Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(6): 695-702, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36658338

RESUMO

Methanogenic archaea are main actors in the carbon cycle but are sensitive to reactive sulfite. Some methanogens use a sulfite detoxification system that combines an F420H2-oxidase with a sulfite reductase, both of which are proposed precursors of modern enzymes. Here, we present snapshots of this coupled system, named coenzyme F420-dependent sulfite reductase (Group I Fsr), obtained from two marine methanogens. Fsr organizes as a homotetramer, harboring an intertwined six-[4Fe-4S] cluster relay characterized by spectroscopy. The wire, spanning 5.4 nm, electronically connects the flavin to the siroheme center. Despite a structural architecture similar to dissimilatory sulfite reductases, Fsr shows a siroheme coordination and a reaction mechanism identical to assimilatory sulfite reductases. Accordingly, the reaction of Fsr is unidirectional, reducing sulfite or nitrite with F420H2. Our results provide structural insights into this unique fusion, in which a primitive sulfite reductase turns a poison into an elementary block of life.


Assuntos
Euryarchaeota , Methanococcales , Methanococcales/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Riboflavina/química , Riboflavina/metabolismo , Sulfitos , Oxirredução
2.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445335

RESUMO

Protein inhibition is a natural regulatory process to control cellular metabolic fluxes. PII-family signal-transducing effectors are in this matter key regulators of the nitrogen metabolism. Their interaction with their various targets is governed by the cellular nitrogen level and the energy charge. Structural studies on GlnK, a PII-family inhibitor of the ammonium transporters (Amt), showed that the T-loops responsible for channel obstruction are displaced upon the binding of 2-oxoglutarate, magnesium and ATP in a conserved cleft. However, GlnK from Methanocaldococcus jannaschii was shown to bind 2-oxoglutarate on the tip of its T-loop, causing a moderate disruption to GlnK-Amt interaction, raising the question if methanogenic archaea use a singular adaptive strategy. Here we show that membrane fractions of Methanothermococcus thermolithotrophicus released GlnKs only in the presence of Mg-ATP and 2-oxoglutarate. This observation led us to structurally characterize the two GlnK isoforms apo or in complex with ligands. Together, our results show that the 2-oxoglutarate binding interface is conserved in GlnKs from Methanococcales, including Methanocaldococcus jannaschii, emphasizing the importance of a free carboxy-terminal group to facilitate ligand binding and to provoke the shift of the T-loop positions.


Assuntos
Compostos de Amônio/metabolismo , Ácidos Cetoglutáricos/metabolismo , Methanococcales/metabolismo , Proteínas PII Reguladoras de Nitrogênio , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Transporte de Íons , Redes e Vias Metabólicas , Modelos Moleculares , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Análise de Sequência de Proteína
3.
PLoS One ; 15(11): e0242339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33232349

RESUMO

In coastal aquatic ecosystems, prokaryotic communities play an important role in regulating the cycling of nutrients and greenhouse gases. In the coastal zone, estuaries are complex and delicately balanced systems containing a multitude of specific ecological niches for resident microbes. Anthropogenic influences (i.e. urban, industrial and agricultural land uses) along the estuarine continuum can invoke physical and biochemical changes that impact these niches. In this study, we investigate the relative abundance of methanogenic archaea and other prokaryotic communities, distributed along a land use gradient in the subtropical Burnett River Estuary, situated within the Great Barrier Reef catchment, Australia. Microbiological assemblages were compared to physicochemical, nutrient and greenhouse gas distributions in both pore and surface water. Pore water samples from within the most urbanised site showed a high relative abundance of methanogenic Euryarchaeota (7.8% of all detected prokaryotes), which coincided with elevated methane concentrations in the water column, ranging from 0.51 to 0.68 µM at the urban and sewage treatment plant (STP) sites, respectively. These sites also featured elevated dissolved organic carbon (DOC) concentrations (0.66 to 1.16 mM), potentially fuelling methanogenesis. At the upstream freshwater site, both methane and DOC concentrations were considerably higher (2.68 µM and 1.8 mM respectively) than at the estuarine sites (0.02 to 0.66 µM and 0.39 to 1.16 mM respectively) and corresponded to the highest relative abundance of methanotrophic bacteria. The proportion of sulfate reducing bacteria in the prokaryotic community was elevated within the urban and STP sites (relative abundances of 8.0%- 10.5%), consistent with electron acceptors with higher redox potentials (e.g. O2, NO3-) being scarce. Overall, this study showed that ecological niches in anthropogenically altered environments appear to give an advantage to specialized prokaryotes invoking a potential change in the thermodynamic landscape of the ecosystem and in turn facilitating the generation of methane-a potent greenhouse gas.


Assuntos
Archaea/isolamento & purificação , Estuários , Metano/metabolismo , Methanococcales/isolamento & purificação , Methylocystaceae/isolamento & purificação , Microbiota , Águas Salinas , Microbiologia da Água , Agricultura , Compostos de Amônio/metabolismo , Criação de Animais Domésticos , Archaea/metabolismo , Carbono/metabolismo , Ecossistema , Água Doce/análise , Água Doce/microbiologia , Gases de Efeito Estufa/análise , Habitação , Indústrias , Methanococcales/metabolismo , Methylocystaceae/metabolismo , Nitratos/metabolismo , Oxirredução , Queensland , Águas Salinas/análise , Salinidade , Sulfatos/metabolismo , Temperatura , Termodinâmica , Purificação da Água
4.
J Microbiol ; 56(7): 507-515, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29948827

RESUMO

Methane production by methanogens in wetland is recognized as a significant contributor to global warming. Spartina alterniflora (S. alterniflora), which is an invasion plant in China's wetland, was reported to have enormous effects on methane production. But studies on shifts in the methanogen community in response to S. alterniflora invasion at temporal and spatial scales in the initial invasion years are rare. Sediments derived from the invasive species S. alterniflora and the native species Phragmites australis (P. australis) in pairwise sites and an invasion chronosequence patch (4 years) were analyzed to investigate the abundance and community structure of methanogens using quantitative real-time PCR (qPCR) and Denaturing gradient gel electrophoresis (DGGE) cloning of the methyl-coenzyme M reductase A (mcrA) gene. For the pairwise sites, the abundance of methanogens in S. alterniflora soils was lower than that of P. australis soils. For the chronosequence patch, the abundance and diversity of methanogens was highest in the soil subjected to two years invasion, in which we detected some rare groups including Methanocellales and Methanococcales. These results indicated a priming effect at the initial invasion stages of S. alterniflora for microorganisms in the soil, which was also supported by the diverse root exudates. The shifts of methanogen communities after S. alterniflora invasion were due to changes in pH, salinity and sulfate. The results indicate that root exudates from S. alterniflora have a priming effect on methanogens in the initial years after invasion, and the predominate methylotrophic groups (Methanosarcinales) may adapt to the availability of diverse substrates and reflects the potential for high methane production after invasion by S. alterniflora.


Assuntos
Metano/metabolismo , Methanobacteriaceae/metabolismo , Consórcios Microbianos/fisiologia , Plantas , Microbiologia do Solo , Biomassa , Enzimas de Restrição do DNA/genética , Ecossistema , Concentração de Íons de Hidrogênio , Ilhas , Metano/biossíntese , Methanobacteriaceae/genética , Methanococcales/genética , Methanococcales/isolamento & purificação , Methanococcales/metabolismo , Consórcios Microbianos/genética , Raízes de Plantas/microbiologia , Salinidade , Análise Espaço-Temporal , Sulfatos/metabolismo , Áreas Alagadas
5.
Biochemistry ; 55(46): 6445-6455, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27805378

RESUMO

NCKX1-5 are proteins involved in K+-dependent Na+/Ca2+ exchange in various signal tissues. Here we present a homology model of NCKX2 based on the crystal structure of the NCX_Mj transporter found in Methanoccocus jannaschii. Molecular dynamics simulations were performed on the resultant wild-type NCKX2 model and two mutants (D548N and D575N) loaded with either four Na+ ions or one Ca2+ ion and one K+ ion, in line with the experimentally observed transport stoichiometry. The selectivity of the active site in wild-type NCKX2 for Na+, K+, and Li+ and the electrostatic interactions of the positive Na+ ions in the negatively charged active site of wild-type NCKX2 and the two mutants were evaluated from free energy perturbation calculations. For validation of the homology model, our computational results were compared to available experimental data obtained from numerous prior functional studies. The NCKX2 homology model is in good agreement with the discussed experimental data and provides valuable insights into the structure of the active site, which is lined with acidic and polar residues. The binding of the potassium and calcium ions is accomplished via Asp 575 and 548, respectively. Mutation of these residues to Asn alters the functionality of NCKX2 because of the elimination of the favorable carboxylate-cation interactions. The knowledge obtained from the NCKX2 model can be transferred to other isoforms of the NCKX family: newly discovered pathological mutations in NCKX4 and NCKX5 affect residues that are involved in ion binding and/or transport according to our homology model.


Assuntos
Proteínas Arqueais/metabolismo , Cátions/metabolismo , Methanococcales/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação/genética , Cálcio/química , Cálcio/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Methanococcales/genética , Simulação de Dinâmica Molecular , Mutação , Potássio/química , Potássio/metabolismo , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/genética , Eletricidade Estática , Termodinâmica
6.
FEMS Microbiol Ecol ; 92(2)2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26712349

RESUMO

Although methanogens were recently discovered to occur in aerated soils, alpine regions have not been extensively studied for their presence so far. Here, the abundance of archaea and the methanogenic guilds Methanosarcinales, Methanococcales, Methanobacteriales, Methanomicrobiales and Methanocella spp. was studied at 16 coniferous forest and 14 grassland sites located at the montane and subalpine belts of the Northern Limestone Alps (calcareous) and the Austrian Central Alps (siliceous) using quantitative real-time PCR. Abundance of archaea, methanogens and the methanogenic potentials were significantly higher in grasslands than in forests. Furthermore, methanogenic potentials of calcareous soils were higher due to pH. Methanococcales, Methanomicrobiales and Methanocella spp. were detected in all collected samples, which indicates that they are autochthonous, while Methanobacteriales were absent from 4 out of 16 forest soils. Methanosarcinales were absent from 10 out of 16 forest soils and 2 out of 14 grassland soils. Nevertheless, together with Methanococcales they represented the majority of the 16S rRNA gene copies quantified from the grassland soils. Contrarily, forest soils were clearly dominated by Methanococcales. Our results indicate a higher diversity of methanogens in well-aerated soils than previously believed and that pH mainly influences their abundances and activities.


Assuntos
Metano/metabolismo , Methanobacteriales/metabolismo , Methanococcales/metabolismo , Methanomicrobiales/metabolismo , Methanosarcinales/metabolismo , Florestas , Pradaria , Methanobacteriales/classificação , Methanobacteriales/genética , Methanococcales/classificação , Methanococcales/genética , Methanomicrobiales/classificação , Methanomicrobiales/genética , Methanosarcinales/classificação , Methanosarcinales/genética , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Solo , Microbiologia do Solo
7.
Biochemistry ; 53(39): 6199-210, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25203397

RESUMO

Methanofuran (MF) is a coenzyme necessary for the first step of methanogenesis from CO2. The well-characterized MF core structure is 4-[N-(γ-l-glutamyl-γ-l-glutamyl)-p-(ß-aminoethyl)phenoxymethyl]-2-(aminomethyl)furan (APMF-γ-Glu2). Three different MF structures that differ on the basis of the composition of their side chains have been determined previously. Here, we use liquid chromatography coupled with high-resolution mass spectrometry and a variety of biochemical methods to deduce the unique structures of MFs present in four different methanogens in the order Methanococcales. This is the first detailed characterization of the MF occurring in methanogens of this order. MF in each of these organisms contains the expected APMF-γ-Glu2; however, the composition of the side chain is different from that of the previously described MF structures. In Methanocaldococcus jannaschii, additional γ-linked glutamates that range from 7 to 12 residues are present. The MF coenzymes in Methanococcus maripaludis, Methanococcus vannielii, and Methanothermococcus okinawensis also have additional glutamate residues but interestingly also contain a completely different chemical moiety in the middle of the side chain that we have identified as N-(3-carboxy-2- or 3-hydroxy-1-oxopropyl)-l-aspartic acid. This addition results in the terminal γ-linked glutamates being incorporated in the opposite orientation. In addition to these nonacylated MF coenzymes, we also identified the corresponding N-formyl-MF and, surprisingly, N-acetyl-MF derivatives. N-Acetyl-MF has never been observed or implied to be functioning in nature and may represent a new route for acetate formation in methanogens.


Assuntos
Coenzimas/química , Formiatos/química , Furanos/química , Methanococcales/química , Acetilação , Cromatografia Líquida , Coenzimas/metabolismo , Formiatos/metabolismo , Furanos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Methanococcales/classificação , Methanococcales/metabolismo , Modelos Químicos , Estrutura Molecular , Especificidade da Espécie
8.
Adv Biochem Eng Biotechnol ; 142: 1-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24240533

RESUMO

This chapter gives the reader a practical introduction into microbial enhanced oil recovery (MEOR) including the microbial production of natural gas from oil. Decision makers who consider the use of one of these technologies are provided with the required scientific background as well as with practical advice for upgrading an existing laboratory in order to conduct microbiological experiments. We believe that the conversion of residual oil into natural gas (methane) and the in situ production of biosurfactants are the most promising approaches for MEOR and therefore focus on these topics. Moreover, we give an introduction to the microbiology of oilfields and demonstrate that in situ microorganisms as well as injected cultures can help displace unrecoverable oil in place (OIP). After an initial research phase, the enhanced oil recovery (EOR) manager must decide whether MEOR would be economical. MEOR generally improves oil production but the increment may not justify the investment. Therefore, we provide a brief economical assessment at the end of this chapter. We describe the necessary state-of-the-art scientific equipment to guide EOR managers towards an appropriate MEOR strategy. Because it is inevitable to characterize the microbial community of an oilfield that should be treated using MEOR techniques, we describe three complementary start-up approaches. These are: (i) culturing methods, (ii) the characterization of microbial communities and possible bio-geochemical pathways by using molecular biology methods, and (iii) interfacial tension measurements. In conclusion, we hope that this chapter will facilitate a decision on whether to launch MEOR activities. We also provide an update on relevant literature for experienced MEOR researchers and oilfield operators. Microbiologists will learn about basic principles of interface physics needed to study the impact of microorganisms living on oil droplets. Last but not least, students and technicians trying to understand processes in oilfields and the techniques to examine them will, we hope, find a valuable source of information in this review.


Assuntos
Metano/metabolismo , Methanococcales/metabolismo , Methanomicrobiales/metabolismo , Methanosarcinales/metabolismo , Petróleo/metabolismo , Thermococcales/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Consórcios Microbianos/fisiologia , Gás Natural , Campos de Petróleo e Gás , Salinidade , Tensoativos/metabolismo , Temperatura
9.
Appl Environ Microbiol ; 79(3): 924-30, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23183975

RESUMO

We tested different alga-bacterium-archaeon consortia to investigate the production of oil-like mixtures, expecting that n-alkane-rich biofuels might be synthesized after pyrolysis. Thermosipho globiformans and Methanocaldococcus jannaschii were cocultured at 68°C with microalgae for 9 days under two anaerobic conditions, followed by pyrolysis at 300°C for 4 days. Arthrospira platensis (Cyanobacteria), Dunaliella tertiolecta (Chlorophyta), Emiliania huxleyi (Haptophyta), and Euglena gracilis (Euglenophyta) served as microalgal raw materials. D. tertiolecta, E. huxleyi, and E. gracilis cocultured with the bacterium and archaeon inhibited their growth and CH(4) production. E. huxleyi had the strongest inhibitory effect. Biofuel generation was enhanced by reducing impurities containing alkanenitriles during pyrolysis. The composition and amounts of n-alkanes produced by pyrolysis were closely related to the lipid contents and composition of the microalgae. Pyrolysis of A. platensis and D. tertiolecta containing mainly phospholipids and glycolipids generated short-carbon-chain n-alkanes (n-tridecane to n-nonadecane) and considerable amounts of isoprenoids. E. gracilis also produced mainly short n-alkanes. In contrast, E. huxleyi containing long-chain (31 and 33 carbon atoms) alkenes and very long-chain (37 to 39 carbon atoms) alkenones, in addition to phospholipids and glycolipids, generated a high yield of n-alkanes of various lengths (n-tridecane to n-pentatriacontane). The gas chromatography-mass spectrometry (GC-MS) profiles of these n-alkanes were similar to those of native petroleum crude oils despite containing a considerable amount of n-hentriacontane. The ratio of phytane to n-octadecane was also similar to that of native crude oils.


Assuntos
Alcanos/metabolismo , Bactérias/crescimento & desenvolvimento , Biocombustíveis , Methanococcales/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Consórcios Microbianos , Alcanos/química , Bactérias/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glicolipídeos/metabolismo , Temperatura Alta , Metano/metabolismo , Methanococcales/metabolismo , Microalgas/metabolismo , Fosfolipídeos/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(45): 18459-64, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091000

RESUMO

Despite the importance of Mg(2+) for numerous cellular activities, the mechanisms underlying its import and homeostasis are poorly understood. The CorA family is ubiquitous and is primarily responsible for Mg(2+) transport. However, the key questions-such as, the ion selectivity, the transport pathway, and the gating mechanism-have remained unanswered for this protein family. We present a 3.2 Å resolution structure of the archaeal CorA from Methanocaldococcus jannaschii, which is a unique complete structure of a CorA protein and reveals the organization of the selectivity filter, which is composed of the signature motif of this family. The structure reveals that polar residues facing the channel coordinate a partially hydrated Mg(2+) during the transport. Based on these findings, we propose a unique gating mechanism involving a helical turn upon the binding of Mg(2+) to the regulatory intracellular binding sites, and thus converting a polar ion passage into a narrow hydrophobic pore. Because the amino acids involved in the uptake, transport, and gating are all conserved within the entire CorA family, we believe this mechanism is general for the whole family including the eukaryotic homologs.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Ativação do Canal Iônico , Magnésio/metabolismo , Methanococcales/metabolismo , Sítios de Ligação , Transporte Biológico , Transporte de Íons , Íons , Modelos Moleculares
11.
J Biol Chem ; 287(23): 19418-28, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22496443

RESUMO

Box C/D RNA-protein complexes (RNPs) guide the 2'-O-methylation of nucleotides in both archaeal and eukaryotic ribosomal RNAs. The archaeal box C/D and C'/D' RNP subcomplexes are each assembled with three sRNP core proteins. The archaeal Nop56/58 core protein mediates crucial protein-protein interactions required for both sRNP assembly and the methyltransferase reaction by bridging the L7Ae and fibrillarin core proteins. The interaction of Methanocaldococcus jannaschii (Mj) Nop56/58 with the methyltransferase fibrillarin has been investigated using site-directed mutagenesis of specific amino acids in the N-terminal domain of Nop56/58 that interacts with fibrillarin. Extensive mutagenesis revealed an unusually strong Nop56/58-fibrillarin interaction. Only deletion of the NTD itself prevented dimerization with fibrillarin. The extreme stability of the Nop56/58-fibrillarin heterodimer was confirmed in both chemical and thermal denaturation analyses. However, mutations that did not affect Nop56/58 binding to fibrillarin or sRNP assembly nevertheless disrupted sRNP-guided nucleotide modification, revealing a role for Nop56/58 in methyltransferase activity. This conclusion was supported with the cross-linking of Nop56/58 to the target RNA substrate. The Mj Nop56/58 NTD was further characterized by solving its three-dimensional crystal structure to a resolution of 1.7 Å. Despite low primary sequence conservation among the archaeal Nop56/58 homologs, the overall structure of the archaeal NTD domain is very well conserved. In conclusion, the archaeal Nop56/58 NTD exhibits a conserved domain structure whose exceptionally stable interaction with fibrillarin plays a role in both RNP assembly and methyltransferase activity.


Assuntos
Proteínas Arqueais/química , Proteínas Cromossômicas não Histona/química , Methanococcales/química , Metiltransferases/química , Ribonucleoproteínas/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Methanococcales/genética , Methanococcales/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
13.
Science ; 335(6069): 686-90, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22323814

RESUMO

Sodium/calcium (Na(+)/Ca(2+)) exchangers (NCX) are membrane transporters that play an essential role in maintaining the homeostasis of cytosolic Ca(2+) for cell signaling. We demonstrated the Na(+)/Ca(2+)-exchange function of an NCX from Methanococcus jannaschii (NCX_Mj) and report its 1.9 angstrom crystal structure in an outward-facing conformation. Containing 10 transmembrane helices, the two halves of NCX_Mj share a similar structure with opposite orientation. Four ion-binding sites cluster at the center of the protein: one specific for Ca(2+) and three that likely bind Na(+). Two passageways allow for Na(+) and Ca(2+) access to the central ion-binding sites from the extracellular side. Based on the symmetry of NCX_Mj and its ability to catalyze bidirectional ion-exchange reactions, we propose a structure model for the inward-facing NCX_Mj.


Assuntos
Proteínas Arqueais/química , Cálcio/metabolismo , Methanococcales/química , Methanococcales/metabolismo , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Transporte de Íons , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína
14.
RNA ; 18(3): 412-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22274954

RESUMO

tRNAs from all three kingdoms of life contain a variety of modified nucleotides required for their stability, proper folding, and accurate decoding. One prominent example is the eponymous ribothymidine (rT) modification at position 54 in the T-arm of eukaryotic and bacterial tRNAs. In contrast, in most archaea this position is occupied by another hypermodified nucleotide: the isosteric N1-methylated pseudouridine. While the enzyme catalyzing pseudouridine formation at this position is known, the pseudouridine N1-specific methyltransferase responsible for this modification has not yet been experimentally identified. Here, we present biochemical and genetic evidence that the two homologous proteins, Mja_1640 (COG 1901, Pfam DUF358) and Hvo_1989 (Pfam DUF358) from Methanocaldococcus jannaschii and Haloferax volcanii, respectively, are representatives of the methyltransferase responsible for this modification. However, the in-frame deletion of the pseudouridine N1-methyltransferase gene in H. volcanii did not result in a discernable phenotype in line with similar observations for knockouts of other T-arm methylating enzymes.


Assuntos
Archaea/enzimologia , Archaea/genética , Pseudouridina/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Pareamento de Bases , Sequência de Bases , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Técnicas de Inativação de Genes , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Methanococcales/genética , Methanococcales/metabolismo , Metilação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Conformação Proteica , RNA de Transferência/química , Alinhamento de Sequência , tRNA Metiltransferases/genética
15.
RNA ; 18(3): 421-33, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22274953

RESUMO

The methylation of pseudouridine (Ψ) at position 54 of tRNA, producing m(1)Ψ, is a hallmark of many archaeal species, but the specific methylase involved in the formation of this modification had yet to be characterized. A comparative genomics analysis had previously identified COG1901 (DUF358), part of the SPOUT superfamily, as a candidate for this missing methylase family. To test this prediction, the COG1901 encoding gene, HVO_1989, was deleted from the Haloferax volcanii genome. Analyses of modified base contents indicated that while m(1)Ψ was present in tRNA extracted from the wild-type strain, it was absent from tRNA extracted from the mutant strain. Expression of the gene encoding COG1901 from Halobacterium sp. NRC-1, VNG1980C, complemented the m(1)Ψ minus phenotype of the ΔHVO_1989 strain. This in vivo validation was extended with in vitro tests. Using the COG1901 recombinant enzyme from Methanocaldococcus jannaschii (Mj1640), purified enzyme Pus10 from M. jannaschii and full-size tRNA transcripts or TΨ-arm (17-mer) fragments as substrates, the sequential pathway of m(1)Ψ54 formation in Archaea was reconstituted. The methylation reaction is AdoMet dependent. The efficiency of the methylase reaction depended on the identity of the residue at position 55 of the TΨ-loop. The presence of Ψ55 allowed the efficient conversion of Ψ54 to m(1)Ψ54, whereas in the presence of C55, the reaction was rather inefficient and no methylation reaction occurred if a purine was present at this position. These results led to renaming the Archaeal COG1901 members as TrmY proteins.


Assuntos
Archaea/enzimologia , Archaea/genética , Transferases Intramoleculares/metabolismo , RNA Arqueal/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Pareamento de Bases , Sequência de Bases , Deleção de Genes , Genes Arqueais , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Sequências Repetidas Invertidas/genética , Methanococcales/genética , Methanococcales/metabolismo , Metilação , Filogenia , Conformação Proteica , Pseudouridina/análogos & derivados , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA , RNA Arqueal/química , RNA de Transferência/química
16.
Bioconjug Chem ; 22(7): 1345-53, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21692528

RESUMO

Two nucleotide-based probes were designed and synthesized in order to enrich samples for specific classes of proteins by affinity-based protein profiling. We focused on the profiling of adenine nucleotide-binding proteins. Two properties were considered in the design of the probes: the bait needs to bind adenine nucleotide-binding proteins with high affinity and carry a second functional group suitable and easily accessible for coupling to a chromatography resin. For this purpose, we synthesized p-biotinyl amidobenzoic acid-ATP (p-BABA-ATP) and p-biotinyl aminomethylbenzoic acid-ATP (p-BAMBA-ATP). p-BABA-ATP and p-BAMBA-ATP both bind to ATP-binding cassette (ABC) proteins with at least 10-fold higher affinity than ATP. Several ABC transporters could be enriched using p-BABA-ATP or p-BAMBA-ATP.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Nucleotídeos de Adenina/química , Trifosfato de Adenosina/química , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Lactococcus lactis/metabolismo , Nucleotídeos de Adenina/síntese química , Nucleotídeos de Adenina/metabolismo , Methanococcales/metabolismo , Modelos Moleculares , Ligação Proteica , Sulfolobus solfataricus/metabolismo
17.
Orig Life Evol Biosph ; 41(4): 347-56, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21431891

RESUMO

We critically examine the proposal by Wächtershäuser (Prokaryotes 1:275-283, 2006a, Philos Trans R Soc Lond B Biol Sci 361: 787-1808, 2006b) that putative transition metal binding sites in protein components of the translation machinery of hyperthermophiles provide evidence of a direct relationship with the FeS clusters of pyrite and thus indicate an autotrophic origin of life in volcanic environments. Analysis of completely sequenced cellular genomes of Bacteria, Archaea and Eucarya does not support the suggestion by Wächtershäuser (Prokaryotes 1:275-283, 2006a, Philos Trans R Soc Lond B Biol Sci 361: 787-1808, 2006b) that aminoacyl-tRNA synthetases and ribosomal proteins bear sequence signatures typical of strong covalent metal bonding whose absence in mesophilic species reveals a process of adaptation towards less extreme environments.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Coenzimas/metabolismo , Ferro/metabolismo , Metaloproteínas/metabolismo , Origem da Vida , Sulfetos/metabolismo , Aminoacil-tRNA Sintetases/genética , Cátions Bivalentes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Arqueal , Genoma Bacteriano , Methanococcales/genética , Methanococcales/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Zinco/metabolismo , Dedos de Zinco
18.
Proc Natl Acad Sci U S A ; 108(4): 1320-5, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21224416

RESUMO

The site-selective encoding of noncanonical amino acids (NAAs) is a powerful technique for the installation of novel chemical functional groups in proteins. This is often achieved by recoding a stop codon and requires two additional components: an evolved aminoacyl tRNA synthetase (AARS) and a cognate tRNA. Analysis of the most successful AARSs reveals common characteristics. The highest fidelity NAA systems derived from the Methanocaldococcus jannaschii tyrosyl AARS feature specific mutations to two residues reported to interact with the hydroxyl group of the substrate tyrosine. We demonstrate that the restoration of just one of these determinants for amino acid specificity results in the loss of fidelity as the evolved AARSs become noticeably promiscuous. These results offer a partial explanation of a recently retracted strategy for the synthesis of glycoproteins. Similarly, we reinvestigated a tryptophanyl AARS reported to allow the site-selective incorporation of 5-hydroxy tryptophan within mammalian cells. In multiple experiments, the enzyme displayed elements of promiscuity despite its previous characterization as a high fidelity enzyme. Given the many similarities of the TyrRSs and TrpRSs reevaluated here, our findings can be largely combined, and in doing so they reinforce the long-established central dogma regarding the molecular basis by which these enzymes contribute to the fidelity of translation. Thus, our view is that the central claims of fidelity reported in several NAA systems remain unproven and unprecedented.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Código Genético/genética , RNA de Transferência de Tirosina/metabolismo , Tirosina/metabolismo , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Anticódon/genética , Anticódon/metabolismo , Sequência de Bases , Calorimetria/métodos , Cristalografia por Raios X , Ligação de Hidrogênio , Methanococcales/enzimologia , Methanococcales/genética , Methanococcales/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Transferência de Tirosina/genética , Especificidade por Substrato , Tirosina/química , Tirosina/genética
19.
Transcription ; 2(6): 254-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22223047

RESUMO

The TFIIB linker domain stimulates the catalytic activity of archaeal RNAP. By characterising a range of super-stimulating mutants we identified a novel rate-limiting step in transcription initiation. Our results help to interpret structural findings and pave the way towards higher-resolution structures of the RNAP-TFIIB linker interface.


Assuntos
Proteínas Arqueais/química , Estrutura Terciária de Proteína , Fator de Transcrição TFIIB/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Methanococcales/genética , Methanococcales/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica
20.
Mol Biol Evol ; 27(12): 2716-32, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20581330

RESUMO

Genes encoding DNA replication proteins have been frequently exchanged between cells and mobile elements, such as viruses or plasmids. This raises potential problems to reconstruct their history. Here, we combine phylogenetic and genomic context analyses to study the evolution of the replicative minichromosome maintenance (MCM) helicases in Archaea. Several archaeal genomes encode more than one copy of the mcm gene. Genome context analysis reveals that most of these additional copies are encoded within mobile elements. Exhaustive analysis of these elements reveals diverse groups of integrated archaeal plasmids or viruses, including several head-and-tail proviruses. Some MCMs encoded by mobile elements are structurally distinct from their cellular counterparts, with one case of novel domain organization. Both genome context and phylogenetic analysis indicate that MCM encoded by mobile elements were recruited from cellular genomes. An accelerated evolution and a dramatic expansion of methanococcal MCMs suggest a host-to-virus-to-host transfer loop, possibly triggered by the loss of the archaeal initiator protein Cdc6 in Methanococcales. Surprisingly, despite extensive transfer of mcm genes between viruses, plasmids, and cells, the topology of the MCM tree is strikingly congruent with the consensus archaeal phylogeny, indicating that mobile elements encoding mcm have coevolved with their hosts and that DNA replication proteins can be also useful to reconstruct the history of the archaeal domain.


Assuntos
Archaea/genética , DNA Helicases/genética , Replicação do DNA , Genes Arqueais , Sequências Repetitivas Dispersas , Archaea/enzimologia , Proteínas Arqueais/genética , Evolução Biológica , DNA Helicases/metabolismo , Methanococcales/genética , Methanococcales/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...