Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Arch Microbiol ; 205(5): 189, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055657

RESUMO

A novel interdomain consortium composed of a methanogenic Archaeon and a sulfate-reducing bacterium was isolated from a microbial biofilm in an oil well in Cahuita National Park, Costa Rica. Both organisms can be grown in pure culture or as stable co-culture. The methanogenic cells were non-motile rods producing CH4 exclusively from H2/CO2. Cells of the sulfate-reducing partner were motile rods forming cell aggregates. They utilized hydrogen, lactate, formate, and pyruvate as electron donors. Electron acceptors were sulfate, thiosulfate, and sulfite. 16S rRNA sequencing revealed 99% gene sequence similarity of strain CaP3V-M-L2AT to Methanobacterium subterraneum and 98.5% of strain CaP3V-S-L1AT to Desulfomicrobium baculatum. Both strains grew from 20 to 42 °C, pH 5.0-7.5, and 0-4% NaCl. Based on our data, type strains CaP3V-M-L2AT (= DSM 113354 T = JCM 39174 T) and CaP3V-S-L1AT (= DSM 113299 T = JCM 39179 T) represent novel species which we name Methanobacterium cahuitense sp. nov. and Desulfomicrobium aggregans sp. nov.


Assuntos
Methanobacterium , Campos de Petróleo e Gás , Methanobacterium/genética , Costa Rica , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Filogenia , DNA Bacteriano/genética , Análise de Sequência de DNA , Ácidos Graxos
2.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36260502

RESUMO

An anaerobic, hydrogenotrophic methane-producing archaeon was isolated from an alkaline thermal spring (42 °C, pH 9.0) in New Caledonia. This methanogen, designated strain CANT, is alkaliphilic, thermotolerant, with Gram-positive staining non-motile cells. Strain CANT grows autotrophically using hydrogen exclusively as an energy source and carbon dioxide as the sole carbon source (without the requirement of yeast extract or other organic compounds). It grows at 20-45 °C (optimum, 45 °C) and pH 7.3-9.7 (optimum, pH 9.0). NaCl is not required for growth (optimum 0 %) but is tolerated up to 1.5 %. It resists novobiocin, streptomycin and vancomycin but is inhibited by ampicillin and penicillin, among other antibiotics. The genome consists of a circular chromosome (2.2 Mb) containing 2126 predicted protein-encoding genes with a G+C content of 36.4 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CANT is a member of the genus Methanobacterium, most closely related to the alkaliphilic Methanobacterium alcaliphilum WeN4T with 98.5 % 16S rRNA gene sequence identity. The genomes of strain CANT and M. alcaliphilum DSM 3459, sequenced in this study, share 71.6 % average nucleotide identity and 14.0 % digital DNA-DNA hybridization. Therefore, phylogenetic and physiological results indicate that strain CANT represents a novel species, for which the name Methanobacterium alkalithermotolerans sp. nov. is proposed, and strain CANT (=DSM 102889T= JCM 31304T) is assigned as the type strain.


Assuntos
Fontes Termais , Methanobacterium , Methanobacterium/genética , RNA Ribossômico 16S/genética , Filogenia , Hidrogênio , Composição de Bases , Cloreto de Sódio , Dióxido de Carbono , Vancomicina , Novobiocina , Nova Caledônia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Metano , Antibacterianos , Ampicilina , Penicilinas , Estreptomicina , Nucleotídeos
3.
NPJ Biofilms Microbiomes ; 8(1): 73, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36138044

RESUMO

A meta-analysis approach was used, to study the microbiomes of biofilms and planktonic communities underpinning microbial electrosynthesis (MES) cells. High-throughput DNA sequencing of 16S rRNA gene amplicons has been increasingly applied to understand MES systems. In this meta-analysis of 22 studies, we find that acetogenic and methanogenic MES cells share 80% of a cathodic core microbiome, and that different inoculum pre-treatments strongly affect community composition. Oxygen scavengers were more abundant in planktonic communities, and several key organisms were associated with operating parameters and good cell performance. We suggest Desulfovibrio sp. play a role in initiating early biofilm development and shaping microbial communities by catalysing H2 production, to sustain either Acetobacterium sp. or Methanobacterium sp. Microbial community assembly became more stochastic over time, causing diversification of the biofilm (cathodic) community in acetogenic cells and leading to re-establishment of methanogens, despite inoculum pre-treatments. This suggests that repeated interventions may be required to suppress methanogenesis.


Assuntos
Metano , Microbiota , Methanobacterium/genética , Oxigênio , RNA Ribossômico 16S/genética
4.
J Microbiol Methods ; 199: 106529, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772572

RESUMO

Anaerobic digestion is a growing technology to manage organic waste and produce bioenergy. To promote this technology, it is essential to know, at the molecular level, the dynamics of microbial communities, specifically the methanogenic community. In the present study, three primer pairs were selected from seven primer pairs which were designed and tested with different concentrations and conditions to detect Methanosarcina, Methanoculleus and Methanobacterium by real-time PCR based on the SYBR Green System. The functionality of the developed methods was demonstrated by the high linear relationship of the standard curves, and the specificity of each primer was empirically verified by testing DNA isolated from methane-producing and non-producing strains. These assays also exhibited good repeatability and reproducibility, which indicates the robustness of the methods. The described primers were successfully used to investigate the methanogenic communities of 10 samples from an anaerobic co-digestion. The genus Methanosarcina was the dominant methanogenic group.


Assuntos
Methanobacterium , Methanomicrobiaceae , Anaerobiose , Archaea/genética , Reatores Biológicos , Metano , Methanobacterium/genética , Methanomicrobiaceae/genética , Methanosarcina/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
5.
Water Res ; 202: 117490, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364064

RESUMO

Geobacter, as a typical electroactive microorganism, is the "engine" of interspecies electron transfer (IET) between microorganisms. However, it does not have a dominant position in all natural environments. It is not known what performs a similar function as Geobacter in coastal zones. Metagenomic and metatranscriptomic analysis revealed that Desulfovibrio and Methanobacterium species were the most abundant in electrochemically active aggregates. Metatranscriptomic analysis showed that Desulfovibrio species highly expressed genes for ethanol metabolism and extracellular electron transfer involving cytochromes, pili and flagella. Methanobacterium species in the aggregates also expressed genes for enzymes involved in reducing carbon dioxide to methane. Pure cultures demonstrated that the isolated Desulfovibrio sp. strain JY contributed to aggregate conductivity and directly transferred electrons to Methanothrix harundinacea, which is unable to use H2 or formate. Most importantly, further coculture studies indicated that Methanobacterium strain YSL might directly accept electrons from the Desulfovibrio strain JY for the reduction of carbon dioxide to methane in the aggregate. This finding suggested that the possibility of DIET by Desulfovibrio similar to Geobacter species in conductive methanogenic aggregates can not be excluded.


Assuntos
Desulfovibrio , Geobacter , Desulfovibrio/genética , Transporte de Elétrons , Elétrons , Geobacter/genética , Metano , Methanobacterium/genética
6.
Elife ; 92020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33274718

RESUMO

Physiological response to thermal stimuli in mammals is mediated by a structurally diverse class of ion channels, many of which exhibit polymodal behavior. To probe the diversity of biophysical mechanisms of temperature-sensitivity, we characterized the temperature-dependent activation of MthK, a two transmembrane calcium-activated potassium channel from thermophilic archaebacteria. Our functional complementation studies show that these channels are more efficient at rescuing K+ transport at 37°C than at 24°C. Electrophysiological activity of the purified MthK is extremely sensitive (Q10 >100) to heating particularly at low-calcium concentrations whereas channels lacking the calcium-sensing RCK domain are practically insensitive. By analyzing single-channel activities at limiting calcium concentrations, we find that temperature alters the coupling between the cytoplasmic RCK domains and the pore domain. These findings reveal a hitherto unexplored mechanism of temperature-dependent regulation of ion channel gating and shed light on ancient origins of temperature-sensitivity.


Assuntos
Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Methanobacterium/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Proteínas Arqueais/genética , Clonagem Molecular , Escherichia coli/metabolismo , Teste de Complementação Genética , Methanobacterium/genética , Modelos Genéticos , Canais de Potássio Cálcio-Ativados/genética , Domínios Proteicos , Temperatura
7.
J Hazard Mater ; 384: 121339, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31593864

RESUMO

Dry anaerobic digestion of sewage sludge (SS-DAD) is often inhibited by excessive acidification due to low water content and high organic loading. The effects of conductive carbon materials including powdered activated carbon (PAC) and powdered graphite (PG) on SS-DAD under mesophilic condition (35℃) were investigated. The results demonstrated that the addition of PAC increased methane production of SS-DAD. The methane yield of PAC50% reactor (dosage of PAC is 50% of the volatile solids) amounted to 210 mL·gVSadded-1, which is 49% higher than that of control. PAC addition significantly enhanced the biodegradation process, as the reduction rate of total solids (TS) and volatile solids (VS) were increased by 36.4% and 34.1%, respectively, compared to the control. Inhibitory substrate adsorption experiments showed that PAC has significant adsorption (13.6 mg g-1) for VFAs, while PG showed almost no adsorption (0.81 mg g-1). Microbial community structure analysis showed hydrogenotrophic methanogens (Methanobrevibacter and Methanosphaera) were reduced in the PAC50% reactor, while methanogens (Methanobacterium) which can also use formate as electron donor were increased. PAC amendment reshaped the microbial community in the SS-DAD system which may result in shifting of the major electron carrier from hydrogen to formate and increasing electron transfer efficiency of the SS-DAD system.


Assuntos
Compostos Orgânicos/farmacologia , Esgotos/microbiologia , Adsorção , Anaerobiose/efeitos dos fármacos , Biodegradação Ambiental , Reatores Biológicos , DNA Bacteriano/genética , Transporte de Elétrons , Euryarchaeota/metabolismo , Ácidos Graxos Voláteis/química , Metano/química , Methanobacterium/efeitos dos fármacos , Methanobacterium/genética , Methanobacterium/metabolismo
8.
PLoS One ; 14(12): e0226243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31826000

RESUMO

Methanogenic archaea occupy a functionally important niche in the gut microbial ecosystem of mammals. Our purpose was to quantitatively characterize the dynamics of methanogenesis by integrating microbiology, thermodynamics and mathematical modelling. For that, in vitro growth experiments were performed with pure cultures of key methanogens from the human and ruminant gut, namely Methanobrevibacter smithii, Methanobrevibacter ruminantium and Methanobacterium formicium. Microcalorimetric experiments were performed to quantify the methanogenesis heat flux. We constructed an energetic-based mathematical model of methanogenesis. Our model captured efficiently the dynamics of methanogenesis with average concordance correlation coefficients of 0.95 for CO2, 0.98 for H2 and 0.97 for CH4. Together, experimental data and model enabled us to quantify metabolism kinetics and energetic patterns that were specific and distinct for each species despite their use of analogous methane-producing pathways. Then, we tested in silico the interactions between these methanogens under an in vivo simulation scenario using a theoretical modelling exercise. In silico simulations suggest that the classical competitive exclusion principle is inapplicable to gut ecosystems and that kinetic information alone cannot explain gut ecological aspects such as microbial coexistence. We suggest that ecological models of gut ecosystems require the integration of microbial kinetics with nonlinear behaviours related to spatial and temporal variations taking place in mammalian guts. Our work provides novel information on the thermodynamics and dynamics of methanogens. This understanding will be useful to construct new gut models with enhanced prediction capabilities and could have practical applications for promoting gut health in mammals and mitigating ruminant methane emissions.


Assuntos
Intestinos/microbiologia , Metano/metabolismo , Methanobacterium/metabolismo , Modelos Teóricos , Animais , Biomassa , DNA Arqueal/isolamento & purificação , DNA Arqueal/metabolismo , Metabolismo Energético , Cinética , Methanobacterium/genética , Methanobacterium/crescimento & desenvolvimento , RNA Ribossômico 16S/metabolismo , Ruminantes/microbiologia , Termodinâmica
9.
Environ Sci Pollut Res Int ; 26(25): 26286-26292, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286367

RESUMO

Chromate can be reduced by methanotrophs in a membrane biofilm reactor (MBfR). In this study, we cultivated a Cr(VI)-reducing biofilm in a methane (CH4)-based membrane biofilm batch reactor (MBBR) under anaerobic conditions. The Cr(VI) reduction rate increased to 0.28 mg/L day when the chromate concentration was ≤ 2.2 mg/L but declined sharply to 0.01 mg/L day when the Cr(VI) concentration increased to 6 mg/L. Isotope tracing experiments showed that part of the 13C-labeled CH4 was transformed to 13CO2, suggesting that the biofilm may reduce Cr(VI) by anaerobic methane oxidation (AnMO). Microbial community analysis showed that a methanogen, i.e., Methanobacterium, dominated in the biofilm, suggesting that this genus is probably capable of carrying out AnMO. The abundance of Methylomonas, an aerobic methanotroph, decreased significantly, while Meiothermus, a potential chromate-reducing bacterium, was enriched in the biofilm. Overall, the results showed that the anaerobic environment inhibited the activity of aerobic methanotrophs while promoting AnMO bacterial enrichment, and high Cr(VI) loading reduced Cr(VI) flux by inhibiting the methane oxidation process.


Assuntos
Reatores Biológicos/microbiologia , Cromatos/metabolismo , Metano/metabolismo , Eliminação de Resíduos Líquidos/instrumentação , Anaerobiose , Biofilmes , Dióxido de Carbono/metabolismo , Cromatos/química , Metano/química , Methanobacterium/genética , Methanobacterium/metabolismo , Methylomonas/genética , Methylomonas/metabolismo , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Oxirredução , Eliminação de Resíduos Líquidos/métodos
10.
PLoS One ; 14(4): e0215029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30973887

RESUMO

Electromethanogenesis is the bioreduction of carbon dioxide (CO2) to methane (CH4) utilizing an electrode as electron donor. Some studies have reported the active participation of Methanobacterium sp. in electron capturing, although no conclusive results are available. In this study, we aimed at determining short-time changes in the expression levels of [NiFe]-hydrogenases (Eha, Ehb and Mvh), heterodisulfide reductase (Hdr), coenzyme F420-reducing [NiFe]-hydrogenase (Frh), and hydrogenase maturation protein (HypD), according to the electron flow in independently connected carbon cloth cathodes poised at- 800 mV vs. standard hydrogen electrode (SHE). Amplicon massive sequencing of cathode biofilm confirmed the presence of an enriched Methanobacterium sp. population (>70% of sequence reads), which remained in an active state (78% of cDNA reads), tagging this archaeon as the main methane producer in the system. Quantitative RT-PCR determinations of ehaB, ehbL, mvhA, hdrA, frhA, and hypD genes resulted in only slight (up to 1.5 fold) changes for four out of six genes analyzed when cells were exposed to open (disconnected) or closed (connected) electric circuit events. The presented results suggested that suspected mechanisms for electron capturing were not regulated at the transcriptional level in Methanobacterium sp. for short time exposures of the cells to connected-disconnected circuits. Additional tests are needed in order to confirm proteins that participate in electron capturing in Methanobacterium sp.


Assuntos
Proteínas Arqueais/metabolismo , Fontes de Energia Bioelétrica , Eletrodos , Hidrogenase/metabolismo , Metano/metabolismo , Methanobacterium/enzimologia , Proteínas Arqueais/genética , Dióxido de Carbono , Hidrogenase/genética , Methanobacterium/genética , Methanobacterium/crescimento & desenvolvimento
11.
Water Res ; 136: 192-199, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29510338

RESUMO

Cathodic methanogenesis is a promising method for accelerating and stabilising bioenergy recovery in anaerobic processes. The change in composition of microbial (especially methanogenic) communities in response to an applied potential-and especially the associated pH gradient-is critical for achieving this goal, but is not well understood in cathodic biofilms. We found here that the pH-polarised region in the 2 mm surrounding the cathode ranged from 6.9 to 10.1, as determined using a pH microsensor; this substantially affected methane production rate as well as microbial community structure. Miseq sequencing data of a highly conserved region of the mcrA gene revealed a dramatic variation in alpha diversity of methanogens concentrated in electrode biofilms under the applied potential, and confirmed that the dominant microbes at the cathode were hydrogenotrophic methanogens (mostly basophilic Methanobacterium alcaliphilum). These results indicate that regional pH variation in the microenvironment surrounding the electrode is an ecological niche enriched with Methanobacterium.


Assuntos
Proteínas Arqueais/genética , Enzimas de Restrição do DNA/genética , Metano/biossíntese , Methanobacterium/metabolismo , Proteínas Arqueais/metabolismo , Enzimas de Restrição do DNA/metabolismo , Concentração de Íons de Hidrogênio , Methanobacterium/enzimologia , Methanobacterium/genética
12.
FEMS Microbiol Lett ; 364(21)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29040493

RESUMO

The integration of genomics research into the undergraduate biology curriculum provides students with the opportunity to become familiar with bioinformatics tools and answer original research questions. Our purpose with this research project was to upscale the research experience through integration with classroom experience giving students access to authentic research projects. Students annotated 60 predicted ABC genes of Methanothermobacter thermautotrophicus and Methanobacterium sp. SWAN-1, and they were required to present a research poster to demonstrate their understanding of the project. During this research project a number of tests, assessments and surveys were conducted to assess familiarity with technical and conceptual understanding of genome annotation, satisfaction with annotation instruction, gain in bioinformatics research skills, scientific communications skills and increased student interest in research. We found that students gained significant skills in bioinformatics, specifically genome annotation skills and also gained confidence in their abilities to carry out scientific research. As a result of this authentic undergraduate research experience under-represented students were motivated to pursue future careers in STEM fields.


Assuntos
Biologia Computacional/educação , Genômica/educação , Anotação de Sequência Molecular , Estudos de Coortes , Educação Profissionalizante/métodos , Methanobacteriaceae/genética , Methanobacterium/genética , Comunicação Acadêmica
13.
BMC Genomics ; 18(1): 639, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28826405

RESUMO

BACKGROUND: The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. RESULTS: Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis of the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. CONCLUSIONS: Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO2 and formate are common electron carriers in microbial communities.


Assuntos
Metabolismo Energético/genética , Genômica , Metano/biossíntese , Methanobacterium/genética , Methanobacterium/metabolismo , Anaerobiose , Proteínas Arqueais/metabolismo
14.
Sci Rep ; 7(1): 5099, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698657

RESUMO

Anaerobic oxidation of methane (AOM) is an important process for understanding the global flux of methane and its relation to the global carbon cycle. Although AOM is known to be coupled to reductions of sulfate, nitrite, and nitrate, evidence that AOM is coupled with extracellular electron transfer (EET) to conductive solids is relatively insufficient. Here, we demonstrate EET-dependent AOM in a biofilm anode dominated by Geobacter spp. and Methanobacterium spp. using carbon-fiber electrodes as the terminal electron sink. The steady-state current density was kept at 11.0 ± 1.3 mA/m2 in a microbial electrochemical cell, and isotopic experiments supported AOM-EET to the anode. Fluorescence in situ hybridization images and metagenome results suggest that Methanobacterium spp. may work synergistically with Geobacter spp. to allow AOM, likely by employing intermediate (formate or H2)-dependent inter-species electron transport. Since metal oxides are widely present in sedimentary and terrestrial environments, an AOM-EET niche would have implications for minimizing the net global emissions of methane.


Assuntos
Geobacter/crescimento & desenvolvimento , Metano/química , Methanobacterium/crescimento & desenvolvimento , Anaerobiose , Biofilmes , Ciclo do Carbono , Transporte de Elétrons , Geobacter/genética , Geobacter/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Methanobacterium/genética , Methanobacterium/metabolismo , Oxirredução , Análise de Sequência de DNA
15.
J Biotechnol ; 247: 1-5, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28216101

RESUMO

Methanogenic Archaea are of importance at the end of the anaerobic digestion (AD) chain for biomass conversion. They finally produce methane, the end-product of AD. Among this group of microorganisms, members of the genus Methanobacterium are ubiquitously present in anaerobic habitats, such as bioreactors. The genome of a novel methanogenic archaeon, namely Methanobacterium congolense Buetzberg, originally isolated from a mesophilic biogas plant, was completely sequenced to analyze putative adaptive genome features conferring competitiveness of this isolate within the biogas reactor environment. Sequencing and assembly of the M. congolense Buetzberg genome yielded a chromosome with a size of 2,451,457bp and a mean GC-content of 38.51%. Additionally, a plasmid with a size of 18,118bp, featuring a GC content of 36.05% was identified. The M. congolense Buetzberg plasmid showed no sequence similarities with the plasmids described previously suggesting that it represents a new plasmid type. Analysis of the M. congolense Buetzberg chromosome architecture revealed a high collinearity with the Methanobacterium paludis chromosome. Furthermore, annotation of the genome and functional predictions disclosed several genes involved in cell wall and membrane biogenesis. Compilation of specific genes among Methanobacterium strains originating from AD environments revealed 474 genetic determinants that could be crucial for adaptation of these strains to specific conditions prevailing in AD habitats.


Assuntos
Genoma Arqueal , Methanobacterium/isolamento & purificação , Análise de Sequência de DNA/métodos , Composição de Bases , Biocombustíveis , DNA Arqueal/genética , Tamanho do Genoma , Methanobacterium/genética , Filogenia
16.
Proc Natl Acad Sci U S A ; 112(48): 14829-33, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627238

RESUMO

Nitrogenase biosynthesis protein NifB catalyzes the radical S-adenosyl-L-methionine (SAM)-dependent insertion of carbide into the M cluster, the cofactor of the molybdenum nitrogenase from Azotobacter vinelandii. Here, we report the identification and characterization of two naturally "truncated" homologs of NifB from Methanosarcina acetivorans (NifB(Ma)) and Methanobacterium thermoautotrophicum (NifB(Mt)), which contain a SAM-binding domain at the N terminus but lack a domain toward the C terminus that shares homology with NifX, an accessory protein in M cluster biosynthesis. NifB(Ma) and NifB(Mt) are monomeric proteins containing a SAM-binding [Fe4S4] cluster (designated the SAM cluster) and a [Fe4S4]-like cluster pair (designated the K cluster) that can be processed into an [Fe8S9] precursor to the M cluster (designated the L cluster). Further, the K clusters in NifB(Ma) and NifB(Mt) can be converted to L clusters upon addition of SAM, which corresponds to their ability to heterologously donate L clusters to the biosynthetic machinery of A. vinelandii for further maturation into the M clusters. Perhaps even more excitingly, NifB(Ma) and NifB(Mt) can catalyze the removal of methyl group from SAM and the abstraction of hydrogen from this methyl group by 5'-deoxyadenosyl radical that initiates the radical-based incorporation of methyl-derived carbide into the M cluster. The successful identification of NifB(Ma) and NifB(Mt) as functional homologs of NifB not only enabled classification of a new subset of radical SAM methyltransferases that specialize in complex metallocluster assembly, but also provided a new tool for further characterization of the distinctive, NifB-catalyzed methyl transfer and conversion to an iron-bound carbide.


Assuntos
Proteínas Arqueais/química , Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/química , Methanobacterium/enzimologia , Methanosarcina/enzimologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Compostos de Ferro/química , Compostos de Ferro/metabolismo , Methanobacterium/genética , Methanosarcina/genética , Estrutura Terciária de Proteína , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
17.
PLoS One ; 10(12): e0144999, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26694756

RESUMO

Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR) for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at pH 4.5-5.5 over 70 days. Focusing on the presence of hydrogenotrophic methanogens, we analyzed the structure of the microbial community in the reactor. Denaturing gradient gel electrophoresis (DGGE) was conducted with bacterial and archaeal 16S rDNA primers. Real-time qPCR was used to track changes in the community composition of methanogens over the course of operation. Finally, the microbial community and its diversity at the time of maximum CH4 production were analyzed by pyrosequencing methods. Genus Methanobacterium, related to hydrogenotrophic methanogens, dominated the microbial community, but acetate consumption by bacteria, such as unclassified Clostridium sp., restricted the development of acetoclastic methanogens in the acidic CH4 production process. The results show that acidic operation of a CH4 production reactor without any pH adjustment inhibited acetogenic growth and enriched the hydrogenotrophic methanogens, decreasing the growth of acetoclastic methanogens.


Assuntos
Acetatos/química , Reatores Biológicos/microbiologia , Dióxido de Carbono/metabolismo , Metano/metabolismo , Methanobacterium/isolamento & purificação , Biofilmes , Clostridium/classificação , Clostridium/genética , Clostridium/isolamento & purificação , Meios de Cultura/química , DNA Arqueal/análise , DNA Bacteriano/análise , DNA Ribossômico/análise , Methanobacterium/classificação , Methanobacterium/genética , Filogenia , RNA Ribossômico 16S/análise , Análise de Sequência de RNA
18.
J Hazard Mater ; 293: 37-45, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25827267

RESUMO

Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89-94% of the electrons released from benzoate oxidation were recovered in CH4 production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.


Assuntos
Benzoatos/metabolismo , Compostos Férricos/metabolismo , Óxido Ferroso-Férrico/metabolismo , Metano/metabolismo , Acetatos/metabolismo , Bacillaceae/genética , Bacillaceae/metabolismo , Biodegradação Ambiental , Genes Arqueais/genética , Genes Bacterianos/genética , Methanobacterium/genética , Methanobacterium/metabolismo , Peptococcaceae/genética , Peptococcaceae/metabolismo , Filogenia , RNA Ribossômico 16S/genética
19.
Int J Syst Evol Microbiol ; 65(Pt 6): 1975-1980, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25807978

RESUMO

A novel, strictly anaerobic, hydrogenotrophic methanogen, strain E09F.3T, was isolated from a commercial biogas plant in Germany. Cells of E09F.3T were Gram-stain-negative, non-motile, slightly curved rods, long chains of which formed large aggregates consisting of intertwined bundles of chains. Cells utilized H2+CO2 and, to a lesser extent, formate as substrates for growth and methanogenesis. The optimal growth temperature was around 40 °C; maximum growth rate was obtained at pH around 7.0 with approximately 6.8 mM NaCl. The DNA G+C content of strain E09F.3T was 39.1 mol%. Phylogenetic analyses based on 16S rRNA and mcrA gene sequences placed strain E09F.3T within the genus Methanobacterium. On the basis of 16S rRNA gene sequence similarity, strain E09F.3T was closely related to Methanobacterium congolense CT but morphological, physiological and genomic characteristics indicated that strain E09F.3T represents a novel species. The name Methanobacterium aggregans sp. nov. is proposed for this novel species, with strain E09F.3T ( = DSM 29428T = JCM 30569T) as the type strain.


Assuntos
Reatores Biológicos/microbiologia , Methanobacterium/classificação , Filogenia , Composição de Bases , DNA Arqueal/genética , Genes Arqueais , Alemanha , Methanobacterium/genética , Methanobacterium/isolamento & purificação , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
20.
J Biosci Bioeng ; 119(3): 337-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25293692

RESUMO

Organic loading conditions are an important factor influencing reactor performances in methanogenic bioreactors. Yet the underlying microbiological basis of the process stability, deterioration, and recovery remains to be understood. Here, structural responses of the bacterial and archaeal populations to the change of organic loading conditions in a thermophilic anaerobic digester were investigated by process analyses and 16S rRNA gene-based molecular approaches. The biogas was produced stably without the accumulation of volatile fatty acids (VFAs) at low organic loading rates (OLRs) in the beginning of reactor operation. Increasing OLR in stages disrupted the stable reactor performance, and high OLR conditions continued the deteriorated performance with slight biogas production and high accumulation of VFAs. Thereafter, the gradual decrease of OLR resulted in the recovery from the deterioration, giving rise to the stable performance again. The stable performances before and after the high OLR conditions conducted were associated with compositionally similar but not identical methanogenic consortia. The bacterial and archaeal populations were synchronously changed at both the transient phases toward the deteriorated performance and in recovery process, during which the dynamic shift of aceticlastic and hydrogenotrophic methanogens including the recently identified Methanomassiliicoccus might contribute to the maintenance of the methanogenic activity. The distinctive bacterial population with a high predominance of Methanobacterium formicicum as archaeal member was found for the deteriorated performance. The results in this study indicate the coordinated reorganization of the bacterial and archaeal populations in response to functional states induced by the change of organic loading conditions in the anaerobic digester.


Assuntos
Reatores Biológicos/microbiologia , Anaerobiose , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biocombustíveis/análise , Biomassa , Ácidos Graxos Voláteis , Metano/metabolismo , Methanobacterium/genética , Methanobacterium/isolamento & purificação , Methanobacterium/metabolismo , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...