisomes and mitochondria. Importantly, disruption of Dnm1 abolished normal fungal endocytosis, resulting in significantly decreased numbers of, as well as morphological changes in, peroxisomes. These findings indicate that deletion of Dnm1 causes significant changes in the vegetative growth, sporulation, and virulence of M. robertsii due to changes in cell function and peroxisomes.IMPORTANCEDnm1 was found to be involved in fungal development and virulence, mediated peroxisomal fission, and normal endocytosis. This finding provides new insights into the cellular processes and pathogenicity in entomopathogenic fungi.


Assuntos
Dinaminas/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Metarhizium/fisiologia , Animais , Dinaminas/metabolismo , Endocitose/fisiologia , Proteínas Fúngicas/metabolismo , Metarhizium/genética , Metarhizium/crescimento & desenvolvimento , Metarhizium/patogenicidade , Mariposas/microbiologia , Peroxissomos/fisiologia , Controle Biológico de Vetores , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
17.
Salud Publica Mex ; 62(4): 410-416, 2020.
Artigo em Espanhol | MEDLINE | ID: mdl-32515915

RESUMO

OBJECTIVE: To evaluate the effect of the combination of Metarhizium anisopliae and Gliocladium virens, both with Aqua Reslin Super, on the oviposition, hatching and emergence of Aedes aegypti. MATERIALS AND METHODS: Evaluations were carried out to determine the effect of treatments impregnated on filter paper and exposed within plastic containers on the oviposition, hatching and emergency of Aedes aegypti. RESULTS: The results indicated that the fungus and insecticide combinations did not affect the oviposition behavior, but if the hatching of the eggs and the adult's emergency. CONCLUSIONS: With the results it can be concluded that the combination of fungi + insecticide can be a good option to be applied in oviposition sites with a view to the development of a lethal ovitrap.


OBJETIVO: Evaluar el efecto de la combinación de Metarhizium anisopliae y Gliocladium virens, ambos con Aqua Reslin Super, sobre oviposición, eclosión y emergencia de Aedes aegypti. MATERIAL Y MÉTODOS: Se realizaron evaluaciones para determinar el efecto de los tratamientos impregnados en papel filtro y expuestos dentro de recipientes de plástico sobre la oviposición, eclosión y emergencia de Aedes aegypti. RESULTADOS: Los resultados indicaron que las combinaciones hongo e insecticida no afectaron el comportamiento de oviposición, pero sí la eclosión de los huevos y la emergencia del adulto. CONCLUSIONES: Con los resultados se puede concluir que la combinación de hongos + insecticida puede ser una buena opción para aplicarse en sitios de oviposición con miras al desarrollo de una ovitrampa letal.


Assuntos
Aedes/anatomia & histologia , Hypocrea , Inseticidas , Metarhizium , Oviposição , Butóxido de Piperonila , Piretrinas , Animais , Feminino , Hypocrea/efeitos dos fármacos , Hypocrea/crescimento & desenvolvimento , Metarhizium/efeitos dos fármacos , Metarhizium/crescimento & desenvolvimento , Controle de Mosquitos/métodos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
18.
Fungal Biol ; 124(5): 263-272, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389288

RESUMO

Fungi sense light and utilize it as a source of environmental information to prepare against many stressful conditions in nature. In this study, Metarhizium robertsii was grown on: 1) potato dextrose agar medium (PDA) in the dark (control); 2) under nutritive stress in the dark; and 3) PDA under continuous (A) white light; (B) blue light lower irradiance = LI; (C) blue light higher irradiance = HI; (D) green light; and (E) red light. Conidia produced under these treatments were tested against osmotic stress and UV radiation. In addition, a suite of genes usually involved in different stress responses were selected to study their expression patterns. Conidia produced under nutritive stress in the dark were the most tolerant to both osmotic stress and UV radiation, and the majority of their stress- and virulence-related genes were up-regulated. For osmotic stress tolerance, conidia produced under white, blue LI, and blue HI lights were the second most tolerant, followed by conidia produced under green light. Conidia produced under red light were the least tolerant to osmotic stress and less tolerant than conidia produced on PDA medium in the dark. For UV tolerance, conidia produced under blue light LI were the second most tolerant to UV radiation, followed by the UV tolerances of conidia produced under white light. Conidia produced under blue HI, green, and red lights were the least UV tolerant and less tolerant than conidia produced in the dark. The superoxide dismutases (sod1 and sod2), photolyases (6-4phr and CPDphr), trehalose-phosphate synthase (tps), and protease (pr1) genes were highly up-regulated under white light condition, suggesting a potential role of these proteins in stress protection as well as virulence after fungal exposure to visible spectrum components.


Assuntos
Desoxirribodipirimidina Fotoliase , Regulação Fúngica da Expressão Gênica , Luz , Metarhizium , Esporos Fúngicos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Metarhizium/crescimento & desenvolvimento , Metarhizium/efeitos da radiação , Pressão Osmótica , Esporos Fúngicos/efeitos da radiação , Raios Ultravioleta
19.
World J Microbiol Biotechnol ; 36(5): 71, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32350696

RESUMO

The cosmopolitan entomopathogenic and root endophytic fungus Metarhizium robertsii has a versatile lifestyle and during liquid fermentation undergoes a dimorphic transformation from hyphae to conidia or microsclerotia, or from hyphae to blastospores. In all cases, these processes are mediated by environmental and nutritional cues. Blastospores could be used in spray applications to control arthropod pests above ground and may serve as an attractive alternative to the traditional solid-grown aerial conidial spores of Metarhizium spp. found in commercial products. Nitrogen is a vital nutrient in cell metabolism and growth; however, it is the expensive component in liquid cultures of entomopathogenic fungi. Our goals in this study were to optimize nitrogen sources and titers for maximum production of M. robertsii blastospores cultured in shake flasks at highly aerated conditions and to further determine their virulence against the corn leafhopper Dalbulus maidis, an important vector of serious pathogens in maize crops worldwide. Our fermentation studies revealed that the low-cost corn steep liquor (CSL) was the most suitable nitrogen source to improve blastospore growth in M. robertsii. The growth kinetic assays determined the optimal titer of 80 g L-1 and a yield up to 4.7 × 108 cells mL-1 within 5 days of cultivation (3 days preculture and 2 days culture), at a total cost of US$0.30 L-1. Moreover, the blastospore growth kinetic was strongly dependent on glucose and nitrogen consumptions accompanied by a slight drop in the culture pH. Insect bioassays evidenced a high virulence of these blastospores, either as dried or fresh cells, to D. maidis adults fed on maize plants. Our findings provide insights into the nutritional requirements for optimal and cost-efficient production of M. robertsii blastospores and elucidate the potential of blastospores as an ecofriendly tool against the corn leafhopper.


Assuntos
Meios de Cultura/química , Fermentação , Hemípteros/microbiologia , Metarhizium/crescimento & desenvolvimento , Nitrogênio/metabolismo , Controle Biológico de Vetores/métodos , Animais , Esporos Fúngicos/crescimento & desenvolvimento , Virulência , Zea mays/parasitologia
20.
Appl Microbiol Biotechnol ; 104(9): 4005-4015, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32170386

RESUMO

Sho1 is an important membrane sensor upstream of the HOG-MAPK signaling pathway, which plays critical roles in osmotic pressure response, growth, and virulence in fungi. Here, a Sho1 homolog (MaSho1), containing four transmembrane domains and one Src homology (SH3) domain, was characterized in Metarhizium acridum, a fungal pathogen of locusts. Targeted gene disruption of MaSho1 impaired cell wall integrity, virulence, and tolerances to UV-B and oxidative stresses, while none of them was affected when the SH3 domain was deleted. Intriguingly, disruption of MaSho1 significantly increased conidial yield, which was not affected in the SH3 domain mutant. Furthermore, it was found that deletion of MaSho1 led to microcycle conidiation of M. acridum on the normal conidiation medium. Deletion of MaSho1 significantly shortened the hyphal cells but had no effect on conidial germination. Digital gene expression profiling during conidiation indicated that differential expression of genes was associated with mycelial development, cell division, and differentiation between the wild type and the MaSho1 mutant. These data suggested that disruption of MaSho1 shifted the conidiation pattern by altering the transcription of genes to inhibit mycelial growth, thereby promoting the conidiation of M. acridum.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/genética , Metarhizium/genética , Esporos Fúngicos/crescimento & desenvolvimento , Deleção de Genes , Perfilação da Expressão Gênica , Hifas/crescimento & desenvolvimento , Metarhizium/crescimento & desenvolvimento , Mutação , Transdução de Sinais , Esporos Fúngicos/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...