Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 593(5): 543-553, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30702149

RESUMO

3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyses the last step in mevalonate biosynthesis. HMGR is the target of statin inhibitors that regulate cholesterol concentration in human blood. Here, we report the properties and structures of HMGR from an archaeon Methanothermococcus thermolithotrophicus (mHMGR). The structures of the apoenzyme and the NADPH complex are highly similar to those of human HMGR. A notable exception is C-terminal helix (Lα10-11) that is straight in both mHMGR structures. This helix is kinked and closes the active site in the human enzyme ternary complex, pointing to a substrate-induced structural rearrangement of C-terminal in class-I HMGRs during the catalytic cycle.


Assuntos
Hidroximetilglutaril-CoA Redutases/química , Methanococcaceae/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Hidroximetilglutaril-CoA Redutases/metabolismo , Cinética , NADP/metabolismo , Conformação Proteica , Especificidade por Substrato
2.
Chembiochem ; 18(23): 2295-2297, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28986941

RESUMO

Elaborate arrays of iron-sulfur clusters link active sites via a flavin that bifurcates electrons through two energetically independent paths. The structure of the heterodisulfide reductase provides insight into how methanogens conserve energy through coupling hydrogen oxidation to coordinated exergonic heterodisulfide and endergonic ferredoxin reduction in an overall thermodynamically favorable reaction.


Assuntos
Metano/metabolismo , Dióxido de Carbono/química , Transporte de Elétrons , Elétrons , Flavina-Adenina Dinucleotídeo/química , Hidrogênio/química , Hidrogenase/química , Hidrogenase/metabolismo , Metano/química , Methanococcaceae/enzimologia , Oxirredução , Oxirredutases/metabolismo
3.
Science ; 357(6352): 699-703, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28818947

RESUMO

In methanogenic archaea, the carbon dioxide (CO2) fixation and methane-forming steps are linked through the heterodisulfide reductase (HdrABC)-[NiFe]-hydrogenase (MvhAGD) complex that uses flavin-based electron bifurcation to reduce ferredoxin and the heterodisulfide of coenzymes M and B. Here, we present the structure of the native heterododecameric HdrABC-MvhAGD complex at 2.15-angstrom resolution. HdrB contains two noncubane [4Fe-4S] clusters composed of fused [3Fe-4S]-[2Fe-2S] units sharing 1 iron (Fe) and 1 sulfur (S), which were coordinated at the CCG motifs. Soaking experiments showed that the heterodisulfide is clamped between the two noncubane [4Fe-4S] clusters and homolytically cleaved, forming coenzyme M and B bound to each iron. Coenzymes are consecutively released upon one-by-one electron transfer. The HdrABC-MvhAGD atomic model serves as a structural template for numerous HdrABC homologs involved in diverse microbial metabolic pathways.


Assuntos
Proteínas Arqueais/química , Proteínas Ferro-Enxofre/química , Methanococcaceae/enzimologia , Oxirredutases/química , Motivos de Aminoácidos , Proteínas Arqueais/ultraestrutura , Coenzimas/química , Coenzimas/ultraestrutura , Cristalografia por Raios X , Transporte de Elétrons , Ferredoxinas/química , Ferro/química , Proteínas Ferro-Enxofre/ultraestrutura , Redes e Vias Metabólicas , Oxirredução , Oxirredutases/ultraestrutura , Domínios Proteicos , Enxofre/química
4.
Science ; 354(6308): 114-117, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27846502

RESUMO

Biological methane formation starts with a challenging adenosine triphosphate (ATP)-independent carbon dioxide (CO2) fixation process. We explored this enzymatic process by solving the x-ray crystal structure of formyl-methanofuran dehydrogenase, determined here as Fwd(ABCDFG)2 and Fwd(ABCDFG)4 complexes, from Methanothermobacter wolfeii The latter 800-kilodalton apparatus consists of four peripheral catalytic sections and an electron-supplying core with 46 electronically coupled [4Fe-4S] clusters. Catalysis is separately performed by subunits FwdBD (FwdB and FwdD), which are related to tungsten-containing formate dehydrogenase, and subunit FwdA, a binuclear metal center carrying amidohydrolase. CO2 is first reduced to formate in FwdBD, which then diffuses through a 43-angstrom-long tunnel to FwdA, where it condenses with methanofuran to formyl-methanofuran. The arrangement of [4Fe-4S] clusters functions as an electron relay but potentially also couples the four tungstopterin active sites over 206 angstroms.


Assuntos
Aldeído Oxirredutases/química , Proteínas Arqueais/química , Dióxido de Carbono/química , Proteínas Ferro-Enxofre/química , Metano/síntese química , Methanococcaceae/enzimologia , Amidoidrolases/química , Biocatálise , Cristalografia por Raios X , Estradiol/análogos & derivados , Oxirredução , Conformação Proteica em Folha beta , Tungstênio/química
5.
Proc Natl Acad Sci U S A ; 109(52): 21325-9, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236183

RESUMO

Unusual tRNA genes, found in some algae, have their mature terminal 3' portion in front of their 5' portion in the genome. The transcripts from such genes must be cleaved by a pre-tRNA endonuclease to form a functional tRNA. We present a mechanism for the generation of "corrected" tRNAs from such a "permuted" pre-tRNA configuration. We used two avatar (av) or model pre-tRNAs and two splicing endonucleases with distinct mechanisms of recognition of the pre-tRNA. The splicing results are compatible with an evolutionary route in which permuted genes result from a duplication event followed by DNA rearrangement. The model pre-tRNAs permit description of the features that a transcript, derived from a rearranged duplicated gene, must have to give rise to functional tRNA. The two tRNA endonucleases are a eukaryal enzyme that normally acts in a mature domain-dependent mode and an archaeal enzyme that acts in a mature domain-independent mode. Both av pre-tRNAs are able to fold into two conformations: 1 and 2. We find that only conformation 2 can yield a corrected functional tRNA. This result is consistent with contemporary algae representing snapshots of different evolutionary stages, with duplicated genes preceding recombinatorial events generating a permutated gene. In a scenario elucidated by the use of the av pre-tRNAs, algal permuted tRNA genes could have further lost one of two mature domains, eliminating steric problems for the algal tRNA endonuclease, which remains a typical eukaryal enzyme capable of correcting the permuted transcript to a functional tRNA.


Assuntos
Endorribonucleases/metabolismo , Genes/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Sequência de Bases , Methanococcaceae/enzimologia , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Precursores de RNA/química , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/química , Schizosaccharomyces/enzimologia
6.
Arch Microbiol ; 194(2): 141-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22002406

RESUMO

The protein derived from the Methanocaldococcus jannaschii MJ0458 gene is annotated as a δ-1-pyrroline 5-carboxylate synthetase and is predicted to be related to aspartokinase and uridylate kinase. Analysis of the predicted protein sequence indicated that it is a unique kinase with few similarities to either uridylate or adenylate kinase. Here, we report that the MJ0458 gene product is a second type of archaeal adenylate kinase, AdkB. This enzyme is different from the established archaeal-specific adenylate kinase in both sequence and predicted tertiary structure.


Assuntos
Adenilato Quinase/metabolismo , Methanococcaceae/enzimologia , Núcleosídeo-Fosfato Quinase/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/química , Archaea/enzimologia , Methanococcaceae/classificação , Núcleosídeo-Fosfato Quinase/química , Fosforilação , Filogenia , Especificidade por Substrato
7.
FEBS Lett ; 586(1): 60-3, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22166682

RESUMO

In methanogenic archaea, Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). The mechanism of tRNA-dependent cysteine formation remains unclear due to the lack of functional studies. In this work, we mutated 19 conserved residues in Methanocaldococcus jannaschii SepCysS, and employed an in vivo system to determine the activity of the resulting variants. Our results show that three active-site cysteines (Cys39, Cys42 and Cys247) are essential for SepCysS activity. In addition, combined with structural modeling, our mutational and functional analyses also reveal multiple residues that are important for the binding of PLP, Sep and tRNA. Our work thus represents the first systematic functional analysis of conserved residues in archaeal SepCysSs, providing insights into the catalytic and substrate binding mechanisms of this poorly characterized enzyme.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Methanococcaceae/enzimologia , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Cisteína/química , Cisteína/metabolismo , Análise Mutacional de DNA , Modelos Moleculares , Conformação Proteica , Fosfato de Piridoxal/metabolismo , Aminoacil-RNA de Transferência/metabolismo
8.
Biomol NMR Assign ; 6(2): 193-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22203461

RESUMO

Sequence specific resonance assignments have been obtained for (1)H, (13)C and (15)N nuclei of the 21 kDa (188 residues long) glutamine amido transferase subunit of guanosine monophosphate synthetase from Methanocaldococcus jannaschii. From an analysis of (1)H and (13)C(α), (13)C(ß) secondary chemical shifts, (3) JH(N)H(α) scalar coupling constants and sequential, short and medium range (1)H-(1)H NOEs, it was deduced that the glutamine amido transferase subunit has eleven strands and five helices as the major secondary structural elements in its tertiary structure.


Assuntos
Aciltransferases/química , Guanosina Monofosfato/metabolismo , Ligases/química , Methanococcaceae/enzimologia , Ressonância Magnética Nuclear Biomolecular , Subunidades Proteicas/química , Prótons , Isótopos de Carbono , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
9.
Biochemistry ; 50(23): 5301-13, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21542645

RESUMO

In archaea and bacteria, the late steps in adenosylcobalamin (AdoCbl) biosynthesis are collectively known as the nucleotide loop assembly (NLA) pathway. In the archaeal and bacterial NLA pathways, two different guanylyltransferases catalyze the activation of the corrinoid. Structural and functional studies of the bifunctional bacterial guanylyltransferase that catalyze both ATP-dependent corrinoid phosphorylation and GTP-dependent guanylylation are available, but similar studies of the monofunctional archaeal enzyme that catalyzes only GTP-dependent guanylylation are not. Herein, the three-dimensional crystal structure of the guanylyltransferase (CobY) enzyme from the archaeon Methanocaldococcus jannaschii (MjCobY) in complex with GTP is reported. The model identifies the location of the active site. An extensive mutational analysis was performed, and the functionality of the variant proteins was assessed in vivo and in vitro. Substitutions of residues Gly8, Gly153, or Asn177 resulted in ≥94% loss of catalytic activity; thus, variant proteins failed to support AdoCbl synthesis in vivo. Results from isothermal titration calorimetry experiments showed that MjCobY(G153D) had 10-fold higher affinity for GTP than MjCobY(WT) but failed to bind the corrinoid substrate. Results from Western blot analyses suggested that the above-mentioned substitutions render the protein unstable and prone to degradation; possible explanations for the observed instability of the variants are discussed within the framework of the three-dimensional crystal structure of MjCobY(G153D) in complex with GTP. The fold of MjCobY is strikingly similar to that of the N-terminal domain of Mycobacterium tuberculosis GlmU (MtbGlmU), a bifunctional acetyltransferase/uridyltransferase that catalyzes the formation of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc).


Assuntos
Proteínas Arqueais/química , Guanosina Trifosfato/metabolismo , Methanococcaceae/enzimologia , Nucleotidiltransferases/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cobamidas/química , Cobamidas/metabolismo , Dimerização , Guanosina Trifosfato/química , Modelos Moleculares , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Conformação Proteica , Uridina Difosfato N-Acetilglicosamina/metabolismo
10.
Biochem Soc Trans ; 39(1): 31-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21265743

RESUMO

RNAPs (RNA polymerases) are complex molecular machines that contain a highly conserved catalytic site surrounded by conformationally flexible domains. High-throughput mutagenesis in the archaeal model system Methanocaldococcus jannaschii has demonstrated that the nanomechanical properties of one of these domains, the bridge-helix, exert a key regulatory role on the rate of the NAC (nucleotide-addition cycle). Mutations that increase the probability and/or half-life of kink formation in the BH-HC (bridge-helix C-terminal hinge) cause a substantial increase in specific activity ('superactivity'). Fully atomistic molecular dynamics simulations show that kinking of the BH-HC appears to be driven by cation-π interactions and involve amino acid side chains that are exceptionally highly conserved in all prokaryotic and eukaryotic species.


Assuntos
Cátions/química , RNA Polimerases Dirigidas por DNA/química , Methanococcaceae/enzimologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Domínio Catalítico/genética , RNA Polimerases Dirigidas por DNA/genética , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular
11.
Artigo em Inglês | MEDLINE | ID: mdl-21206036

RESUMO

Type 2 isopentenyl diphosphate isomerase (IDI-2) is a flavoprotein. Recently, flavin has been proposed to play a role as a general acid-base catalyst with no redox role during the enzyme reaction. To clarify the detailed enzyme reaction mechanism of IDI-2 and the unusual role of flavin, structural analysis of IDI-2 from Methanocaldococcus jannaschii (MjIDI) was performed. Recombinant MjIDI was crystallized at 293 K using calcium acetate as a precipitant. The diffraction of the crystal extended to 2.08 Šresolution at 100 K. The crystal belonged to the tetragonal space group I422, with unit-cell parameters a=126.46, c=120.03 Å. The presence of one monomer per asymmetric unit gives a crystal volume per protein weight (VM) of 3.0 Å3 Da(-1) and a solvent constant of 59.0% by volume.


Assuntos
Proteínas de Bactérias/química , Isomerases de Ligação Dupla Carbono-Carbono/química , Methanococcaceae/enzimologia , Proteínas de Bactérias/genética , Isomerases de Ligação Dupla Carbono-Carbono/genética , Cristalização , Cristalografia por Raios X , Hemiterpenos , Dados de Sequência Molecular
12.
Artigo em Inglês | MEDLINE | ID: mdl-21206044

RESUMO

Nitrogenases are protein complexes that are only found in Azotobacter and are required for biological nitrogen fixation. They are made up of a nitrogenase, which is a NifD2/NifK2 heterotetramer, and a nitrogenase reductase, which is a homodimer of NifH. Many homologues of nitrogenase have been found in various non-nitrogen-fixing prokaryotes; in particular, they are found in all known methanogens. This indicates that these homologues may play a role in methane production. Here, the cloning of NifH2, a homologue of the NifH nitrogenase component, from Methanocaldococcus jannaschii (MjNifH2) and its expression in Escherichia coli with a polyhistidine tag, purification and crystallization are described. MjNifH2 crystals were obtained by the hanging-drop vapour-diffusion method and diffracted to a resolution limit of 2.85 Å. The crystals belonged to space group P2, with unit-cell parameters a=64.01, b=94.38, c=98.08 Å, α=γ=90, ß=98.85°.


Assuntos
Proteínas de Bactérias/química , Methanococcaceae/enzimologia , Nitrogenase/química , Proteínas de Bactérias/genética , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Dados de Sequência Molecular , Nitrogenase/genética , Conformação Proteica
13.
Protein Eng Des Sel ; 24(1-2): 161-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20959390

RESUMO

Nucleotide-binding cystathionine ß-synthase (CBS) domains function as regulatory motifs in several proteins distributed through all kingdoms of life. This function has been proposed based on their affinity for adenosyl-derivatives, although the exact binding mechanisms remain largely unknown. The question of how CBS domains exactly work is relevant because in humans, several genetic diseases have been associated with mutations in those motifs. In this work, we describe the adenosyl-ligand (AMP, ATP, NADP and SAM) properties of the wild-type CBS domain protein MJ0729 from Methanocaldococcus jannaschii by using a combination of spectroscopic techniques (fluorescence, FTIR and FRET). The fluorescence results show that binding to AMP and ATP occurs with an apparent dissociation constant of ~10 µM, and interestingly enough, binding induces protein conformational changes, as shown by FTIR. On the other hand, fluorescence spectra (FRET and steady-state) did not change upon addition of NADP and SAM to MJ0729, suggesting that tryptophan and/or tyrosine residues were not involved in the recognition of those ligands; however, there were changes in the secondary structure of the protein upon addition of NADP and SAM, as shown by FTIR (thus, indicating binding to the nucleotide). Taken together, these results suggest that: (i) the adenosyl ligands bind to MJ0729 in different ways, and (ii) there are changes in the protein secondary structure upon binding of the nucleotides.


Assuntos
Adenosina/análogos & derivados , Cistationina beta-Sintase/metabolismo , Methanococcaceae/enzimologia , Nucleotídeos/metabolismo , Cistationina beta-Sintase/química , Transferência Ressonante de Energia de Fluorescência , Methanococcaceae/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
14.
J Mol Biol ; 401(3): 323-33, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20600111

RESUMO

tRNA:m(5)C methyltransferase Trm4 generates the modified nucleotide 5-methylcytidine in archaeal and eukaryotic tRNA molecules, using S-adenosyl-l-methionine (AdoMet) as methyl donor. Most archaea and eukaryotes possess several Trm4 homologs, including those related to diseases, while the archaeon Methanocaldococcus jannaschii has only one gene encoding a Trm4 homolog, MJ0026. The recombinant MJ0026 protein catalyzed AdoMet-dependent methyltransferase activity on tRNA in vitro and was shown to be the M. jannaschii Trm4. We determined the crystal structures of the substrate-free M. jannaschii Trm4 and its complex with sinefungin at 1.27 A and 2.3 A resolutions, respectively. This AdoMet analog is bound in a negatively charged pocket near helix alpha8. This helix can adopt two different conformations, thereby controlling the entry of AdoMet into the active site. Adjacent to the sinefungin-bound pocket, highly conserved residues form a large, positively charged surface, which seems to be suitable for tRNA binding. The structure explains the roles of several conserved residues that were reportedly involved in the enzymatic activity or stability of Trm4p from the yeast Saccharomyces cerevisiae. We also discuss previous genetic and biochemical data on human NSUN2/hTrm4/Misu and archaeal PAB1947 methyltransferase, based on the structure of M. jannaschii Trm4.


Assuntos
Adenosina/análogos & derivados , Methanococcaceae/enzimologia , tRNA Metiltransferases/química , Adenosina/química , Aminoácidos , Antibacterianos/química , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligação Proteica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae
15.
J Bioenerg Biomembr ; 42(4): 311-20, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20571891

RESUMO

The structure of the C-terminus of subunit E (E(101-206)) of Methanocaldococcus jannaschii A-ATP synthase was determined at 4.1 A. E(101-206) consist of a N-terminal globular domain with three alpha-helices and four antiparallel beta-strands and an alpha-helix at the very C-terminus. Comparison of M. jannaschii E(101-206) with the C-terminus E(81-198) subunit E from Pyrococcus horikoshii OT3 revealed that the kink in the C-terminal alpha-helix of E(81-198), involved in dimer formation, is absent in M. jannaschii E(101-206). Whereas a major dimeric surface interface is present between the P. horikoshii E(81-198) molecules in the asymmetric unit, no such interaction could be found in the M. jannaschii E(101-206) molecules. To verify the oligomeric behaviour, the low resolution structure of the recombinant E(85-206) from M. jannaschii was determined using small angle X-ray scattering. Rigid body modeling of two copies of one of the monomer established a fit with a tail to tail arrangement.


Assuntos
Complexos de ATP Sintetase/química , Proteínas Arqueais/química , Methanococcaceae/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
16.
J Mol Biol ; 399(1): 53-70, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20382158

RESUMO

In mammals, 5'-AMP-activated protein kinase (AMPK) is a heterotrimeric protein composed of a catalytic serine/threonine kinase subunit (alpha) and two regulatory subunits (beta and gamma). The gamma-subunit senses the intracellular energy status by competitively binding AMP and ATP and is thought to be responsible for allosteric regulation of the whole complex. We describe herein the crystal structure of protein MJ1225 from Methanocaldococcus jannaschii complexed to AMP, ADP, and ATP. Our data provide evidence of a strong conservation of the key functional features seen in the gamma-subunit of the eukaryotic AMPK, and more importantly, it reveals a novel AMP binding site, herein denoted as site E, which had not been previously described in cystathionine beta-synthase domains so far. Site E is located in a small cavity existing between the alpha-helices structurally equivalent to those disrupting the internal symmetry of each Bateman domain in gamma-AMPKs and shows striking similarities with a symmetry-related crevice of the mammalian enzyme that hosts the pathological mutation N488I.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Arqueais/química , Methanococcaceae/enzimologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Eucariotos , Methanococcaceae/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas , Alinhamento de Sequência
17.
Biochem Soc Trans ; 38(2): 428-32, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20298196

RESUMO

RNAPs (RNA polymerases) are complex molecular machines containing structural domains that co-ordinate the movement of nucleic acid and nucleotide substrates through the catalytic site. X-ray images of bacterial, archaeal and eukaryotic RNAPs have provided a wealth of structural detail over the last decade, but many mechanistic features can only be derived indirectly from such structures. We have therefore implemented a robotic high-throughput structure-function experimental system based on the automatic generation and assaying of hundreds of site-directed mutants in the archaeal RNAP from Methanocaldococcus jannaschii. In the present paper, I focus on recent insights obtained from applying this experimental strategy to the bridge-helix domain. Our work demonstrates that the bridge-helix undergoes substantial conformational changes within a narrowly confined region (mjA' Ala(822)-Gln(823)-Ser(824)) during the nucleotide-addition cycle. Naturally occurring radical sequence variations in plant RNAP IV and V enzymes map to this region. In addition, many mutations within this domain cause a substantial increase in the RNAP catalytic activity ('superactivity'), suggesting that the RNAP active site is conformationally constrained.


Assuntos
Células/enzimologia , RNA Polimerases Dirigidas por DNA/fisiologia , Sequência de Aminoácidos , Fenômenos Biomecânicos/fisiologia , Domínio Catalítico , Células/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Methanococcaceae/enzimologia , Methanococcaceae/genética , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Nanoestruturas , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
18.
Sheng Wu Gong Cheng Xue Bao ; 25(8): 1151-9, 2009 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-19938451

RESUMO

Methanotrophs use methane as the sole carbon and energy source, which cause slow growth, low cell density and hinder its industrial applications. One promising solution is to heterologously express methane monooxygenase (MMO) in other host cells that can be easily cultivated at high cell density. We systematically exploited the possibility of functional expression of pMMO by choosing different promoters and different host cells. The results showed that the recombinants could oxidize methane to methanol. In particular, ethanol could also be detected in the oxidized products, but the enzyme activity was instable, implying that some changes of pMMO expressed in the host cells might have occurred. In addition, SDS-PAGE analysis showed that many recombinants could express the subunits of pMMO, but the enzyme activity could not be detected. In conclusion, correct fold of pMMO in the host cells is important for its functional expression.


Assuntos
Regulação Enzimológica da Expressão Gênica , Vetores Genéticos/genética , Oxigenases/biossíntese , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Metano/metabolismo , Methanococcaceae/enzimologia , Metanol/metabolismo , Oxigenases/genética , Regiões Promotoras Genéticas , Dobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
19.
Biochemistry ; 48(19): 4181-8, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19309161

RESUMO

The early steps in the biosynthesis of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) and riboflavin in the archaea differ from the established eukaryotic and bacterial pathways. The archaeal pathway has been proposed to begin with an archaeal-specific GTP cyclohydrolase III that hydrolyzes the imidazole ring of GTP but does not remove the resulting formyl group from the formamide [Graham, D. E., Xu, H., and White, R. H. (2002) Biochemistry 41, 15074-15084 ]. This enzyme is different than the bacterial GTP cyclohydrolase II which catalyzes both reactions. Here we describe the identification and characterization of the formamide hydrolase that catalyzes the second step in the archaeal Fo and riboflavin biosynthetic pathway. The Methanocaldococcus jannaschii MJ0116 gene was cloned and heterologously expressed, and the resulting enzyme was shown to catalyze the formation of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (APy) and formate from 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-monophosphate (FAPy). The MJ0116-derived protein has been named ArfB to indicate that it catalyzes the second step in archaeal riboflavin and Fo biosynthesis. ArfB was found to require ferrous iron for activity although metal analysis by ICP indicated the presence of zinc as well as iron in the purified protein. The identification of this enzyme confirms the involvement of GTP cyclohydrolase III (ArfA) in archaeal riboflavin and Fo biosynthesis.


Assuntos
Proteínas Arqueais/metabolismo , Formamidas/metabolismo , GTP Cicloidrolase/metabolismo , Ferro/química , Riboflavina/análogos & derivados , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Vias Biossintéticas/genética , Catálise , Formamidas/química , GTP Cicloidrolase/química , GTP Cicloidrolase/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Methanococcaceae/enzimologia , Methanococcaceae/genética , Methanococcaceae/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Molecular , Pirimidinonas/química , Pirimidinonas/metabolismo , Riboflavina/biossíntese , Riboflavina/química , Homologia de Sequência de Aminoácidos
20.
Structure ; 17(3): 335-44, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19278648

RESUMO

We developed an Escherichia coli cell-based system to generate proteins containing 3-iodo-L-tyrosine at desired sites, and we used this system for structure determination by single-wavelength anomalous dispersion (SAD) phasing with the strong iodine signal. Tyrosyl-tRNA synthetase from Methanocaldococcus jannaschii was engineered to specifically recognize 3-iodo-L-tyrosine. The 1.7 A crystal structure of the engineered variant, iodoTyrRS-mj, bound with 3-iodo-L-tyrosine revealed the structural basis underlying the strict specificity for this nonnatural substrate; the iodine moiety makes van der Waals contacts with 5 residues at the binding pocket. E. coli cells expressing iodoTyrRS-mj and the suppressor tRNA were used to incorporate 3-iodo-L-tyrosine site specifically into the ribosomal protein N-acetyltransferase from Thermus thermophilus. The crystal structure of this enzyme with iodotyrosine was determined at 1.8 and 2.2 Angstroms resolutions by SAD phasing at CuK alpha and CrK alpha wavelengths, respectively. The native structure, determined by molecular replacement, revealed no significant structural distortion caused by iodotyrosine incorporation.


Assuntos
Cristalografia por Raios X , Escherichia coli/genética , Monoiodotirosina/química , Engenharia de Proteínas , Acetiltransferases/química , Acetiltransferases/metabolismo , Arilamina N-Acetiltransferase/química , Arilamina N-Acetiltransferase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Methanococcaceae/enzimologia , Methanococcaceae/metabolismo , Monoiodotirosina/genética , Relação Estrutura-Atividade , Thermus thermophilus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA