Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 812
Filtrar
1.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611713

RESUMO

This study provides a comprehensive computational exploration of the inhibitory activity and metabolic pathways of 8-methoxypsoralen (8-MP), a furocoumarin derivative used for treating various skin disorders, on cytochrome P450 (P450). Employing quantum chemical DFT calculations, molecular docking, and molecular dynamics (MD) simulations analyses, the biotransformation mechanisms and the active site binding profile of 8-MP in CYP1B1 were investigated. Three plausible inactivation mechanisms were minutely scrutinized. Further analysis explored the formation of reactive metabolites in subsequent P450 metabolic processes, including covalent adduct formation through nucleophilic addition to the epoxide, 8-MP epoxide hydrolysis, and non-CYP-catalyzed epoxide ring opening. Special attention was paid to the catalytic effect of residue Phe268 on the mechanism-based inactivation (MBI) of P450 by 8-MP. Energetic profiles and facilitating conditions revealed a slight preference for the C4'=C5' epoxidation pathway, while recognizing a potential kinetic competition with the 8-OMe demethylation pathway due to comparable energy demands. The formation of covalent adducts via nucleophilic addition, particularly by phenylalanine, and the generation of potentially harmful reactive metabolites through autocatalyzed ring cleavage are likely to contribute significantly to P450 metabolism of 8-MP. Our findings highlight the key role of Phe268 in retaining 8-MP within the active site of CYP1B1, thereby facilitating initial oxygen addition transition states. This research offers crucial molecular-level insights that may guide the early stages of drug discovery and risk assessment related to the use of 8-MP.


Assuntos
Furocumarinas , Metoxaleno , Metoxaleno/farmacologia , Simulação de Acoplamento Molecular , Metabolismo Secundário , Furocumarinas/farmacologia , Compostos de Epóxi
2.
PLoS One ; 19(2): e0293687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416722

RESUMO

Extracorporeal Photopheresis (ECP) is a leukapheresis based treatment for Cutaneous T-Cell Lymphoma, which takes advantage of the cellular lethal effects of UVA light in combination with a photoactivated drug, 8-methoxypsoralen. 25% of patients treated with ECP do not respond to treatment, however the underlying mechanisms for this lack of response remain unknown. Platelets, a rich source of extracellular vesicles (EVs) and key mediators in thromboinflammatory oncological progression, as well as leukocytes, are both processed through ECP and are subsequently transfused back into the patient, delivering potent immunomodulation. The effect of exposing platelets and their EVs directly to Ultra Violet A light (UVA)/8-methoxypsoralen is currently unknown. Platelet-rich plasma (PRP) was isolated from healthy donors and exposed to UVA light and/or 8-methoxysporalen in vitro and platelet activation and aggregation was assessed. EV size and concentration were also characterised by Nanoparticle Tracking Analysis and Flow Cytometry. We found that UVA light and 8-methoxypsoralen treatment in vitro does not induce platelet aggregation or significantly alter levels of the platelet activation markers, soluble P-selectin or platelet factor 4, with circulating levels of small and large EV size and concentration remaining constant. Therefore, utilising the combination of UVA light and 8-methoxypsoralen used in ECP in vitro does not activate platelets or alter important circulating EVs. Further studies will be needed to validate if our observations are consistent in vivo.


Assuntos
Vesículas Extracelulares , Fotoferese , Neoplasias Cutâneas , Humanos , Metoxaleno/farmacologia , Raios Ultravioleta , Neoplasias Cutâneas/etiologia
3.
Pestic Biochem Physiol ; 196: 105592, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945225

RESUMO

Spodoptera litura, a polyphagous lepidopteran pest, demonstrates a remarkable capacity to adapt to varying host plants by efficiently detoxifying phytochemicals. However, the underlying mechanism for this adaptation is not well understood. Herein, twenty eplison glutathione S-transferase genes (GSTes) were characterized and their roles in phytochemical tolerance were analyzed in S. litura. Most of the GSTe genes were mainly expressed in the larval midgut and fat body. Exposure to the phytochemicals, especially xanthotoxin, induced the expression of most GSTe genes. Molecular docking analysis revealed that xanthotoxin could form stable bonds with six xanthotoxin-responsive GSTes, with binding free energies ranging from -36.44 to -68.83 kcal mol-1. Knockdown of these six GSTe genes increased the larval susceptibility to xanthotoxin. Furthermore, xanthotoxin exposure significantly upregulated the expression of two transcription factor genes CncC and MafK. Silencing of either CncC or MafK reduced the expression of GSTe16, which exhibited the largest change in response to xanthotoxin. Additionally, analysis of the promoter sequence of GSTe16 revealed the presence of seven CncC/Maf binding sites. Luciferase reporter assays showed that CncC and MafK enhanced the expression of GSTe16, leading to the increased xanthotoxin tolerance in S. litura. These findings provide insight into the functions and transcriptional regulatory mechanisms of GSTes, thereby enhancing our understanding of the role of GSTs in the adaptation of lepidopteran pests to phytochemicals.


Assuntos
Inseticidas , Metoxaleno , Animais , Spodoptera/metabolismo , Metoxaleno/farmacologia , Simulação de Acoplamento Molecular , Glutationa/metabolismo , Transferases/metabolismo , Larva/metabolismo , Inseticidas/farmacologia
4.
Biochem Biophys Res Commun ; 684: 149066, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-37866241

RESUMO

Epidemiological studies have found that high citrus fruit consumption was associated with higher risk of skin cancer. Citrus fruits and some vegetables contain furocoumarins, which may interact with ultraviolet radiation to induce skin cancer. We aimed to determine the effects of two furocoumarins, including 8-methoxypsoralen (8-MOP) and 6',7'-dihydroxybergamottin (DHB), on UVA-induced DNA damage in human epidermal melanocytes, the origin of melanoma. Our hypothesis was that these dietary furocoumarins increase UVA-induced DNA damage in melanocytes, compared to cells exposed to UV alone. We incubated melanocytes with 8-MOP or DHB, followed by exposure to physiological doses of UVA radiation. We used Western blots to quantify the UVA-induced DNA damage measured by the fraction of phosphorylated histone variant H2AX (γH2AX), which is a marker of DNA damage, relative to total H2AX (γH2AX/H2AX) in the presence or absence of furocoumarins. To quantify the UVA-induced change in γH2AX/H2AX, we calculated the UVA:Control ratio as the ratio of γH2AX/H2AX in UVA-exposed cells to that in cells without UVA (control). The mean UVA:Control ratios were borderline significantly higher for cells treated with 8-MOP and significantly higher for cells treated with DHB, compared to that of untreated cells. This study suggests that furocoumarins (particularly 8-MOP and DHB) enhance UVA-induced DNA damage in melanocytes, which is a potential novel mechanism for citrus and furocoumarins to elevate the risk of skin cancer.


Assuntos
Citrus , Furocumarinas , Neoplasias Cutâneas , Humanos , Furocumarinas/farmacologia , Metoxaleno/farmacologia , Raios Ultravioleta/efeitos adversos , Melanócitos , Dano ao DNA
5.
Vox Sang ; 118(9): 775-782, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37401421

RESUMO

BACKGROUND AND OBJECTIVES: Extracorporeal photopheresis (ECP) is a widespread cellular therapy for graft-versus-host disease, autoimmune diseases and Sézary disease. One of the main effects of ECP is the apoptosis of leukocytes, but the therapeutic mechanisms are not completely known. The aim of this study was to investigate the effects on red blood cells, platelets and the induction of reactive oxygen species. MATERIALS AND METHODS: We used human cells from healthy blood donors to simulate in vitro the composition in an apheresis bag. Cells were treated with 8-methoxypsoralen (8-MOP) and UVA. Red blood cell stability, platelet activity and induction of reactive oxygen species were analysed. RESULTS: After 8-MOP and UVA treatment, the red blood cells showed high cell integrity with low levels of eryptosis and no increase of free haemoglobin or red blood cell distribution width (RDW). Red blood cell immune-associated antigens CD59 and CD147 were hardly affected by the treatment. Platelet glycoproteins CD41, CD62P and CD63 indicated strong platelet activation after 8-MOP and UVA treatment. Reactive oxygen species were slightly but not significantly induced by the treatment. CONCLUSION: The effect of the ECP therapy is probably not exclusively mediated by leukocytes. Platelet activation is another striking effect caused by the treatment of the apheresis product with 8-MOP/UVA. However, since we could hardly identify any evidence for eryptosis or haemolysis, it is unlikely that red blood cell eryptosis is part of the therapeutic mechanism. Further research on this topic seems to be promising.


Assuntos
Metoxaleno , Fotoferese , Humanos , Metoxaleno/farmacologia , Espécies Reativas de Oxigênio , Plaquetas , Eritrócitos
6.
Biomed Pharmacother ; 163: 114811, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37156117

RESUMO

BACKGROUND: Thrombocytopenia is a common hematological disease caused by many factors. It usually complicates critical diseases and increases morbidity and mortality. The treatment of thrombocytopenia remains a great challenge in clinical practice, however, its treatment options are limited. In this study, the active monomer xanthotoxin (XAT) was screened out to explore its medicinal value and provide novel therapeutic strategies for the clinical treatment of thrombocytopenia. METHODS: The effects of XAT on megakaryocyte differentiation and maturation were detected by flow cytometry, Giemsa and phalloidin staining. RNA-seq identified differentially expressed genes and enriched pathways. The signaling pathway and transcription factors were verified through WB and immunofluorescence staining. Tg (cd41: eGFP) transgenic zebrafish and mice with thrombocytopenia were used to evaluate the biological activity of XAT on platelet formation and the related hematopoietic organ index in vivo. RESULTS: XAT promoted the differentiation and maturation of Meg-01 cells in vitro. Meanwhile, XAT could stimulate platelet formation in transgenic zebrafish and recover platelet production and function in irradiation-induced thrombocytopenia mice. Further RNA-seq prediction and WB verification revealed that XAT activates the IL-1R1 target and MEK/ERK signaling pathway, and upregulates the expression of transcription factors related to the hematopoietic lineage to promote megakaryocyte differentiation and platelet formation. CONCLUSION: XAT accelerates megakaryocyte differentiation and maturation to promote platelet production and recovery through triggering IL-1R1 and activating the MEK/ERK signaling pathway, providing a new pharmacotherapy strategy for thrombocytopenia.


Assuntos
Trombocitopenia , Trombopoese , Camundongos , Animais , Plaquetas , Megacariócitos , Metoxaleno/farmacologia , Peixe-Zebra/metabolismo , Trombocitopenia/tratamento farmacológico , Fatores de Transcrição/metabolismo , Transdução de Sinais , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
7.
Pestic Biochem Physiol ; 192: 105417, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105640

RESUMO

Phytochemicals are a class of potential pesticides for pest control. Our previous studies have demonstrated that the development of Spodoptera litura is suppressed by two phytochemicals, flavone and xanthotoxin. Generally, phytochemical is metabolized by insect detoxification enzyme systems. Nuclear receptor (NR) is the ligand-activated transcription factor that involved in the regulation of detoxification gene expressions. To explore how NR responds to phytochemical to mediate detoxification gene expression, in the present study, 19 NRs were firstly identified in S. litura genome. The transcriptional levels of most NRs were significantly induced in the midgut of S. litura larvae after exposure to flavone and xanthotoxin. RNAi-mediated knockdown of FTZF1, EcR, Dsf, and HR3 remarkably reduced the larval tolerance to flavone or xanthotoxin. In addition, many crucial detoxification genes were downregulated by dsNR administrations, which might be responsible for the high sensitivity of S. litura to phytochemicals. Molecular docking indicated that phytochemicals as the potential ligands had high affinity to bind to NRs. This study suggested that NR potentially regulated the transcriptional expression of detoxification genes in response to phytochemical stresses, which partially elucidated the mechanism of extensive host adaptation in S. litura and provided the theoretical evidences for the development of NR-targeted insecticides.


Assuntos
Flavonas , Inseticidas , Animais , Spodoptera/metabolismo , Metoxaleno/farmacologia , Simulação de Acoplamento Molecular , Inseticidas/farmacologia , Inseticidas/metabolismo , Larva/genética , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Flavonas/metabolismo
8.
Arch Biochem Biophys ; 741: 109617, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121295

RESUMO

This study aimed to investigate the effect and mechanism of 8-methoxypsoralen (8-MOP) on acetaminophen (APAP)-induced hepatotoxicity in mice. The study found that 1 h after intraperitoneal injection of 300 mg/kg APAP, treatment with 40 mg/kg, 80 mg/kg and 120 mg/kg 8-MOP could reduce serum transaminase level and histopathological liver necrosis area. Elevated mRNA expression of liver inflammatory mediators caused by excessive APAP was also reversed. 8-MOP significantly reduced APAP-induced hepatotoxicity dose-dependently, and the highest therapeutic dose of 8-MOP (120 mg/kg) had no harmful effects on the liver. Cocktail probe assay revealed that 8-MOP can inhibit Cyp2e1 enzymatic activities of mice, thereby reducing the production of acetaminophen-cysteine (APAP-CYS), a toxic metabolite of APAP. 8-MOP had no significant effect on the protein and gene expression of Cyp2e1. The three-dimensional structures of mouse Cyp2e1 were constructed by homologous modeling. Molecular docking showed that 8-MOP had a good binding effect on the enzyme activity site of Cyp2e1. In summary, 8-MOP dose-dependently attenuated APAP-induced hepatotoxicity by binding to Cyp2e1 and occupying the active center of the enzyme, thus competitively inhibiting the oxidative metabolism of APAP, and reducing the generation of toxic product APAP-CYS.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Metoxaleno , Animais , Camundongos , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Fígado/metabolismo , Metoxaleno/farmacologia , Simulação de Acoplamento Molecular
9.
Bioorg Med Chem Lett ; 86: 129206, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889653

RESUMO

Cytochrome P450 2A6 (CYP2A6) inhibitors are expected to be suitable as smoking cessation aids and for cancer prevention. Because the typical coumarin-based CYP2A6 inhibitor methoxsalen also inhibits CYP3A4, unintended drug-drug interactions are still a concern. Therefore, the development of selective CYP2A6 inhibitors is desirable. In this study, we synthesized coumarin-based molecules, determined the IC50 values for CYP2A6 inhibition, verified the possibility of mechanism-based inhibition, and compared the selectivity for CYP2A6 versus CYP3A4. The results demonstrated that we developed CYP2A6 inhibitors that were more potent and selective than methoxsalen.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Inibidores das Enzimas do Citocromo P-450/farmacologia , Citocromo P-450 CYP3A , Metoxaleno/farmacologia , Cumarínicos/farmacologia , Citocromo P-450 CYP2A6 , Microssomos Hepáticos
10.
Chem Res Toxicol ; 36(3): 420-429, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36892569

RESUMO

Xanthotoxin (XTT) is a biologically active furanocoumarin widely present in foods and plants. The present study is designed to systematically investigate the enzymatic interaction of XTT with CYP1A2, along with pharmacokinetic alteration of tacrine resulting from the co-administration of XTT. The results showed that XTT induced a time-, concentration-, and NADPH-dependent inhibition of CYP1A2, and the inhibition was irreversible. Co-incubation of glutathione (GSH) and catalase/superoxide dismutase was unable to prevent enzyme inactivation. Nevertheless, competitive inhibitor fluvoxamine exhibited a concentration-dependent protective effect against the XTT-induced CYP1A2 inactivation. A GSH trapping experiment provided strong evidence for the production of epoxide or/and γ-ketoenal intermediates resulting from the metabolic activation of XTT. Furthermore, pretreatment of rats with XTT was found to significantly increase the Cmax and area under the curve of plasma tacrine relative to those of tacrine administration alone.


Assuntos
Citocromo P-450 CYP1A2 , Tacrina , Animais , Ratos , Citocromo P-450 CYP1A2/metabolismo , Interações Medicamentosas , Fluvoxamina/farmacologia , Metoxaleno/farmacologia , Tacrina/farmacocinética
11.
Neurochem Res ; 48(2): 625-640, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36319778

RESUMO

8-Methoxypsoralen (8-MOP) has anti-inflammatory, antioxidant and tissue-repairing abilities. Here, we probed the function and mechanism of 8-MOP in traumatic brain injury (TBI). The in-vivo TBI model was constructed in Sprague-Dawley (SD) rats using controlled cortical impact (CCI) surgery. In parallel, BV2 microglia and HT22 neurons were activated by lipopolysaccharide (LPS) to establish an in-vitro model. The modified neurological score (mNSS) and the Morris water maze experiment were employed to evaluate the rats' neurological functions. The rats' brain edema was assessed by the dry and wet method, and neuronal apoptosis in damaged brain tissues was monitored by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and Nissl's staining. Immunohistochemistry (IHC) was applied to verify Iba1-microglial activation in brain lesions of rats. The expression of inflammatory cytokines in BV2 microglia and HT22 neurons in the injured lesion of TBI rats was examined by the enzyme-linked immunosorbent assay (ELISA). The levels of iNOS, COX2, TLR4, PPARγ, STAT3, and NF-κB in brain lesions, BV2 microglia and HT22 neurons were compared by Western blot. As a result, 8-MOP administration reduced inflammation and LPS-induced neuronal damage in BV2 microglia. In vivo, 8-MOP treatment relieved neurological deficits in TBI rats, improved cognitive, learning and motor functions and mitigated brain edema and neuroinflammation induced by TBI. Furthermore, LPS or TBI activated the NF-κB and STAT3 pathways and repressed the PPARγ expression. However, 8-MOP treatment attenuated NF-κB and STAT3 phosphorylation and elevated PPARγ levels. Hence, 8-MOP exerts neuroprotective and anti-inflammatory effects in TBI rats by modulating the PPARγ/NF-κB pathway.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Ratos , Animais , NF-kappa B/metabolismo , Metoxaleno/metabolismo , Metoxaleno/farmacologia , Metoxaleno/uso terapêutico , PPAR gama/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Edema Encefálico/metabolismo , Lipopolissacarídeos/farmacologia , Ratos Sprague-Dawley , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Anti-Inflamatórios/farmacologia , Microglia/metabolismo , Modelos Animais de Doenças
12.
Life Sci ; 310: 121129, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306871

RESUMO

AIMS: Parkinson's disease (PD) is characterized by motor disabilities precipitated by α-synuclein aggregation and dopaminergic neurodegeneration. The roles of oxidative stress, neuroinflammation, dysfunction of the mitogen-activated protein kinase (MAPK) pathway, and apoptosis in dopaminergic neurodegeneration have been established. We investigated the potential neuroprotective effect of xanthotoxin, a furanocoumarin extracted from family Apiaceae, in a rotenone-induced PD model in rats since it has not yet been elucidated. MAIN METHODS: For 21 days, rats received 11 rotenone injections (1.5 mg/kg, s.c.) on the corresponding days to induce a PD model and xanthotoxin (15 mg/kg, i.p.) daily. KEY FINDINGS: Xanthotoxin preserved dopaminergic neurons and restored tyrosine hydroxylase positive cells, with suppression of α-synuclein accumulation and restoration of striatal levels of dopamine and its metabolites resulting in amelioration of motor deficits. Furthermore, xanthotoxin impeded rotenone-stimulated neurodegeneration by reducing oxidative stress, which was confirmed by malondialdehyde suppression and glutathione antioxidant enzyme augmentation. It also suppressed neurotoxic inflammatory mediators including tumor necrosis factor-α, interleukin-1ß, and inducible nitric oxide synthase. Additionally, xanthotoxin attenuated the rotenone-mediated activation of MAPK kinases, C-Jun N-terminal kinase, p38 MAPK, and extracellular signal-regulated kinases 1/2, with consequent ablation of apoptotic mediators including Bax, cytochrome c, and caspase-3. SIGNIFICANCE: This study revealed the neuroprotective effect of xanthotoxin in a rotenone-induced PD model in rats, an action that could be attributed to its antioxidant, anti-inflammatory activities as well as to its ability to maintain the function of the MAPK signaling pathway and attenuate apoptosis. Therefore, it could be a valuable therapy for PD.


Assuntos
Metoxaleno , Fármacos Neuroprotetores , Doença de Parkinson Secundária , Animais , Ratos , alfa-Sinucleína/metabolismo , Antioxidantes/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos , Inflamação/patologia , Metoxaleno/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos Wistar , Rotenona/efeitos adversos , Transdução de Sinais , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/metabolismo
13.
Phytother Res ; 36(10): 3805-3832, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35913174

RESUMO

Xanthotoxin (XAT) is a natural furanocoumarins, a bioactive psoralen isolated from the fruit of the Rutaceae plant Pepper, which has received increasing attention in recent years due to its wide source and low cost. By collecting and compiling literature on XAT, the results show that XAT exhibits significant activity in the treatment of various diseases, including neuroprotection, skin repair, osteoprotection, organ protection, anticancer, antiinflammatory, antioxidative stress and antibacterial. In this paper, we review the pharmacological activity and potential molecular mechanisms of XAT for the treatment of related diseases. The data suggest that XAT can mechanistically induce ROS production and promote apoptosis through mitochondrial or endoplasmic reticulum pathways, regulate NF-κB, MAPK, JAK/STAT, Nrf2/HO-1, MAPK, AKT/mTOR, and ERK1/2 signaling pathways to exert pharmacological effects. In addition, the pharmacokinetics properties and toxicity of XAT are discussed in this paper, further elucidating the relationship between structure and efficacy. It is worth noting that data from clinical studies of XAT are still scarce, limiting the use of XAT in the clinic, and in the future, more in-depth studies are needed to determine the clinical efficacy of XAT.


Assuntos
Furocumarinas , Metoxaleno , Antibacterianos , Furocumarinas/farmacologia , Metoxaleno/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio , Serina-Treonina Quinases TOR
14.
Molecules ; 27(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565964

RESUMO

The objectives of this study were to investigate the melanogenetic potential of the psoralen derivatives 5-hydroxypsoralen, 5-methoxypsoralen, 8-hydroxypsoralen, 8-methoxypsoralen, and 5,8-dimethoxypsoralen in B16F10 melanoma cells. The results indicated that melanin production is significantly stimulated in B16F10 melanoma cells with 5-methoxypsoralen, 8-methoxypsoralen, and 5,8-dimethoxypsoralen, especially for 5-methoxypsoralen (bergapten), as reported previously. In addition, Western blot results showed that the protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2) increase after bergapten treatment for the first time. The results also showed that bergapten promotes the phosphorylation of Akt at Ser 473 and glycogen synthase kinase-3ß at Ser 9. Moreover, bergapten increased the content of ß-catenin in the cell cytoplasm and nucleus by reducing the phosphorylated ß-catenin (p-ß-catenin) content. The results also indicated that bergapten regulates melanogenesis by upregulating the phosphorylation of p38 and JNK-mitogen-activated protein kinase. Taken together, these findings suggest that the regulation of melanogenesis by bergapten may be mediated by the ß-catenin and MAPK signaling pathways and that bergapten might provide new insights into the pathogenesis of pigmented diseases.


Assuntos
Furocumarinas , Melanoma Experimental , Melanoma , 5-Metoxipsoraleno , Animais , Linhagem Celular Tumoral , Ficusina/farmacologia , Melaninas , Melanoma Experimental/patologia , Metoxaleno/farmacologia , Monofenol Mono-Oxigenase/metabolismo , beta Catenina/metabolismo
15.
Molecules ; 27(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35164207

RESUMO

Ammi majus L., an indigenous plant in Egypt, is widely used in traditional medicine due to its various pharmacological properties. We aimed to evaluate the anticancer properties of Ammi majus fruit methanol extract (AME) against liver cancer and to elucidate the active compound(s) and their mechanisms of action. Three fractions from AME (Hexane, CH2Cl2, and EtOAc) were tested for their anticancer activities against HepG2 cell line in vitro (cytotoxicity assay, cell cycle analysis, annexin V-FITC apoptosis assay, and autophagy efflux assay) and in silico (molecular docking). Among the AME fractions, CH2Cl2 fraction revealed the most potent cytotoxic activity. The structures of compounds isolated from the CH2Cl2 fraction were elucidated using 1H- and 13C-NMR and found that Compound 1 (xanthotoxin) has the strongest cytotoxic activity against HepG2 cells (IC50 6.9 ± 1.07 µg/mL). Treating HepG2 cells with 6.9 µg/mL of xanthotoxin induced significant changes in the DNA-cell cycle (increases in apoptotic pre-G1 and G2/M phases and a decrease in the S-phase). Xanthotoxin induced significant increase in Annexin-V-positive HepG2 cells both at the early and late stages of apoptosis, as well as a significant decrease in autophagic flux in cancer compared with control cells. In silico analysis of xanthotoxin against the DNA-relaxing enzyme topoisomease II (PDB code: 3QX3) revealed strong interaction with the key amino acid Asp479 in a similar fashion to that of the co-crystallized inhibitor (etoposide), implying that xanthotoxin has a potential of a broad-spectrum anticancer activity. Our results indicate that xanthotoxin exhibits anticancer effects with good biocompatibility toward normal human cells. Further studies are needed to optimize its antitumor efficacy, toxicity, solubility, and pharmacokinetics.


Assuntos
Ammi/química , Furocumarinas/farmacologia , Metoxaleno/farmacologia , Simulação por Computador , Técnicas In Vitro
16.
Biomed Pharmacother ; 146: 112556, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34953393

RESUMO

Acetylcholinesterase (AChE) inhibitor is the first choice for the treatment of Alzheimer's disease (AD), but it has some defects, such as dose limitation and unsatisfactory long-term treatment effect. Recent studies have shown that butyrylcholinesterase (BuChE) inhibitors or double acetyl and butyryl cholinesterase inhibitors have better curative effects on AD, and the side effects are lower than those of specific AChE inhibitors. Dual target cholinesterase inhibitors have become a new hotspot in the research of anti-AD drugs. Herein, the synthesis and bioactivities of BuChE inhibitors were reviewed.


Assuntos
Butirilcolinesterase/farmacologia , Inibidores da Colinesterase/farmacologia , Acridinas/química , Acridinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/efeitos adversos , Butirilcolinesterase/química , Inibidores da Colinesterase/efeitos adversos , Inibidores da Colinesterase/química , Humanos , Metoxaleno/análogos & derivados , Metoxaleno/química , Metoxaleno/farmacologia , Relação Estrutura-Atividade
17.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34830188

RESUMO

Cytochrome P450 2A13 is an omitted brother of CYP2A6 that has an important role in the drug metabolism of liver. Due to extrahepatic expression, it has gained less attention than CYP2A6, despite the fact that it plays a significant role in toxicant-induced pulmonary lesions and, therefore, lung cancer. The purpose of this mini-review is to summarize the basic knowledge about this enzyme in relation to the substrates, inhibitors, genetic polymorphisms, and transcriptional regulation that are known so far (September 2021).


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Pulmão/metabolismo , Polimorfismo Genético , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/metabolismo , Humanos , Pulmão/enzimologia , Pulmão/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Metoxaleno/farmacologia , Especificidade por Substrato
18.
Photochem Photobiol Sci ; 20(10): 1299-1307, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34559384

RESUMO

PUVA is a treatment that combines oral methoxypsoralen (8-MOP) with ultraviolet radiation A (UVA). It is used for severe psoriasis and the early stages of T-cell lymphoma. X-rays are an effective treatment for skin cancers. Both treatments are in higher doses used to treat skin malignancies and simultaneously increase the risk of keratinocyte cancer. The main objective of this study was to test whether a few PUVA or X-ray treatments could delay the development of ultraviolet radiation (UVR)-induced skin tumors in a well-established hairless mouse model. Three groups of immunocompetent mice (total, N = 75) were included in the study. All groups were UVR-exposed during the study period. In addition, one group was treated with PUVA and another group was treated with X-rays at days 45, 52, 90 and 97. A control group was treated with UVR only. We recorded when the first, second and third skin tumors were induced in each mouse. Skin tumors developed significantly earlier in both the PUVA and X-ray groups (median, 188 days) than in the control mice (median, 215 days; p < 0.001). Therefore, a few X-ray and PUVA treatments both significantly accelerated the development of skin tumors in hairless mice, compared to UVR controls. Neither treatment showed a delay of UVR-induced skin tumors and caution should be exercised before applying these treatments to sun-damaged skin.


Assuntos
Metoxaleno/efeitos adversos , Neoplasias Cutâneas/etiologia , Raios Ultravioleta , Animais , Hospedeiro Imunocomprometido , Estimativa de Kaplan-Meier , Metoxaleno/química , Metoxaleno/farmacologia , Camundongos , Camundongos Pelados , Neoplasias Induzidas por Radiação/etiologia , Pele/patologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/efeitos da radiação , Raios X
19.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430369

RESUMO

(1) Cisplatin (CDDP) is used in melanoma chemotherapy, but it has many side effects. Hence, the search for natural substances that can reduce the dose of CDDP, and CDDP-related toxicity, is highly desired. Coumarins have many biological properties, including anticancer and antiproliferative effects. (2) An in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on two human melanoma cell lines (FM55P and FM55M2) examined the antitumor properties of CDDP and five naturally occurring coumarins (osthole, xanthotoxin, xanthotoxol, isopimpinellin, and imperatorin). The antiproliferative effects produced by combinations of CDDP with the coumarins were assessed using type I isobolographic analysis. (3) The most potent anticancer properties of coumarins were presented by osthole and xanthotoxol. These compounds were characterized by the lowest median inhibitory concentration (IC50) values relative to the FM55P and FM55M2 melanoma cells. Isobolographic analysis showed that for both melanoma cell lines, the combination of CDDP and osthole exerted synergistic and additive interactions, while the combination of CDDP and xanthotoxol exerted additive interactions. Combinations of CDDP with xanthotoxin, isopimpinellin, and imperatorin showed antagonistic and additive interactions in two melanoma cell lines. (4) The combination of CDDP and osthole was characterized by the most desirable synergistic interaction. Isobolographic analysis allows the selection of potential candidates for cancer drugs among natural substances.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cumarínicos/farmacologia , Melanoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Sinergismo Farmacológico , Furocumarinas/farmacologia , Humanos , Melanoma/patologia , Metoxaleno/farmacologia
20.
Transfusion ; 61(3): 883-893, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33300629

RESUMO

BACKGROUND: Extracorporeal photopheresis (ECP) is one of the most widely used and effective cell-based therapies for the treatment of T-cell-mediated diseases. The patients' white blood cells (WBCs) are collected by apheresis and exposed to the photosensitizer 8-methoxypsoralen (8-MOP) and ultraviolet A (UVA) light before retransfusion. The UVA/8-MOP combination has been in use in ECP for more than 4 decades; however, whether ECP can be simplified by UVA light irradiation only has never been analyzed. STUDY DESIGN AND METHODS: Peripheral blood mononuclear cells were treated with classical ECP or different UVA light doses only (UVAonly ). Treatment efficacy was investigated by apoptosis induction in WBC subsets, inhibition of T-cell proliferation, and the ability of monocytes to induce allogeneic T-cell expansion and to respond to lipopolysaccharide and interferon-γ stimulation in vitro. RESULTS: High-dose UVAonly treatment (5 J/cm2 ) was as efficient as ECP to induce apoptosis within 48 hours. UVAonly treatment modulated the composition of the surviving cells by improving monocyte survival and promoting CD8+ T-cell apoptosis. Both ECP and UVAonly treatment inhibited anti-CD3/anti-CD28 triggered T-cell proliferation. Interestingly, whereas ECP-treated monocytes exhibited a markedly reduced capacity to respond to stimulation and to induce allogeneic T-cell proliferation, UVAonly treatment preserved monocyte functionality to some degree. CONCLUSIONS: High-dose UVAonly and standard ECP showed comparable efficacy in inducing apoptosis and inhibiting direct T-cell proliferation. Hence, UVAonly treatment can be a simplified alternative to ECP therapy. Furthermore, increased monocyte survival with partially preserved functionality after UVAonly treatment may provide a novel method for immunoregulation.


Assuntos
Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Leucócitos Mononucleares/efeitos da radiação , Fotoferese/métodos , Linfócitos T/efeitos da radiação , Apoptose/efeitos dos fármacos , Antígenos CD28/metabolismo , Complexo CD3/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Técnicas In Vitro , Interferon gama/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Metoxaleno/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/efeitos da radiação , Linfócitos T/efeitos dos fármacos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...