Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Chemosphere ; 358: 142119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697567

RESUMO

The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.


Assuntos
Biocombustíveis , Reatores Biológicos , Dióxido de Carbono , Metano , Dióxido de Carbono/análise , Eletrólise , Eletrodos , Fontes de Energia Bioelétrica , Methanobacterium/metabolismo , Membranas Artificiais , Proteobactérias/metabolismo
2.
Sci Rep ; 11(1): 15140, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34302023

RESUMO

Interspecies hydrogen transfer (IHT) and direct interspecies electron transfer (DIET) are two syntrophy models for methanogenesis. Their relative importance in methanogenic environments is still unclear. Our recent discovery of a novel species Candidatus Geobacter eutrophica with the genetic potential of IHT and DIET may serve as a model species to address this knowledge gap. To experimentally demonstrate its DIET ability, we performed electrochemical enrichment of Ca. G. eutrophica-dominating communities under 0 and 0.4 V vs. Ag/AgCl based on the presumption that DIET and extracellular electron transfer (EET) share similar metabolic pathways. After three batches of enrichment, Geobacter OTU650, which was phylogenetically close to Ca. G. eutrophica, was outcompeted in the control but remained abundant and active under electrochemical stimulation, indicating Ca. G. eutrophica's EET ability. The high-quality draft genome further showed high phylogenomic similarity with Ca. G. eutrophica, and the genes encoding outer membrane cytochromes and enzymes for hydrogen metabolism were actively expressed. A Bayesian network was trained with the genes encoding enzymes for alcohol metabolism, hydrogen metabolism, EET, and methanogenesis from dominant fermentative bacteria, Geobacter, and Methanobacterium. Methane production could not be accurately predicted when the genes for IHT were in silico knocked out, inferring its more important role in methanogenesis. The genomics-enabled machine learning modeling approach can provide predictive insights into the importance of IHT and DIET.


Assuntos
Transporte de Elétrons/fisiologia , Geobacter/metabolismo , Hidrogênio/metabolismo , Teorema de Bayes , Citocromos/metabolismo , Elétrons , Aprendizado de Máquina , Redes e Vias Metabólicas/fisiologia , Metano/metabolismo , Methanobacterium/metabolismo
3.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805783

RESUMO

In anaerobic bioreactors, the electrons produced during the oxidation of organic matter can potentially be used for the biological reduction of pharmaceuticals in wastewaters. Common electron transfer limitations benefit from the acceleration of reactions through utilization of redox mediators (RM). This work explores the potential of carbon nanomaterials (CNM) as RM on the anaerobic removal of ciprofloxacin (CIP). Pristine and tailored carbon nanotubes (CNT) were first tested for chemical reduction of CIP, and pristine CNT was found as the best material, so it was further utilized in biological anaerobic assays with anaerobic granular sludge (GS). In addition, magnetic CNT were prepared and also tested in biological assays, as they are easier to be recovered and reused. In biological tests with CNM, approximately 99% CIP removal was achieved, and the reaction rates increased ≈1.5-fold relatively to the control without CNM. In these experiments, CIP adsorption onto GS and CNM was above 90%. Despite, after applying three successive cycles of CIP addition, the catalytic properties of magnetic CNT were maintained while adsorption decreased to 29 ± 3.2%, as the result of CNM overload by CIP. The results suggest the combined occurrence of different mechanisms for CIP removal: adsorption on GS and/or CNM, and biological reduction or oxidation, which can be accelerated by the presence of CNM. After biological treatment with CNM, toxicity towards Vibrio fischeri was evaluated, resulting in ≈ 46% detoxification of CIP solution, showing the advantages of combining biological treatment with CNM for CIP removal.


Assuntos
Ciprofloxacina/metabolismo , Elétrons , Nanopartículas de Magnetita/química , Nanotubos de Carbono/química , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Adsorção , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/crescimento & desenvolvimento , Anaerobiose/fisiologia , Biodegradação Ambiental , Reatores Biológicos , Ciprofloxacina/isolamento & purificação , Humanos , Nanopartículas de Magnetita/ultraestrutura , Methanobacterium/metabolismo , Methanobrevibacter/metabolismo , Methanosarcinales/metabolismo , Methanospirillum/metabolismo , Testes de Sensibilidade Microbiana , Nanotubos de Carbono/ultraestrutura , Oxirredução , Poluentes Químicos da Água/isolamento & purificação
4.
Microbiome ; 9(1): 20, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482926

RESUMO

BACKGROUND: Soil methanogens participate in complex interactions, which determine the community structures and functions. Studies continue to seek the coexistence patterns of soil methanogens, influencing factors and the contribution to methane (CH4) production, which are regulated primarily by species interactions, and the functional significance of these interactions. Here, methane emissions were measured in rice paddies across the Asian continent, and the complex interactions involved in coexistence patterns of methanogenic archaeal communities were represented as pairwise links in co-occurrence networks. RESULTS: The network topological properties, which were positively correlated with mean annual temperature, were the most important predictor of CH4 emissions among all the biotic and abiotic factors. The methanogenic groups involved in commonly co-occurring links among the 39 local networks contributed most to CH4 emission (53.3%), much higher than the contribution of methanogenic groups with endemic links (36.8%). The potential keystone taxa, belonging to Methanobacterium, Methanocella, Methanothrix, and Methanosarcina, possessed high linkages with the methane generation functional genes mcrA, fwdB, mtbA, and mtbC. Moreover, the commonly coexisting taxa showed a very different assembly pattern, with ~ 30% determinism and ~ 70% stochasticity. In contrast, a higher proportion of stochasticity (93~99%) characterized the assembly of endemically coexisting taxa. CONCLUSIONS: These results suggest that the coexistence patterns of microbes are closely tied to their functional significance, and the potential importance of common coexistence further imply that complex networks of interactions may contribute more than species diversity to soil functions. Video abstract.


Assuntos
Euryarchaeota/metabolismo , Metano/biossíntese , Oryza/microbiologia , Microbiologia do Solo , Ásia , Methanobacterium/metabolismo
5.
FEMS Microbiol Lett ; 368(2)2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33320954

RESUMO

Soil-borne methane-oxidizing microorganisms act as a terrestrial methane (CH4) sink and are potentially useful in decreasing global CH4 emissions. Understanding the ecophysiology of methanotrophs is crucial for a thorough description of global carbon cycling. Here, we report the in situ balance of soils from abandoned landfills, meadows and wetlands, their capacities to produce and oxidize CH4 at laboratory-scale and the isolation of a soil-borne methanotrophic-heterotrophic mixed culture that was used for carbon (C1 and C2) feeding experiments. We showed that even with similar soil properties, the in situ CH4 balance depends on land-use. Different soils had different potentials to adapt to increased CH4 availability, leading to the highest CH4 oxidation capacities for landfill and wetland soils. The most efficient mixed culture isolated from the landfill was dominated by the methanotrophs Methylobacter sp. and Methylosinus sp., which were accompanied by Variovorax sp. and Pseudomonas sp. and remained active in oxidizing CH4 when supplied with additional C-sources. The ratios between type I and type II methanotrophs and between methanotrophic and heterotrophic bacteria changed when C-sources were altered. A significant effect of the application of the mixed culture on the CH4 oxidation of soils was established but the extent varied depending on soil type.


Assuntos
Biodiversidade , Carbono/metabolismo , Metano/metabolismo , Methanobacterium/metabolismo , Microbiologia do Solo , Ciclo do Carbono , Ecossistema , Methanobacterium/classificação , Oxirredução , Solo/química , Instalações de Eliminação de Resíduos
6.
Elife ; 92020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33274718

RESUMO

Physiological response to thermal stimuli in mammals is mediated by a structurally diverse class of ion channels, many of which exhibit polymodal behavior. To probe the diversity of biophysical mechanisms of temperature-sensitivity, we characterized the temperature-dependent activation of MthK, a two transmembrane calcium-activated potassium channel from thermophilic archaebacteria. Our functional complementation studies show that these channels are more efficient at rescuing K+ transport at 37°C than at 24°C. Electrophysiological activity of the purified MthK is extremely sensitive (Q10 >100) to heating particularly at low-calcium concentrations whereas channels lacking the calcium-sensing RCK domain are practically insensitive. By analyzing single-channel activities at limiting calcium concentrations, we find that temperature alters the coupling between the cytoplasmic RCK domains and the pore domain. These findings reveal a hitherto unexplored mechanism of temperature-dependent regulation of ion channel gating and shed light on ancient origins of temperature-sensitivity.


Assuntos
Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Methanobacterium/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Proteínas Arqueais/genética , Clonagem Molecular , Escherichia coli/metabolismo , Teste de Complementação Genética , Methanobacterium/genética , Modelos Genéticos , Canais de Potássio Cálcio-Ativados/genética , Domínios Proteicos , Temperatura
7.
Sci Rep ; 10(1): 19824, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188217

RESUMO

Microbial electrosynthesis exploits the catalytic activity of microorganisms to utilize a cathode as an electron donor for reducing waste CO2 to valuable fuels and chemicals. Electromethanogenesis is the process of CO2 reduction to CH4 catalyzed by methanogens using the cathode directly as a source of electrons or indirectly via H2. Understanding the effects of different set cathode potentials on the functional dynamics of electromethanogenic communities is crucial for the rational design of cathode materials. Replicate enriched electromethanogenic communities were subjected to different potentials (- 1.0 V and - 0.7 V vs. Ag/AgCl) and the potential-induced changes were analyzed using a metagenomic and metatranscriptomic approach. The most abundant and transcriptionally active organism on the biocathodes was a novel species of Methanobacterium sp. strain 34x. The cathode potential-induced changes limited electron donor availability and negatively affected the overall performance of the reactors in terms of CH4 production. Although high expression of key genes within the methane and carbon metabolism pathways was evident, there was no significant difference in transcriptional response to the different set potentials. The acetyl-CoA decarbonylase/synthase (ACDS) complex were the most highly expressed genes, highlighting the significance of carbon assimilation under limited electron donor conditions and its link to the methanogenesis pathway.


Assuntos
Methanobacterium/metabolismo , Fontes de Energia Bioelétrica , Dióxido de Carbono/metabolismo , Eletrodos , Euryarchaeota/metabolismo , Metano/metabolismo
8.
Environ Microbiol ; 22(9): 3650-3659, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515155

RESUMO

Anaerobic degradation of long-chain fatty acids (LCFA) involves syntrophic bacteria and methanogens, but facultative anaerobic bacteria (FAB) might have a relevant role as well. Here we investigated oleate degradation by a syntrophic synthetic co-culture of Syntrophomonas zehnderi (Sz) and Methanobacterium formicicum (Mf) and FAB (two oleate-degrading Pseudomonas spp. I1 + I2). Sz + Mf were first cultivated in a continuous bioreactor under strict anaerobic conditions. Thereafter, I1 + I2 were inoculated and microaerophilic conditions were provided. Methane and acetate were the main degradation products by Sz + Mf in anaerobiosis and by Sz + Mf + I1 + I2 in microaerophilic conditions. However, acetate production from oleate was higher in microaerophilic conditions (5% O2 ) with the four microorganisms together (0.41 ± 0.07 mmol day-1 ) than in anaerobiosis with Sz + Mf (0.23 ± 0.05 mmol day-1 ). Oleate degradation in batch assays was faster by Sz + Mf + I1 + I2 (under microaerophilic conditions) than by Sz + Mf alone (under strict anaerobic conditions). I1 + I2 were able to grow with oleate and with intermediates of oleate degradation (hydrogen, acetate and formate). This work highlights the importance of FAB, particularly Pseudomonas sp., in anaerobic reactors treating oleate-based wastewater, because they accelerate oleate conversion to methane, by protecting strict anaerobes from oxygen toxicity and also by acting as alternative hydrogen/formate and acetate scavengers for LCFA-degrading anaerobes.


Assuntos
Bactérias Anaeróbias/metabolismo , Clostridiales/metabolismo , Methanobacterium/metabolismo , Ácido Oleico/metabolismo , Pseudomonas/metabolismo , Anaerobiose , Biodegradação Ambiental , Reatores Biológicos
9.
J Hazard Mater ; 394: 122519, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32200240

RESUMO

Microbial electrolysis cell (MEC) has excellent CH4 production performance, however, CO2 still remains in the produced biogas at high content. For achieving in-situ CO2 sequestration and thus upgrading biogas, mineral carbonation was integrated into a MEC treating sludge hydrolysate. With 19 g/L wollastonite addition, in-situ mineral CO2 sequestration was achieved by formation of calcite precipitates. CH4 content in the biogas was increased by 5.1 % and reached 95.9 %, with CH4 production improved by 16.9 %. In addition, the removals of polysaccharide, protein, and chemical oxygen demand (COD) of the MEC were increased by 4.4 %, 6.7 %, and 8.4 %, respectively. The generated precipitates rarely accumulated on bio-cathode, and did not significantly affect the morphology of cathode biofilm. However, integrating mineral carbonation resulted in a higher relative abundance of Methanosarcina on anode and slightly decreased the ratio of Methanobacterium to Methanosaeta on cathode, which should be noticed. In conclusion, integrating mineral carbonation is an attractive way to improve the performance of MEC by achieving in-situ CO2 sequestration, accompanied with CH4 production enhancement.


Assuntos
Compostos de Cálcio/química , Dióxido de Carbono/química , Metano/biossíntese , Esgotos/química , Silicatos/química , Purificação da Água/métodos , Biocombustíveis , Reatores Biológicos , Carbonato de Cálcio/química , Sequestro de Carbono , Cristalização , Eletrodos/microbiologia , Eletrólise/instrumentação , Eletrólise/métodos , Hidrólise , Methanobacterium/metabolismo , Methanosarcina/metabolismo , Purificação da Água/instrumentação
10.
Chemosphere ; 247: 125866, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31951955

RESUMO

Anaerobic digestion (AD) is a promising technology for food waste management, but frequently restricted with long lag phase as a consequent of acidification. Two laboratory experiments were conducted to investigate the effects of iron materials on food waste AD. Experiment 1 compared the effects of iron oxide (IO) and zero valent iron (ZVI) on AD performance. The results showed that both IO and ZVI could enhance methane (CH4) generation, but IO showed better performance regarding the reduction of lag phase. The lag phase of the reactor supplemented with IO was 17.4% and 42.7% shorter than that of the reactor supplemented with ZVI and the control, respectively. Based on these results, experiment 2 was designed to examine the role of IO in alleviation of acid stress at high substrate to inoculum (SI) ratio. The results showed that supplemented IO into reactor could ensure a successful methanogenesis when operating at high SI ratio, while IO-free reactor was failed to generate CH4 although operating for 77 days. Supplementing IO into the reactor after 48 h of digestion could restore the CH4 generation, though its lag phase was 2.6 times of the reactor supplemented with IO at the beginning of the digestion. Microbial community structure analysis revealed that IO could simultaneously enrich Syntrophomonas and methanogens (i.e. Methanobacterium, Methanofollis and Methanosarcina), and might promote electron transfer between those two types of microbes, which were critical for achieving an effective methanogenesis.


Assuntos
Reatores Biológicos/microbiologia , Clostridiales/metabolismo , Compostos Férricos/química , Metano/metabolismo , Methanobacterium/metabolismo , Eliminação de Resíduos/métodos , Anaerobiose , Alimentos , Ferro/química , Modelos Teóricos , Esgotos/microbiologia , Resíduos Sólidos
11.
J Hazard Mater ; 384: 121339, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31593864

RESUMO

Dry anaerobic digestion of sewage sludge (SS-DAD) is often inhibited by excessive acidification due to low water content and high organic loading. The effects of conductive carbon materials including powdered activated carbon (PAC) and powdered graphite (PG) on SS-DAD under mesophilic condition (35℃) were investigated. The results demonstrated that the addition of PAC increased methane production of SS-DAD. The methane yield of PAC50% reactor (dosage of PAC is 50% of the volatile solids) amounted to 210 mL·gVSadded-1, which is 49% higher than that of control. PAC addition significantly enhanced the biodegradation process, as the reduction rate of total solids (TS) and volatile solids (VS) were increased by 36.4% and 34.1%, respectively, compared to the control. Inhibitory substrate adsorption experiments showed that PAC has significant adsorption (13.6 mg g-1) for VFAs, while PG showed almost no adsorption (0.81 mg g-1). Microbial community structure analysis showed hydrogenotrophic methanogens (Methanobrevibacter and Methanosphaera) were reduced in the PAC50% reactor, while methanogens (Methanobacterium) which can also use formate as electron donor were increased. PAC amendment reshaped the microbial community in the SS-DAD system which may result in shifting of the major electron carrier from hydrogen to formate and increasing electron transfer efficiency of the SS-DAD system.


Assuntos
Compostos Orgânicos/farmacologia , Esgotos/microbiologia , Adsorção , Anaerobiose/efeitos dos fármacos , Biodegradação Ambiental , Reatores Biológicos , DNA Bacteriano/genética , Transporte de Elétrons , Euryarchaeota/metabolismo , Ácidos Graxos Voláteis/química , Metano/química , Methanobacterium/efeitos dos fármacos , Methanobacterium/genética , Methanobacterium/metabolismo
12.
PLoS One ; 14(12): e0226243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31826000

RESUMO

Methanogenic archaea occupy a functionally important niche in the gut microbial ecosystem of mammals. Our purpose was to quantitatively characterize the dynamics of methanogenesis by integrating microbiology, thermodynamics and mathematical modelling. For that, in vitro growth experiments were performed with pure cultures of key methanogens from the human and ruminant gut, namely Methanobrevibacter smithii, Methanobrevibacter ruminantium and Methanobacterium formicium. Microcalorimetric experiments were performed to quantify the methanogenesis heat flux. We constructed an energetic-based mathematical model of methanogenesis. Our model captured efficiently the dynamics of methanogenesis with average concordance correlation coefficients of 0.95 for CO2, 0.98 for H2 and 0.97 for CH4. Together, experimental data and model enabled us to quantify metabolism kinetics and energetic patterns that were specific and distinct for each species despite their use of analogous methane-producing pathways. Then, we tested in silico the interactions between these methanogens under an in vivo simulation scenario using a theoretical modelling exercise. In silico simulations suggest that the classical competitive exclusion principle is inapplicable to gut ecosystems and that kinetic information alone cannot explain gut ecological aspects such as microbial coexistence. We suggest that ecological models of gut ecosystems require the integration of microbial kinetics with nonlinear behaviours related to spatial and temporal variations taking place in mammalian guts. Our work provides novel information on the thermodynamics and dynamics of methanogens. This understanding will be useful to construct new gut models with enhanced prediction capabilities and could have practical applications for promoting gut health in mammals and mitigating ruminant methane emissions.


Assuntos
Intestinos/microbiologia , Metano/metabolismo , Methanobacterium/metabolismo , Modelos Teóricos , Animais , Biomassa , DNA Arqueal/isolamento & purificação , DNA Arqueal/metabolismo , Metabolismo Energético , Cinética , Methanobacterium/genética , Methanobacterium/crescimento & desenvolvimento , RNA Ribossômico 16S/metabolismo , Ruminantes/microbiologia , Termodinâmica
13.
Bioresour Technol ; 289: 121706, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31279320

RESUMO

Microbial electrosynthesis (MES) is a promising technology to convert CO2 and electricity into the biofuel methane using methanogens. Until now, most investigations on electro-methanogenesis are "proof-of-principle" studies. In this paper, different strains were quantitatively compared in regard to final methane concentration, yields based on CO2-conversion, productivities as well as Coulombic efficiencies in order to identify suitable organisms for MES. Methanococcus vannielii, Methanococcus maripaludis, Methanolacinia petrolearia, Methanobacterium congolense, and Methanoculleus submarinus were able to produce methane via MES at -700 mV vs. standard hydrogen electrode (SHE). Beside methane also biological H2 production was detected during MES, which might be due to the involvement of hydrogenases. A direct electron transfer pathway is most likely. Obviously, M. maripaludis is the most resource efficient methane producer in microbial electrosynthesis regarding the methane productivity (8.81 ±â€¯0.51 mmol m-2 d-1) and the Coulombic efficiency (58.9 ±â€¯0.8%).


Assuntos
Dióxido de Carbono/metabolismo , Metano/biossíntese , Mathanococcus/metabolismo , Methanomicrobiaceae/metabolismo , Eletrodos , Hidrogenase/metabolismo , Methanobacterium/metabolismo
14.
Environ Sci Pollut Res Int ; 26(25): 26286-26292, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286367

RESUMO

Chromate can be reduced by methanotrophs in a membrane biofilm reactor (MBfR). In this study, we cultivated a Cr(VI)-reducing biofilm in a methane (CH4)-based membrane biofilm batch reactor (MBBR) under anaerobic conditions. The Cr(VI) reduction rate increased to 0.28 mg/L day when the chromate concentration was ≤ 2.2 mg/L but declined sharply to 0.01 mg/L day when the Cr(VI) concentration increased to 6 mg/L. Isotope tracing experiments showed that part of the 13C-labeled CH4 was transformed to 13CO2, suggesting that the biofilm may reduce Cr(VI) by anaerobic methane oxidation (AnMO). Microbial community analysis showed that a methanogen, i.e., Methanobacterium, dominated in the biofilm, suggesting that this genus is probably capable of carrying out AnMO. The abundance of Methylomonas, an aerobic methanotroph, decreased significantly, while Meiothermus, a potential chromate-reducing bacterium, was enriched in the biofilm. Overall, the results showed that the anaerobic environment inhibited the activity of aerobic methanotrophs while promoting AnMO bacterial enrichment, and high Cr(VI) loading reduced Cr(VI) flux by inhibiting the methane oxidation process.


Assuntos
Reatores Biológicos/microbiologia , Cromatos/metabolismo , Metano/metabolismo , Eliminação de Resíduos Líquidos/instrumentação , Anaerobiose , Biofilmes , Dióxido de Carbono/metabolismo , Cromatos/química , Metano/química , Methanobacterium/genética , Methanobacterium/metabolismo , Methylomonas/genética , Methylomonas/metabolismo , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Oxirredução , Eliminação de Resíduos Líquidos/métodos
15.
J Ind Microbiol Biotechnol ; 46(5): 625-634, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30783892

RESUMO

We developed a formate-removing methanogenic inoculum (FRI) to facilitate succinate production from crude glycerol by Escherichia coli. FRI converted formate to methane, thereby enabling glycerol fermentation without additional electron acceptors under neutral pH. FRI was selectively enriched from sludge from the anaerobic digester of the Seonam sewage treatment plant (Seoul); this process was assessed via Illumina sequencing and scanning electron microscopy imaging. Methanobacterium congolense species occupied only 0.3% of the archaea community in the sludge and was enriched to 99.5% in complete FRI, wherein succinate-degrading bacteria were successfully eliminated. Co-culture with FRI improved glycerol fermentation and yielded 7.3 mM succinate from 28.7 mM crude glycerol, whereby FRI completely converted formate into methane. This study is the first to demonstrate methane production by M. congolense species, using formate. M. congolense-dominated FRI can serve as a renewable facilitator of waste feedstock fermentation and enable the production of commercially important compounds.


Assuntos
Fermentação , Formiatos/química , Glicerol/química , Metano/biossíntese , Methanobacterium/metabolismo , Esgotos/microbiologia , Ácido Succínico/química , Anaerobiose , Archaea/metabolismo , Reatores Biológicos/microbiologia , Cromatografia Gasosa , Técnicas de Cocultura , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Análise de Sequência de DNA
16.
Biodegradation ; 30(2-3): 113-125, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30788623

RESUMO

Gas-to-liquid mass transfer of hydrogen (H2) was investigated in a gas-liquid reactor with a continuous gas phase, a batch liquid phase, and liquid mixing regimes relevant to assessing kinetics of microbial H2 consumption. H2 transfer was quantified in real-time with a H2 microsensor for no mixing, moderate mixing [100 rotations per minute (rpm)], and rapid mixing (200 rpm). The experimental results were simulated by mathematical models to find best-fit values of volumetric mass transfer coefficients-kLa-for H2, which were 1.6/day for no mixing, 7/day for 100 rpm, and 30/day for 200 rpm. Microbiological H2-consumption experiments were conducted with Methanobacterium bryantii M.o.H. to assess effects of H2 mass transfer on microbiological H2-threshold studies. The results illustrate that slow mixing reduced the gas-to-liquid H2 transfer rate, which fell behind the rate of microbiological H2 consumption in the liquid phase. As a result, the liquid-phase H2 concentration remained much lower than the liquid-phase H2 concentration that would be in equilibrium with the gas-phase H2 concentration. Direct measurements of the liquid-phase H2 concentration by an in situ probe demonstrated the problems associated with slow H2 transfer in past H2 threshold studies. The findings indicate that some of the previously reported H2-thresholds most likely were over-estimates due to slow gas-to-liquid H2 transfer. Essential requirements to conduct microbiological H2 threshold experiments are to have vigorous mixing, large gas-to-liquid volume, large interfacial area, and low initial biomass concentration.


Assuntos
Hidrogênio/metabolismo , Methanobacterium/metabolismo , Biodegradação Ambiental , Biomassa , Modelos Teóricos
17.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366998

RESUMO

Degradation of long-chain fatty acids (LCFAs) in methanogenic environments is a syntrophic process involving the activity of LCFA-degrading bacteria and hydrogen-utilizing methanogens. If methanogens are inhibited, other hydrogen scavengers are needed to achieve complete LCFA degradation. In this work, we developed two different oleate (C18:1 LCFA)-degrading anaerobic enrichment cultures, one methanogenic (ME) and another in which methanogenesis was inhibited (IE). Inhibition of methanogens was attained by adding a solution of 2-bromoethanesulfonate (BrES), which turned out to consist of a mixture of BrES and isethionate. Approximately 5 times faster oleate degradation was accomplished by the IE culture compared with the ME culture. A bacterium closely related to Syntrophomonas zehnderi (99% 16S rRNA gene identity) was the main oleate degrader in both enrichments, in syntrophic relationship with hydrogenotrophic methanogens from the genera Methanobacterium and Methanoculleus (in ME culture) or with a bacterium closely related to Desulfovibrio aminophilus (in IE culture). A Desulfovibrio species was isolated, and its ability to utilize hydrogen was confirmed. This bacterium converted isethionate to acetate and sulfide, with or without hydrogen as electron donor. This bacterium also utilized BrES but only after 3 months of incubation. Our study shows that syntrophic oleate degradation can be coupled to desulfonation.IMPORTANCE In anaerobic treatment of complex wastewater containing fat, oils, and grease, high long-chain fatty acid (LCFA) concentrations may inhibit microbial communities, particularly those of methanogens. Here, we investigated if anaerobic degradation of LCFAs can proceed when methanogens are inhibited and in the absence of typical external electron acceptors, such as nitrate, iron, or sulfate. Inhibition studies were performed with the methanogenic inhibitor 2-bromoethanesulfonate (BrES). We noticed that, after autoclaving, BrES underwent partial hydrolysis and turned out to be a mixture of two sulfonates (BrES and isethionate). We found out that LCFA conversion proceeded faster in the assays where methanogenesis was inhibited, and that it was dependent on the utilization of isethionate. In this study, we report LCFA degradation coupled to desulfonation. Our results also showed that BrES can be utilized by anaerobic bacteria.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Clostridiales/metabolismo , Desulfovibrio/metabolismo , Methanobacterium/metabolismo , Methanomicrobiaceae/metabolismo , Ácido Oleico/metabolismo , Anaerobiose/efeitos dos fármacos
18.
Microbiome ; 6(1): 189, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352628

RESUMO

BACKGROUND: Many environments contain redox transition zones, where transient oxygenation events can modulate anaerobic reactions that influence the cycling of iron (Fe) and carbon (C) on a global scale. In predominantly anoxic soils, this biogeochemical cycling depends on Fe mineral composition and the activity of mixed Fe(III)-reducer populations that may be altered by periodic pulses of molecular oxygen (O2). METHODS: We repeatedly exposed anoxic (4% H2:96% N2) suspensions of soil from the Luquillo Critical Zone Observatory to 1.05 × 102, 1.05 × 103, and 1.05 × 104 mmol O2 kg-1 soil h-1 during pulsed oxygenation treatments. Metatranscriptomic analysis and 57Fe Mössbauer spectroscopy were used to investigate changes in Fe(III)-reducer gene expression and Fe(III) crystallinity, respectively. RESULTS: Slow oxygenation resulted in soil Fe-(oxyhydr)oxides of higher crystallinity (38.1 ± 1.1% of total Fe) compared to fast oxygenation (30.6 ± 1.5%, P < 0.001). Transcripts binning to the genomes of Fe(III)-reducers Anaeromyxobacter, Geobacter, and Pelosinus indicated significant differences in extracellular electron transport (e.g., multiheme cytochrome c, multicopper oxidase, and type-IV pilin gene expression), adhesion/contact (e.g., S-layer, adhesin, and flagellin gene expression), and selective microbial competition (e.g., bacteriocin gene expression) between the slow and fast oxygenation treatments during microbial Fe(III) reduction. These data also suggest that diverse Fe(III)-reducer functions, including cytochrome-dependent extracellular electron transport, are associated with type-III fibronectin domains. Additionally, the metatranscriptomic data indicate that Methanobacterium was significantly more active in the reduction of CO2 to CH4 and in the expression of class(III) signal peptide/type-IV pilin genes following repeated fast oxygenation compared to slow oxygenation. CONCLUSIONS: This study demonstrates that specific Fe(III)-reduction mechanisms in mixed Fe(III)-reducer populations are uniquely sensitive to the rate of O2 influx, likely mediated by shifts in soil Fe(III)-(oxyhydr)oxide crystallinity. Overall, we provide evidence that transient oxygenation events play an important role in directing anaerobic pathways within soil microbiomes, which is expected to alter Fe and C cycling in redox-dynamic environments.


Assuntos
Ferro/química , Methanobacterium/metabolismo , Microbiota/genética , Microbiota/fisiologia , Oxigênio/química , Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Citocromos c/química , Transporte de Elétrons/fisiologia , Metano/metabolismo , Oxirredução , Oxirredutases/química , Solo/química , Microbiologia do Solo
19.
Sci Rep ; 8(1): 10218, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29977069

RESUMO

Cold atmospheric plasma (CAP) has great potential for sterilization in the food industry, by deactivation of thermophilic bacteria, but the underlying mechanisms are largely unknown. Therefore, we investigate here whether CAP is able to denature/modify protein from thermophilic bacteria. We focus on MTH1880 (MTH) from Methanobacterium thermoautotrophicum as model protein, which we treated with dielectric barrier discharge (DBD) plasma operating in air for 10, 15 and 20 mins. We analysed the structural changes of MTH using circular dichroism, fluorescence and NMR spectroscopy, as well as the thermal and chemical denaturation, upon CAP treatment. Additionally, we performed molecular dynamics (MD) simulations to determine the stability, flexibility and solvent accessible surface area (SASA) of both the native and oxidised protein.


Assuntos
Proteínas Arqueais/química , Methanobacterium/metabolismo , Gases em Plasma/farmacologia , Dicroísmo Circular , Indústria Alimentícia , Inativação Gênica , Methanobacterium/química , Simulação de Dinâmica Molecular , Conformação Proteica/efeitos dos fármacos , Desnaturação Proteica , Estabilidade Proteica/efeitos dos fármacos , Fatores de Tempo
20.
Environ Microbiol ; 20(5): 1842-1856, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29611893

RESUMO

Syntrophobacter fumaroxidans is a sulfate-reducing bacterium able to grow on propionate axenically or in syntrophic interaction with methanogens or other sulfate-reducing bacteria. We performed a proteome analysis of S. fumaroxidans growing with propionate axenically with sulfate or fumarate, and in syntrophy with Methanospirillum hungatei, Methanobacterium formicicum or Desulfovibrio desulfuricans. Special attention was put on the role of hydrogen and formate in interspecies electron transfer (IET) and energy conservation. Formate dehydrogenase Fdh1 and hydrogenase Hox were the main confurcating enzymes used for energy conservation. In the periplasm, Fdh2 and hydrogenase Hyn play an important role in reverse electron transport associated with succinate oxidation. Periplasmic Fdh3 and Fdh5 were involved in IET. The sulfate reduction pathway was poorly regulated and many enzymes associated with sulfate reduction (Sat, HppA, AprAB, DsrAB and DsrC) were abundant even at conditions where sulfate was not present. Proteins similar to heterodisulfide reductases (Hdr) were abundant. Hdr/Flox was detected in all conditions while HdrABC/HdrL was exclusively detected when sulfate was available; these complexes most likely confurcate electrons. Our results suggest that S. fumaroxidans mainly used formate for electron release and that different confurcating mechanisms were used in its sulfidogenic metabolism.


Assuntos
Técnicas de Cocultura , Deltaproteobacteria/metabolismo , Desulfovibrio/metabolismo , Methanobacterium/metabolismo , Methanospirillum/metabolismo , Propionatos/metabolismo , Transporte de Elétrons , Formiato Desidrogenases/metabolismo , Formiatos , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Oxirredução , Proteoma/metabolismo , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...