Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.440
Filtrar
1.
J Am Chem Soc ; 145(51): 28216-28223, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100472

RESUMO

The sulfosugar sulfoquinovose (SQ) is produced by photosynthetic plants, algae, and cyanobacteria on a scale of 10 billion tons per annum. Its degradation, which is essential to allow cycling of its constituent carbon and sulfur, involves specialized glycosidases termed sulfoquinovosidases (SQases), which release SQ from sulfolipid glycoconjugates, so SQ can enter catabolism pathways. However, many SQ catabolic gene clusters lack a gene encoding a classical SQase. Here, we report the discovery of a new family of SQases that use an atypical oxidoreductive mechanism involving NAD+ as a catalytic cofactor. Three-dimensional X-ray structures of complexes with SQ and NAD+ provide insight into the catalytic mechanism, which involves transient oxidation at C3. Bioinformatic survey reveals this new family of NAD+-dependent SQases occurs within sulfoglycolytic and sulfolytic gene clusters that lack classical SQases and is distributed widely including within Roseobacter clade bacteria, suggesting an important contribution to marine sulfur cycling.


Assuntos
Redes e Vias Metabólicas , NAD , NAD/metabolismo , Metilglucosídeos/química , Metilglucosídeos/metabolismo , Plantas , Enxofre/metabolismo
2.
Structure ; 31(3): 244-252.e4, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36805128

RESUMO

Sulfoquinovose (SQ) is a key component of plant sulfolipids (sulfoquinovosyl diacylglycerols) and a major environmental reservoir of biological sulfur. Breakdown of SQ is achieved by bacteria through the pathways of sulfoglycolysis. The sulfoglycolytic sulfofructose transaldolase (sulfo-SFT) pathway is used by gut-resident firmicutes and soil saprophytes. After isomerization of SQ to sulfofructose (SF), the namesake enzyme catalyzes the transaldol reaction of SF transferring dihydroxyacetone to 3C/4C acceptors to give sulfolactaldehyde and fructose-6-phosphate or sedoheptulose-7-phosphate. We report the 3D cryo-EM structure of SF transaldolase from Bacillus megaterium in apo and ligand bound forms, revealing a decameric structure formed from two pentameric rings of the protomer. We demonstrate a covalent "Schiff base" intermediate formed by reaction of SF with Lys89 within a conserved Asp-Lys-Glu catalytic triad and defined by an Arg-Trp-Arg sulfonate recognition triad. The structural characterization of the signature enzyme of the sulfo-SFT pathway provides key insights into molecular recognition of the sulfonate group of sulfosugars.


Assuntos
Frutose-Bifosfato Aldolase , Transaldolase , Transaldolase/química , Transaldolase/metabolismo , Frutose-Bifosfato Aldolase/química , Metilglucosídeos/química , Metilglucosídeos/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074914

RESUMO

Catabolism of sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose), the ubiquitous sulfosugar produced by photosynthetic organisms, is an important component of the biogeochemical carbon and sulfur cycles. Here, we describe a pathway for SQ degradation that involves oxidative desulfurization to release sulfite and enable utilization of the entire carbon skeleton of the sugar to support the growth of the plant pathogen Agrobacterium tumefaciens SQ or its glycoside sulfoquinovosyl glycerol are imported into the cell by an ATP-binding cassette transporter system with an associated SQ binding protein. A sulfoquinovosidase hydrolyzes the SQ glycoside and the liberated SQ is acted on by a flavin mononucleotide-dependent sulfoquinovose monooxygenase, in concert with an NADH-dependent flavin reductase, to release sulfite and 6-oxo-glucose. An NAD(P)H-dependent oxidoreductase reduces the 6-oxo-glucose to glucose, enabling entry into primary metabolic pathways. Structural and biochemical studies provide detailed insights into the recognition of key metabolites by proteins in this pathway. Bioinformatic analyses reveal that the sulfoquinovose monooxygenase pathway is distributed across Alpha- and Betaproteobacteria and is especially prevalent within the Rhizobiales order. This strategy for SQ catabolism is distinct from previously described pathways because it enables the complete utilization of all carbons within SQ by a single organism with concomitant production of inorganic sulfite.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Redes e Vias Metabólicas , Metilglucosídeos/metabolismo , Estresse Oxidativo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Metabolismo dos Carboidratos , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Enxofre/metabolismo
4.
Biochem Biophys Res Commun ; 533(4): 1109-1114, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33036753

RESUMO

Sulfoquinovose (6-deoxy-6-sulfoglucose, SQ) is a component of sulfolipids found in the photosynthetic membranes of plants and other photosynthetic organisms, and is one of the most abundant organosulfur compounds in nature. Microbial degradation of SQ, termed sulfoglycolysis, constitutes an important component of the biogeochemical sulfur cycle. Two sulfoglycolysis pathways have been reported, with one resembling the Embden-Meyerhof-Parnas (sulfo-EMP) pathway, and the other resembling the Entner-Doudoroff (sulfo-ED) pathway. Here we report a third sulfoglycolysis pathway in the bacterium Bacillus megaterium DSM 1804, in which sulfosugar cleavage is catalyzed by the transaldolase SqvA, which converts 6-deoxy-6-sulfofructose and glyceraldehyde 3-phosphate into fructose -6-phosphate and (S)-sulfolactaldehyde. Variations of this transaldolase-dependent sulfoglycolysis (sulfo-TAL) pathway are present in diverse bacteria, and add to the diversity of mechanisms for the degradation of this abundant organosulfur compound.


Assuntos
Bacillus megaterium/metabolismo , Glicólise , Redes e Vias Metabólicas , Metilglucosídeos/metabolismo , Transaldolase/metabolismo , Bacillus megaterium/enzimologia , Cromatografia Líquida , Biologia Computacional , Expressão Gênica , Glicólise/genética , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Família Multigênica , Filogenia
5.
Proc Natl Acad Sci U S A ; 117(27): 15599-15608, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571930

RESUMO

2(S)-dihydroxypropanesulfonate (DHPS) is a microbial degradation product of 6-deoxy-6-sulfo-d-glucopyranose (sulfoquinovose), a component of plant sulfolipid with an estimated annual production of 1010 tons. DHPS is also at millimolar levels in highly abundant marine phytoplankton. Its degradation and sulfur recycling by microbes, thus, play important roles in the biogeochemical sulfur cycle. However, DHPS degradative pathways in the anaerobic biosphere are not well understood. Here, we report the discovery and characterization of two O2-sensitive glycyl radical enzymes that use distinct mechanisms for DHPS degradation. DHPS-sulfolyase (HpsG) in sulfate- and sulfite-reducing bacteria catalyzes C-S cleavage to release sulfite for use as a terminal electron acceptor in respiration, producing H2S. DHPS-dehydratase (HpfG), in fermenting bacteria, catalyzes C-O cleavage to generate 3-sulfopropionaldehyde, subsequently reduced by the NADH-dependent sulfopropionaldehyde reductase (HpfD). Both enzymes are present in bacteria from diverse environments including human gut, suggesting the contribution of enzymatic radical chemistry to sulfur flux in various anaerobic niches.


Assuntos
Alcanossulfonatos/metabolismo , Anaerobiose , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Biologia Computacional , Ensaios Enzimáticos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/toxicidade , Metilglucosídeos/metabolismo , Enxofre/metabolismo
6.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32444469

RESUMO

Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living Rhizobium leguminosarum SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil.IMPORTANCE Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, Rhizobium leguminosarum SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.


Assuntos
Proteínas de Bactérias/metabolismo , Glicerol/metabolismo , Metilglucosídeos/metabolismo , Proteoma/metabolismo , Rhizobium leguminosarum/metabolismo , Proteômica
7.
Nature ; 580(7804): 511-516, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322067

RESUMO

The taste of sugar is one of the most basic sensory percepts for humans and other animals. Animals can develop a strong preference for sugar even if they lack sweet taste receptors, indicating a mechanism independent of taste1-3. Here we examined the neural basis for sugar preference and demonstrate that a population of neurons in the vagal ganglia and brainstem are activated via the gut-brain axis to create preference for sugar. These neurons are stimulated in response to sugar but not artificial sweeteners, and are activated by direct delivery of sugar to the gut. Using functional imaging we monitored activity of the gut-brain axis, and identified the vagal neurons activated by intestinal delivery of glucose. Next, we engineered mice in which synaptic activity in this gut-to-brain circuit was genetically silenced, and prevented the development of behavioural preference for sugar. Moreover, we show that co-opting this circuit by chemogenetic activation can create preferences to otherwise less-preferred stimuli. Together, these findings reveal a gut-to-brain post-ingestive sugar-sensing pathway critical for the development of sugar preference. In addition, they explain the neural basis for differences in the behavioural effects of sweeteners versus sugar, and uncover an essential circuit underlying the highly appetitive effects of sugar.


Assuntos
Encéfalo/fisiologia , Comportamento de Escolha/fisiologia , Açúcares da Dieta/metabolismo , Preferências Alimentares/fisiologia , Glucose/metabolismo , Intestinos/fisiologia , Animais , Encéfalo/citologia , Açúcares da Dieta/química , Glucose/análogos & derivados , Glucose/química , Masculino , Metilglucosídeos/química , Metilglucosídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Paladar/fisiologia , Tiazinas/metabolismo , Água/metabolismo
8.
J Microbiol ; 58(2): 163-172, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993989

RESUMO

α-Glucosidase is a crucial enzyme for the production of isomaltooligosaccharide. In this study, a novel method comprising eosin Y (EY) and α-D-methylglucoside (AMG) in glass plates was tested for the primary screening of α-glucosidaseproducing strains. First, α-glucosidase-producing Aspergillus niger strains were selected on plates containing EY and AMG based on transparent zone formation resulting from the solubilization of EY by the hydrolyzed product. Conventional methods that use trypan blue (TB) and p-nitrophenyl-α-D-glucopyranoside (pPNP) as indicators were then compared with the new strategy. The results showed that EY-containing plates provide the advantages of low price and higher specificity for the screening of α-glucosidase-producing strains. We then evaluated the correlation between the hydrolytic activity of α-glucosidase and diffusion distance, and found that good linearity could be established within a 6-75 U/ml enzyme concentration range. Finally, the hydrolytic and transglycosylation activities of α-glucosidase obtained from the target isolates were determined by EY plate assay and 3,5-dinitrosalicylic acid-Saccharomyces cerevisiae assay, respectively. The results showed that the diameter of the transparent zone varied among isolates was positively correlated with α-glucosidase hydrolytic activity, while good linearity could also be established between α-glucosidase transglycosylation activity and non-fermentable reducing sugars content. With this strategy, 7 Aspergillus niger mutants with high yield of α-glucosidase from 200 obvious single colonies on the primary screen plate were obtained.


Assuntos
Aspergillus niger/metabolismo , alfa-Glucosidases/biossíntese , Amarelo de Eosina-(YS)/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Hidrólise , Metilglucosídeos/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
Microbiology (Reading) ; 165(1): 78-89, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30372406

RESUMO

The binding sites of YihW, an uncharacterized DeoR-family transcription factor (TF) of Escherichia coli K-12, were identified using Genomic SELEX screening at two closely located sites, one inside the spacer between the bidirectional transcription units comprising the yihUTS operon and the yihV gene, and another one upstream of the yihW gene itself. Recently the YihUTS and YihV proteins were identified as catalysing the catabolism of sulfoquinovose (SQ), a hydrolysis product of sulfoquinovosyl diacylglycerol (SQDG) derived from plants and other photosynthetic organisms. Gel shift assay in vitro and reporter assay in vivo indicated that YihW functions as a repressor for all three transcription units. De-repression of the yih operons was found to be under the control of SQ as inducer, but not of lactose, glucose or galactose. Furthermore, a mode of its cooperative DNA binding was suggested for YihW by atomic force microscopy. Hence, as a regulator of the catabolism of SQ, we renamed YihW as CsqR.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Metilglucosídeos/metabolismo , Proteínas Repressoras/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Repressoras/genética , Açúcares/metabolismo , Transcrição Gênica
10.
J Cell Physiol ; 234(4): 4352-4361, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30246472

RESUMO

We have previously demonstrated in Caco-2 cells that tumor necrosis factor-α (TNF-α) inhibits sugar uptake, acting from the apical membrane, by decreasing the expression of the Na+ -glucose cotransporter SGLT1 in the brush border membrane. The goal was to investigate the hypothesis that TNF-α from abdominal adipose tissue (adipocytes and macrophages) would decrease sugar and amino acid transport acting from the basolateral membrane of the enterocytes. TNF-α placed in the basal compartment of Caco-2 cells decreased α-methyl- d-glucose (αMG) and glutamine uptake. The apical medium derived from these Caco-2 cells apically placed in another set of cells, also reduced sugar and glutamine transport. Reverse-transcription polymerase chain reaction analysis demonstrated upregulation of TNF-α, IL-1ß, and MCP1 expression in Caco-2 cells exposed to basal TNF-α. Similarly, αMG uptake was inhibited after Caco-2 cells were incubated, in the basal compartment, with medium from visceral human mesenchymal stem cells-derived adipocytes of overweight individuals. The apical medium collected from those Caco-2 cells, and placed in the upper side of other set of cells, also decreased sugar uptake. Basal presence of medium derived from lipopolysaccharide-activated macrophages and nonactivated macrophages decreased αMG uptake as well. Diet-induced obese mice showed an increase in the visceral adipose tissue surrounding the intestine. In this physiological condition, there was a reduction on αMG uptake in jejunal everted rings. Altogether, these results suggest that basolateral TNF-α, which can be produced by adipocytes and macrophages during obesity, would be able to activate TNF-α and other proinflammatory proteins expression in the small intestine and diminish intestinal sugar and amino acids transport.


Assuntos
Adipócitos/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Metilglucosídeos/metabolismo , Comunicação Parácrina , Transportador 1 de Glucose-Sódio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células CACO-2 , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Glutamina/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Via Secretória , Transdução de Sinais , Células THP-1 , Fator de Necrose Tumoral alfa/genética
11.
J Cell Physiol ; 234(4): 4396-4408, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30352123

RESUMO

GLUT12 was cloned from the mammary cancer cell line MCF-7, but its physiological role still needs to be elucidated. To gain more knowledge of GLUT12 function in the intestine, we investigated GLUT12 subcellular localization in the small intestine and its regulation by sugars, hormones, and intracellular mediators in Caco-2 cells and mice. Immunohistochemical methods were used to determine GLUT12 subcellular localization in human and murine small intestine. Brush border membrane vesicles were isolated for western blot analyses. Functional studies were performed in Caco-2 cells by measuring α-methyl-d-glucose (αMG) uptake in the absence of sodium. GLUT12 is located in the apical cytoplasm, below the brush border membrane, and in the perinuclear region of murine and human enterocytes. In Caco-2 cells, GLUT12 translocation to the apical membrane and α-methyl- d-glucose uptake by the transporter are stimulated by protons, glucose, insulin, tumor necrosis factor-α (TNF-α), protein kinase C, and AMP-activated protein kinase. In contrast, hypoxia decreases GLUT12 expression in the apical membrane. Upregulation of TNF-α and hypoxia-inducible factor-1α ( HIF-1α) genes is found in the jejunal mucosa of diet-induced obese mice. In these animals, GLUT12 expression in the brush border membrane is slightly decreased compared with lean animals. Moreover, an intraperitoneal injection of insulin does not induce GLUT12 translocation to the membrane, as it occurs in lean animals. GLUT12 rapid translocation to the enterocytes' apical membrane in response to glucose and insulin could be related to GLUT12 participation in sugar absorption during postprandial periods. In obesity, in which insulin sensitivity is reduced, the contribution of GLUT12 to sugar absorption is affected.


Assuntos
Colo/metabolismo , Enterócitos/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Absorção Intestinal , Intestino Delgado/metabolismo , Metilglucosídeos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células CACO-2 , Hipóxia Celular , Colo/citologia , Colo/efeitos dos fármacos , Modelos Animais de Doenças , Enterócitos/efeitos dos fármacos , Regulação da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Insulina/farmacologia , Intestino Delgado/citologia , Intestino Delgado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Proteína Quinase C/metabolismo , Transporte Proteico , Ratos Wistar , Fator de Necrose Tumoral alfa/farmacologia
12.
Biochem J ; 475(7): 1371-1383, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29535276

RESUMO

Bacterial sulfoglycolytic pathways catabolize sulfoquinovose (SQ), or glycosides thereof, to generate a three-carbon metabolite for primary cellular metabolism and a three-carbon sulfonate that is expelled from the cell. Sulfoglycolytic operons encoding an Embden-Meyerhof-Parnas-like or Entner-Doudoroff (ED)-like pathway harbor an uncharacterized gene (yihR in Escherichia coli; PpSQ1_00415 in Pseudomonas putida) that is up-regulated in the presence of SQ, has been annotated as an aldose-1-epimerase and which may encode an SQ mutarotase. Our sequence analyses and structural modeling confirmed that these proteins possess mutarotase-like active sites with conserved catalytic residues. We overexpressed the homolog from the sulfo-ED operon of Herbaspirillum seropedicaea (HsSQM) and used it to demonstrate SQ mutarotase activity for the first time. This was accomplished using nuclear magnetic resonance exchange spectroscopy, a method that allows the chemical exchange of magnetization between the two SQ anomers at equilibrium. HsSQM also catalyzed the mutarotation of various aldohexoses with an equatorial 2-hydroxy group, including d-galactose, d-glucose, d-glucose-6-phosphate (Glc-6-P), and d-glucuronic acid, but not d-mannose. HsSQM displayed only 5-fold selectivity in terms of efficiency (kcat/KM) for SQ versus the glycolysis intermediate Glc-6-P; however, its proficiency [kuncat/(kcat/KM)] for SQ was 17 000-fold better than for Glc-6-P, revealing that HsSQM preferentially stabilizes the SQ transition state.


Assuntos
Carboidratos Epimerases/metabolismo , Herbaspirillum/enzimologia , Espectroscopia de Ressonância Magnética/métodos , Metilglucosídeos/metabolismo , Sequência de Aminoácidos , Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Glicólise , Cinética , Modelos Moleculares , Conformação Proteica , Homologia de Sequência
13.
Sci Rep ; 8(1): 3177, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453395

RESUMO

Comparative genomics analysis of conserved gene cassettes demonstrated resemblance between a recently described cassette of genes involved in sulphoquinovose degradation in Escherichia coli K-12 MG1655 and a Bacilli cassette linked with lactose degradation. Six genes from both cassettes had similar functions related to carbohydrate metabolism, namely, hydrolase, aldolase, kinase, isomerase, transporter, and transcription factor. The Escherichia coli sulphoglycolysis cassette was thus predicted to be associated with lactose degradation. This prediction was confirmed experimentally: expression of genes coding for aldolase (yihT), isomerase (yihS), and kinase (yihV) was dramatically increased during growth on lactose. These genes were previously shown to be activated during growth on sulphoquinovose, so our observation may indicate multi-functional capabilities of the respective proteins. Transcription starts for yihT, yihV and yihW were mapped in silico, in vitro and in vivo. Out of three promoters for yihT, one was active only during growth on lactose. We further showed that switches in yihT transcription are controlled by YihW, a DeoR-family transcription factor in the Escherichia coli cassette. YihW acted as a carbon source-dependent dual regulator involved in sustaining the baseline growth in the absence of lac-operon, with function either complementary, or opposite to a global regulator of carbohydrate metabolism, cAMP-CRP.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos/genética , Lactose/metabolismo , Metilglucosídeos/metabolismo , Mapeamento Cromossômico , Escherichia coli/enzimologia , Transcrição Gênica
14.
J Cell Physiol ; 233(3): 2426-2433, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28771713

RESUMO

The aim of the present work was to investigate in Caco-2 cells whether eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, could block the inhibitory effect of tumor necrosis factor-α (TNF-α) on sugar transport, and identify the intracellular signaling pathways involved. After pre-incubation of the Caco-2 cells with TNF-α and EPA for 1 hr, EPA prevented the inhibitory effect of the cytokine on α-methyl-d-glucose (αMG) uptake (15 min) and on SGLT1 expression at the brush border membrane, measured by Western blot. The ERK1/2 inhibitor PD98059 and the AMPK activator AICAR also prevented the inhibitory effect of TNF-α on both αMG uptake and SGLT1 expression. Interestingly, the AMPK inhibitor, Compound C, abolished the ability of EPA to prevent TNF-α-induced reduction of sugar uptake and transporter expression. The GPR120 antagonist, AH7614, also blocked the preventive effect of EPA on TNF-α-induced decrease of αMG uptake and AMPK phosphorylation. In summary, TNF-α inhibits αMG uptake by decreasing SGLT1 expression in the brush border membrane through the activation of ERK1/2 pathway. EPA prevents the inhibitory effect of TNF-α through the involvement of GPR120 and AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Açúcares da Dieta/metabolismo , Ácido Eicosapentaenoico/farmacologia , Células Epiteliais/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Metilglucosídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , Transporte Biológico , Células CACO-2 , Ativação Enzimática , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Transdução de Sinais , Transportador 1 de Glucose-Sódio/metabolismo
15.
Am J Physiol Renal Physiol ; 313(2): F467-F474, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28592437

RESUMO

The cotransporter SGLT2 is responsible for 90% of renal glucose reabsorption, and we recently showed that MAP17 appears to work as a required ß-subunit. We report in the present study a detailed functional characterization of human SGLT2 in coexpression with human MAP17 in Xenopus laevis oocytes. Addition of external glucose generates a large inward current in the presence of Na, confirming an electrogenic transport mechanism. At a membrane potential of -50 mV, SGLT2 affinity constants for glucose and Na are 3.4 ± 0.4 and 18 ± 6 mM, respectively. The change in the reversal potential of the cotransport current as a function of external glucose concentration clearly confirms a 1:1 Na-to-glucose transport stoichiometry. SGLT2 is selective for glucose and α-methylglucose but also transports, to a lesser extent, galactose and 3-O-methylglucose. SGLT2 can be inhibited in a competitive manner by phlorizin (Ki = 31 ± 4 nM) and by dapagliflozin (Ki = 0.75 ± 0.3 nM). Similarly to SGLT1, SGLT2 can be activated by Na, Li, and protons. Pre-steady-state currents for SGLT2 do exist but are small in amplitude and relatively fast (a time constant of ~2 ms). The leak current defined as the phlorizin-sensitive current in the absence of substrate was extremely small in the case of SGLT2. In summary, in comparison with SGLT1, SGLT2 has a lower affinity for glucose, a transport stoichiometry of 1:1, very small pre-steady-state and leak currents, a 10-fold higher affinity for phlorizin, and an affinity for dapagliflozin in the subnanomolar range.


Assuntos
Glucose/metabolismo , Rim/metabolismo , Proteínas de Membrana/metabolismo , Reabsorção Renal , Transportador 2 de Glucose-Sódio/metabolismo , Sódio/metabolismo , 3-O-Metilglucose/metabolismo , Animais , Compostos Benzidrílicos/farmacologia , Transporte Biológico , Relação Dose-Resposta a Droga , Galactose , Glucosídeos/farmacologia , Humanos , Rim/efeitos dos fármacos , Cinética , Potenciais da Membrana , Proteínas de Membrana/genética , Metilglucosídeos/metabolismo , Florizina/farmacologia , Reabsorção Renal/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/genética , Inibidores do Transportador 2 de Sódio-Glicose , Xenopus laevis
16.
Diabetes ; 66(8): 2144-2149, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28385801

RESUMO

Intestinal glucose stimulates secretion of the incretin hormone glucagon-like peptide 1 (GLP-1). The mechanisms underlying this pathway have not been fully investigated in humans. In this study, we showed that a 30-min intraduodenal glucose infusion activated half of all duodenal L cells in humans. This infusion was sufficient to increase plasma GLP-1 levels. With an ex vivo model using human gut tissue specimens, we showed a dose-responsive GLP-1 secretion in the ileum at ≥200 mmol/L glucose. In ex vivo tissue from the duodenum and ileum, but not the colon, 300 mmol/L glucose potently stimulated GLP-1 release. In the ileum, this response was independent of osmotic influences and required delivery of glucose via GLUT2 and mitochondrial metabolism. The requirement of voltage-gated Na+ and Ca2+ channel activation indicates that membrane depolarization occurs. KATP channels do not drive this, as tolbutamide did not trigger release. The sodium-glucose cotransporter 1 (SGLT1) substrate α-MG induced secretion, and the response was blocked by the SGLT1 inhibitor phlorizin or by replacement of extracellular Na+ with N-methyl-d-glucamine. This is the first report of the mechanisms underlying glucose-induced GLP-1 secretion from human small intestine. Our findings demonstrate a dominant role of SGLT1 in controlling glucose-stimulated GLP-1 release in human ileal L cells.


Assuntos
Duodeno/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/administração & dosagem , Íleo/metabolismo , Edulcorantes/administração & dosagem , Canais de Cálcio/fisiologia , Relação Dose-Resposta a Droga , Glucose/fisiologia , Transportador de Glucose Tipo 2/fisiologia , Glutamatos/metabolismo , Humanos , Infusões Parenterais , Metilglucosídeos/metabolismo , Mitocôndrias/metabolismo , Florizina/metabolismo , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/metabolismo
17.
Biochem J ; 474(5): 827-849, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28219973

RESUMO

The sulfonated carbohydrate sulfoquinovose (SQ) is produced in quantities estimated at some 10 billion tonnes annually and is thus a major participant in the global sulfur biocycle. SQ is produced by most photosynthetic organisms and incorporated into the sulfolipid sulfoquinovosyl diacylglycerol (SQDG), as well as within some archaea for incorporation into glycoprotein N-glycans. SQDG is found mainly within the thylakoid membranes of the chloroplast, where it appears to be important for membrane structure and function and for optimal activity of photosynthetic protein complexes. SQDG metabolism within the sulfur cycle involves complex biosynthetic and catabolic processes. SQDG biosynthesis is largely conserved within plants, algae and bacteria. On the other hand, two major sulfoglycolytic pathways have been discovered for SQDG degradation, the sulfo-Embden-Meyerhof-Parnas (sulfo-EMP) and sulfo-Entner-Doudoroff (sulfo-ED) pathways, which mirror the major steps in the glycolytic EMP and ED pathways. Sulfoglycolysis produces C3-sulfonates, which undergo biomineralization to inorganic sulfur species, completing the sulfur cycle. This review discusses the discovery and structural elucidation of SQDG and archaeal N-glycans, the occurrence, distribution, and speciation of SQDG, and metabolic pathways leading to the biosynthesis of SQDG and its catabolism through sulfoglycolytic and biomineralization pathways to inorganic sulfur.


Assuntos
Glicolipídeos/metabolismo , Metilglucosídeos/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Enxofre/metabolismo , Tilacoides/metabolismo , Archaea/metabolismo , Cianobactérias/metabolismo , Citocromos/química , Citocromos/metabolismo , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Glicolipídeos/química , Lipídeos/química , Redes e Vias Metabólicas , Metilglucosídeos/química , Modelos Moleculares , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/química , Plantas/metabolismo , Tilacoides/química
18.
Acta Physiol (Oxf) ; 217(3): 217-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26972986

RESUMO

AIM: Cardiotrophin-1 (CT-1) is a member of the IL-6 family of cytokines with a key role in glucose and lipid metabolism. In the current investigation, we examined the in vivo and in vitro effects of CT-1 treatment on intestinal sugar absorption in different experimental models. METHODS: rCT-1 effects on α-Methyl-D-glucoside uptake were assessed in everted intestinal rings from wild-type and CT-1(-/-) mice and in Caco-2 cells. rCT-1 actions on SGLT-1 expression in brush border membrane vesicles and the identification of the potential signalling pathways involved were determined by Western blot. RESULTS: In vivo administration (0.2 mg kg(-1) ) of rCT-1 caused a significant decrease on α-Methyl-D-glucoside uptake in everted intestinal rings from wild-type and CT-1(-/-) mice after short-term and long-term treatments. Similarly, in vitro treatment (1-50 ng mL(-1) ) with rCT-1 reduced α-Methyl-D-glucoside uptake in everted intestinal rings. In Caco-2 cells, rCT-1 treatment (20 ng mL(-1) , 1 and 24 h) lowered apical uptake of α-Methyl-D-glucoside in parallel with a decrease on SGLT-1 protein expression. rCT-1 promoted the phosphorylation of STAT-3 after 5 and 15 min treatment, but inhibited the activation by phosphorylation of AMPK after 30 and 60 min. Interestingly, pre-treatment with the JAK/STAT inhibitor (AG490) and with the AMPK activator (AICAR) reversed the inhibitory effects of rCT-1 on α-Methyl-D-glucoside uptake. AICAR also prevented the inhibition of SGLT-1 observed in rCT-1-treated cells. CONCLUSIONS: CT-1 inhibits intestinal sugar absorption by the reduction of SGLT-1 levels through the AMPK pathway, which could also contribute to explain the hypoglycaemic and anti-obesity properties of CT-1.


Assuntos
Citocinas/farmacologia , Hipoglicemiantes/farmacologia , Absorção Intestinal/efeitos dos fármacos , Açúcares/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Células CACO-2 , Citocinas/genética , Citocinas/metabolismo , Ativação Enzimática , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metilglucosídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Ribonucleotídeos/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transportador 1 de Glucose-Sódio/biossíntese , Transportador 1 de Glucose-Sódio/genética , Tirfostinas/farmacologia
19.
Proc Natl Acad Sci U S A ; 112(31): E4298-305, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195800

RESUMO

Sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose) is the polar head group of the plant sulfolipid SQ-diacylglycerol, and SQ comprises a major proportion of the organosulfur in nature, where it is degraded by bacteria. A first degradation pathway for SQ has been demonstrated recently, a "sulfoglycolytic" pathway, in addition to the classical glycolytic (Embden-Meyerhof) pathway in Escherichia coli K-12; half of the carbon of SQ is abstracted as dihydroxyacetonephosphate (DHAP) and used for growth, whereas a C3-organosulfonate, 2,3-dihydroxypropane sulfonate (DHPS), is excreted. The environmental isolate Pseudomonas putida SQ1 is also able to use SQ for growth, and excretes a different C3-organosulfonate, 3-sulfolactate (SL). In this study, we revealed the catabolic pathway for SQ in P. putida SQ1 through differential proteomics and transcriptional analyses, by in vitro reconstitution of the complete pathway by five heterologously produced enzymes, and by identification of all four organosulfonate intermediates. The pathway follows a reaction sequence analogous to the Entner-Doudoroff pathway for glucose-6-phosphate: It involves an NAD(+)-dependent SQ dehydrogenase, 6-deoxy-6-sulfogluconolactone (SGL) lactonase, 6-deoxy-6-sulfogluconate (SG) dehydratase, and 2-keto-3,6-dideoxy-6-sulfogluconate (KDSG) aldolase. The aldolase reaction yields pyruvate, which supports growth of P. putida, and 3-sulfolactaldehyde (SLA), which is oxidized to SL by an NAD(P)(+)-dependent SLA dehydrogenase. All five enzymes are encoded in a single gene cluster that includes, for example, genes for transport and regulation. Homologous gene clusters were found in genomes of other P. putida strains, in other gamma-Proteobacteria, and in beta- and alpha-Proteobacteria, for example, in genomes of Enterobacteria, Vibrio, and Halomonas species, and in typical soil bacteria, such as Burkholderia, Herbaspirillum, and Rhizobium.


Assuntos
Redes e Vias Metabólicas , Metilglucosídeos/metabolismo , Pseudomonas putida/metabolismo , Eletroforese em Gel de Poliacrilamida , Cinética , Lactatos/metabolismo , Espectrometria de Massas , Metaboloma , Metilglucosídeos/química , Família Multigênica , NAD/metabolismo , Oxirredutases/metabolismo , Proteômica , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento , Proteínas Recombinantes/metabolismo , Transcrição Gênica
20.
Eur J Pharm Sci ; 74: 40-4, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25819489

RESUMO

Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors are of current interest as a treatment for type 2 diabetes. Efforts have been made to discover phlorizin-related glycosides with good SGLT2 inhibitory activity. To increase structural diversity and better understand the role of non-glycoside SGLT2 inhibitors on glycemic control, we initiated a research program to identify non-glycoside hits from high-throughput screening. Here, we report the development of a novel, fluorogenic probe-based glucose uptake system based on a Cu(I)-catalyzed [3+2] cycloaddition. The safer processes and cheaper substances made the developed assay our first priority for large-scale primary screening as compared to the well-known [(14)C]-labeled α-methyl-D-glucopyranoside ([(14)C]-AMG) radioactive assay. This effort culminated in the identification of a benzimidazole, non-glycoside SGLT2 hit with an EC50 value of 0.62 µM by high-throughput screening of 41,000 compounds.


Assuntos
Descoberta de Drogas , Corantes Fluorescentes/química , Glucose/análogos & derivados , Hipoglicemiantes/farmacologia , Moduladores de Transporte de Membrana/farmacologia , Naftalimidas/química , Inibidores do Transportador 2 de Sódio-Glicose , Absorção Fisiológica/efeitos dos fármacos , Animais , Células CHO , Radioisótopos de Carbono , Química Click , Células Clonais , Cricetulus , Corantes Fluorescentes/análise , Glucose/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Metilglucosídeos/metabolismo , Naftalimidas/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...