Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cells ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534352

RESUMO

Myasthenia gravis (MG) is a prototypical autoimmune disease of the neuromuscular junction (NMJ). The study of the underlying pathophysiology has provided novel insights into the interplay of autoantibodies and complement-mediated tissue damage. Experimental autoimmune myasthenia gravis (EAMG) emerged as a valuable animal model, designed to gain further insight and to test novel therapeutic approaches for MG. However, the availability of native acetylcholine receptor (AChR) protein is limited favouring the use of recombinant proteins. To provide a simplified platform for the study of MG, we established a model of EAMG using a recombinant protein containing the immunogenic sequence of AChR in mice. This model recapitulates key features of EAMG, including fatigable muscle weakness, the presence of anti-AChR-antibodies, and engagement of the NMJ by complement and a reduced NMJ density. Further characterization of this model demonstrated a prominent B cell immunopathology supported by T follicular helper cells. Taken together, the herein-presented EAMG model may be a valuable tool for the study of MG pathophysiology and the pre-clinical testing of therapeutic applications.


Assuntos
Miastenia Gravis Autoimune Experimental , Receptores Colinérgicos , Camundongos , Animais , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Miastenia Gravis Autoimune Experimental/metabolismo , Junção Neuromuscular/patologia , Proteínas do Sistema Complemento , Autoanticorpos , Imunização
2.
J Transl Med ; 22(1): 183, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378668

RESUMO

BACKGROUND: Myasthenia gravis (MG) and the experimental autoimmune MG (EAMG) animal model are characterized by T-cell-induced and B-cell-dominated autoimmune diseases that affect the neuromuscular junction. Several subtypes of CD4+ T cells, including T helper (Th) 17 cells, follicular Th cells, and regulatory T cells (Tregs), contribute to the pathogenesis of MG. However, increasing evidence suggests that CD8+ T cells also play a critical role in the pathogenesis and treatment of MG. MAIN BODY: Herein, we review the literature on CD8+ T cells in MG, focusing on their potential effector and regulatory roles, as well as on relevant evidence (peripheral, in situ, cerebrospinal fluid, and under different treatments), T-cell receptor usage, cytokine and chemokine expression, cell marker expression, and Treg, Tc17, CD3+CD8+CD20+ T, and CXCR5+ CD8+ T cells. CONCLUSIONS: Further studies on CD8+ T cells in MG are necessary to determine, among others, the real pattern of the Vß gene usage of autoantigen-specific CD8+ cells in patients with MG, real images of the physiology and function of autoantigen-specific CD8+ cells from MG/EAMG, and the subset of autoantigen-specific CD8+ cells (Tc1, Tc17, and IL-17+IFN-γ+CD8+ T cells). There are many reports of CD20-expressing T (or CD20 + T) and CXCR5+ CD8 T cells on autoimmune diseases, especially on multiple sclerosis and rheumatoid arthritis. Unfortunately, up to now, there has been no report on these T cells on MG, which might be a good direction for future studies.


Assuntos
Linfócitos T CD8-Positivos , Miastenia Gravis Autoimune Experimental , Animais , Humanos , Linfócitos T Auxiliares-Indutores/metabolismo , Miastenia Gravis Autoimune Experimental/metabolismo , Linfócitos T Reguladores , Autoantígenos/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36396448

RESUMO

BACKGROUND AND OBJECTIVES: Complement regulatory proteins at the neuromuscular junction (NMJ) could offer protection against complement-mediated damage in myasthenia gravis (MG). However, there is limited information on their expression at the human NMJ. Thus, this study aimed at investigating the expression of the cluster of differentiation 59 (CD59) at the NMJ of human muscle specimens and demonstrating the overexpression of CD59 mRNA and protein in the muscles of patients with MG. METHODS: In this observational study, muscle specimens from 16 patients with MG (9 and 7 patients with and without thymoma, respectively) and 6 nonmyopathy control patients were examined. Immunohistochemical stains, Western blot analysis, and quantitative real-time reverse transcription PCR were used to evaluate the CD59 expression. RESULTS: A strong localized expression of CD59 was observed at the NMJ in both patients with and without MG. Moreover, the CD59/glyceraldehyde-3-phosphate dehydrogenase protein ratio in patients with MG was significantly higher than that in the nonmyopathy controls (MG; n = 16, median 0.16, interquartile range (IQR) 0.08-0.26 and nonmyopathy controls; n = 6, median 0.03, IQR 0.02-0.11, p = 0.01). The proportion of CD59 mRNA expression relative to AChR mRNA expression (ΔCtCD59/AChR) was associated with the quantitative MG score, MG activities of daily living score, and MG of Foundation of America Clinical Classification (r = 0.663, p = 0.01; r = 0.638, p = 0.014; and r = 0.715, p = 0.003, respectively). DISCUSSION: CD59, which acts as a complement regulator, may protect the NMJ from complement attack. Our findings could provide a basis for further research that investigates the underlying pathogenesis in MG and the immunomodulating interactions of the muscle cells.


Assuntos
Miastenia Gravis Autoimune Experimental , Neoplasias do Timo , Animais , Humanos , Miastenia Gravis Autoimune Experimental/genética , Miastenia Gravis Autoimune Experimental/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Atividades Cotidianas , Músculo Esquelético/metabolismo , Proteínas do Sistema Complemento/metabolismo , RNA Mensageiro/metabolismo
4.
J Neuroinflammation ; 18(1): 244, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702288

RESUMO

BACKGROUND: Diabetes mellitus (DM) is a common concomitant disease of late-onset myasthenia gravis (MG). However, the impacts of DM on the progression of late-onset MG were unclear. METHODS: In this study, we examined the immune response in experimental autoimmune myasthenia gravis (EAMG) rats with DM or not. The phenotype and function of the spleen and lymph nodes were determined by flow cytometry. The serum antibodies, Tfh cells, and germinal center B cells were determined by ELISA and flow cytometry. The roles of advanced glycation end products (AGEs) in regulating Tfh cells were further explored in vitro by co-culture assays. RESULTS: Our results indicated clinical scores of EAMG rats were worse in diabetes rats compared to control, which was due to the increased production of anti-R97-116 antibody and antibody-secreting cells. Furthermore, diabetes induced a significant upregulation of Tfh cells and the subtypes of Tfh1 and Tfh17 cells to provide assistance for antibody production. The total percentages of B cells were increased with an activated statue of improved expression of costimulatory molecules CD80 and CD86. We found CD4+ T-cell differentiation was shifted from Treg cells towards Th1/Th17 in the DM+EAMG group compared to the EAMG group. In addition, in innate immunity, diabetic EAMG rats displayed more CXCR5 expression on NK cells. However, the expression of CXCR5 on NKT cells was down-regulated with the increased percentages of NKT cells in the DM+EAMG group. Ex vivo studies further indicated that Tfh cells were upregulated by AGEs instead of hyperglycemia. The upregulation was mediated by the existence of B cells, the mechanism of which might be attributed the elevated molecule CD40 on B cells. CONCLUSIONS: Diabetes promoted both adaptive and innate immunity and exacerbated clinical symptoms in EAMG rats. Considering the effect of diabetes, therapy in reducing blood glucose levels in MG patients might improve clinical efficacy through suppressing the both innate and adaptive immune responses. Additional studies are needed to confirm the effect of glucose or AGEs reduction to seek treatment for MG.


Assuntos
Imunidade Adaptativa/fisiologia , Diabetes Mellitus Experimental/imunologia , Imunidade Inata/fisiologia , Mediadores da Inflamação/imunologia , Miastenia Gravis Autoimune Experimental/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Técnicas de Cocultura , Diabetes Mellitus Experimental/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Miastenia Gravis Autoimune Experimental/metabolismo , Ratos , Ratos Endogâmicos Lew , Células Th17/imunologia , Células Th17/metabolismo
5.
Neuroreport ; 32(9): 803-807, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33994526

RESUMO

Myasthenia gravis (MG) is an autoimmune disease with autoantibodies against the mainly nicotinic acetylcholine receptor (AChR). High mobility group box1 (HMGB1) acts as a danger signal and drives the pathogenesis of autoimmune-mediated diseases. However, the role of HMGB1 in the pathogenesis of MG is not fully understood. Therefore, in this study, we analyzed serum levels of HMGB1 and immunohistochemical HMGB1 staining of muscle tissues in the passive transfer MG model to investigate the role of HMGB1 in MG. As a result, serum HMGB1 levels tended to be higher and the quantitative score of muscle pathology showed greater HMGB1 deposition (P = 0.02) along with sparser AChR staining and more severe inflammation in the passive transfer MG rats (n = 6) than those in control rats (n = 6). These findings indicate that HMGB1 is an important mediator and biomarker for inflammation in the pathogenesis of MG and can be a therapeutic target in MG.


Assuntos
Proteína HMGB1/metabolismo , Músculo Esquelético/metabolismo , Miastenia Gravis Autoimune Experimental/metabolismo , Animais , Feminino , Proteína HMGB1/sangue , Miastenia Gravis Autoimune Experimental/sangue , Ratos
6.
J Neuroinflammation ; 17(1): 294, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032631

RESUMO

BACKGROUND: Myasthenia gravis (MG) is a rare autoimmune disease mainly mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. The thymus is the effector organ, and its removal alleviates the symptoms of the disease. In the early-onset form of MG, the thymus displays functional and morphological abnormalities such as B cell infiltration leading to follicular hyperplasia, and the production of AChR antibodies. Type-I interferon (IFN-I), especially IFN-ß, is the orchestrator of thymic changes observed in MG. As Dicer and miR-29 subtypes play a role in modulating the IFN-I signalization in mouse thymus, we investigated their expression in MG thymus. METHODS: The expression of DICER and miR-29 subtypes were thoroughly investigated by RT-PCR in human control and MG thymuses, and in thymic epithelial cells (TECs). Using miR-29a/b-1-deficient mice, with lower miR-29a/b-1 expression, we investigated their susceptibility to experimental autoimmune MG (EAMG) as compared to wild-type mice. RESULTS: DICER mRNA and all miR-29 subtypes were down-regulated in the thymus of MG patients and DICER expression was correlated with the lower expression of miR-29a-3p. A decreased expression of miR-29 subtypes was similarly observed in MG TECs; a decrease also induced in TECs upon IFN-ß treatment. We demonstrated that miR-29a/b-1-deficient mice were more susceptible to EAMG without higher levels of anti-AChR IgG subtypes. In the thymus, if no B cell infiltration was observed, an increased expression of Ifn-ß associated with Baff expression and the differentiation of Th17 cells associated with increased expression of Il-6, Il-17a and Il-21 and decreased Tgf-ß1 mRNA were demonstrated in miR-29a/b-1-deficient EAMG mice. CONCLUSIONS: It is not clear if the decreased expression of miR-29 subtypes in human MG is a consequence or a causative factor of thymic inflammation. However, our results from the EAMG mouse model indicated that a reduction in miR-29a/b1 may contribute to the pathophysiological process involved in MG by favoring the increased expression of IFN-ß and the emergence of pro-inflammatory Th17 cells.


Assuntos
MicroRNAs/biossíntese , Miastenia Gravis Autoimune Experimental/metabolismo , Miastenia Gravis/metabolismo , Adolescente , Adulto , Animais , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Miastenia Gravis/genética , Miastenia Gravis/imunologia , Miastenia Gravis Autoimune Experimental/genética , Miastenia Gravis Autoimune Experimental/imunologia , Receptores Colinérgicos/imunologia , Receptores Colinérgicos/metabolismo , Timo/imunologia , Timo/metabolismo , Adulto Jovem
7.
Neurosci Res ; 151: 46-52, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30763589

RESUMO

MuSK antibody seropositive (MuSK+) Myasthenia Gravis (MG) typically affects skeletal muscles of the bulbar area, including the omohyoid muscle, causing focal fatigue, weakness and atrophy. The profile of circulating extracellular microRNA (miRNA) is changed in MuSK + MG, but the intracellular miRNA profile in skeletal muscles of MuSK + MG and MuSK + experimental autoimmune MG (EAMG) remains unknown. This study elucidated the intracellular miRNA profile in the omohyoid muscle of mice with MuSK + EAMG. The levels of eleven mouse miRNAs were elevated and two mouse miRNAs were reduced in muscles of MuSK + EAMG mice. Transient expression of miR-1933-3p and miR-1930-5p in mouse muscle (C2C12) cells revealed several downregulated genes, out of which five had predicted binding sites for miR-1933-3p. The mRNA expression of mitochondrial ribosomal protein L27 (Mrpl27) and Inositol monophosphatase I (Impa1) was reduced in miR-1933-3p transfected C2C12 cells compared to control cells (p = 0.032 versus p = 0.020). Further, transient expression of miR-1933-3p reduced Impa1 protein accumulation in C2C12 cells. These findings provide novel insights of dysregulated miRNAs and their intracellular pathways in muscle tissue afflicted with MuSK + EAMG, providing a possible link to mitochondrial dysfunction and muscle atrophy observed in MuSK + MG.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Ribossomos Mitocondriais/metabolismo , Miastenia Gravis Autoimune Experimental/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Técnicas de Cultura de Células , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Mioblastos , Receptores Proteína Tirosina Quinases
8.
Orphanet J Rare Dis ; 14(1): 24, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696470

RESUMO

BACKGROUND: While extraocular muscles are affected early in myasthenia gravis (MG), but respond to treatment, we observe a high incidence of treatment-resistant ophthalmoplegia (OP-MG) among MG subjects with African genetic ancestry. Previously, using whole exome sequencing, we reported potentially functional variants which associated with OP-MG. The aim of this study was to profile the expression of genes harbouring the OP-MG associated variants using patient-derived subphenotype-specific 'myocyte' cultures. METHODS: From well-characterised MG patients we developed the 'myocyte' culture models by transdifferentiating dermal fibroblasts using an adenovirus expressing MyoD. These myocyte cultures were treated with homologous acetylcholine receptor antibody-positive myasthenic sera to induce muscle transcripts in response to an MG stimulus. Gene expression in myocytes derived from OP-MG (n = 10) and control MG subjects (MG without ophthalmoplegia; n = 6) was quantified using a custom qPCR array profiling 93 potentially relevant genes which included the putative OP-MG susceptibility genes and other previously reported genes of interest in MG and experimental autoimmune myasthenia gravis (EAMG). RESULTS: OP-MG myocytes compared to control MG myocytes showed altered expression of four OP-MG susceptibility genes (PPP6R2, CANX, FAM136A and FAM69A) as well as several MG and EAMG genes (p < 0.05). A correlation matrix of gene pair expression levels revealed that 15% of gene pairs were strongly correlated in OP-MG samples (r > 0.78, p < 0.01), but not in control MG samples. OP-MG susceptibility genes and MG-associated genes accounted for the top three significantly correlated gene pairs (r ≥ 0.98, p < 1 × 10- 6) reflecting crosstalk between OP-MG and myasthenia pathways, which was not evident in control MG cells. The genes with altered expression dynamics between the two subphenotypes included those with a known role in gangliosphingolipid biosynthesis, mitochondrial metabolism and the IGF1-signalling pathway. CONCLUSION: Using a surrogate cell culture model our findings suggest that muscle gene expression and co-expression differ between OP-MG and control MG individuals. These findings implicate pathways not previously considered in extraocular muscle involvement in myasthenia gravis and will inform future studies.


Assuntos
Células Musculares/metabolismo , Miastenia Gravis Autoimune Experimental/metabolismo , Oftalmoplegia/metabolismo , Adolescente , Adulto , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Receptores Nicotínicos/metabolismo , Pele/citologia , Sequenciamento do Exoma , Adulto Jovem
9.
Front Immunol ; 9: 2399, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410484

RESUMO

The guanine nucleotide exchange factor Vav1 is essential for transducing T cell receptor (TCR) signals and plays an important role in T cell development and activation. Previous genetic studies identified a natural variant of Vav1 characterized by the substitution of an arginine (R) residue by a tryptophane (W) at position 63 (Vav1R63W). This variant impacts Vav1 adaptor functions and controls susceptibility to T cell-mediated neuroinflammation. To assess the implication of this Vav1 variant on the susceptibility to antibody-mediated diseases, we used the animal model of myasthenia gravis, experimental autoimmune myasthenia gravis (EAMG). To this end, we generated a knock-in (KI) mouse model bearing a R to W substitution in the Vav1 gene (Vav1R63W) and immunized it with either torpedo acetylcholine receptor (tAChR) or the α146-162 immunodominant peptide. We observed that the Vav1R63W conferred increased susceptibility to EAMG, revealed by a higher AChR loss together with an increased production of effector cytokines (IFN-γ, IL-17A, GM-CSF) by antigen-specific CD4+ T cells, as well as an increased frequency of antigen-specific CD4+ T cells. This correlated with the emergence of a dominant antigen-specific T cell clone in KI mice that was not present in wild-type mice, suggesting an impact on thymic selection and/or a different clonal selection threshold following antigen encounter. Our results highlight the key role of Vav1 in the pathophysiology of EAMG and this was associated with an impact on the TCR repertoire of AChR reactive T lymphocytes.


Assuntos
Variação Genética , Miastenia Gravis Autoimune Experimental/etiologia , Miastenia Gravis Autoimune Experimental/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças , Camundongos , Miastenia Gravis Autoimune Experimental/patologia , Fenótipo , Receptores Nicotínicos/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T
10.
J Immunol Res ; 2018: 5389282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951558

RESUMO

Neuromyelitis optica (NMO) and myasthenia gravis (MG) are autoimmune diseases mediated by autoantibodies against either aquaporin 4 (AQP4) or acetylcholine receptor (AChR), respectively. Recently, we and others have reported an increased prevalence of NMO in patients with MG. To verify whether coexisting autoimmune disease may exacerbate experimental autoimmune MG, we tested whether active immunization with AQP4 peptides or passive transfer of NMO-Ig can affect the severity of EAMG. Injection of either AQP4 peptide or NMO-Ig to EAMG or to naive mice caused increased fatigability and aggravation of EAMG symptoms as expressed by augmented muscle weakness (but not paralysis), decremental response to repetitive nerve stimulation, increased neuromuscular jitter, and aberration of immune responses. Thus, our study shows increased disease severity in EAMG mice following immunization with the NMO autoantigen AQP4 or by NMO-Ig, mediated by augmented inflammatory response. This can explain exacerbation or increased susceptibility of patients with one autoimmune disease to develop additional autoimmune syndrome.


Assuntos
Aquaporina 4/imunologia , Imunoglobulina G/imunologia , Debilidade Muscular/etiologia , Miastenia Gravis Autoimune Experimental/complicações , Neuromielite Óptica/complicações , Neuromielite Óptica/imunologia , Peptídeos/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Camundongos , Força Muscular , Debilidade Muscular/diagnóstico , Debilidade Muscular/metabolismo , Debilidade Muscular/fisiopatologia , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/metabolismo , Neuromielite Óptica/genética , Neuromielite Óptica/metabolismo , Nervo Óptico/imunologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Índice de Gravidade de Doença
11.
Eur J Immunol ; 48(3): 498-508, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29205338

RESUMO

Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness and fatigue in the presence of circulating antibodies against components of the neuromuscular junction. Most patients have a good prognosis, but some are refractory to standard-of-care immunosuppressive treatment and suffer from recurrent myasthenic crises. Functional sphingosine-1-phosphate (S1P) antagonists like fingolimod and siponimod (BAF312) are successfully used for the treatment of multiple sclerosis, and fingolimod was shown to prevent the development of myasthenic symptoms in experimental autoimmune myasthenia gravis (EAMG), the standard model of MG. Here, we investigated whether fingolimod or siponimod improves outcome in EAMG mice when administered after disease onset, modeling the clinical setting in human MG. Both S1P antagonists inhibited lymphocyte egress, resulting in peripheral lymphopenia. After stimulation, there were differences in T-cell responses, but no change in either antibody titers or total or antigen-specific plasma cell populations after treatment. Most importantly, disease incidence and severity were not influenced by fingolimod or siponimod therapy. Although fingolimod and siponimod did lead to subtle changes in T-cell responses, they had no significant effect on antibody titers and disease severity. In conclusion, our data show no evidence of a therapeutic potential for S1P receptor antagonists in MG treatment.


Assuntos
Azetidinas/farmacologia , Compostos de Benzil/farmacologia , Cloridrato de Fingolimode/farmacologia , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Animais , Formação de Anticorpos/efeitos dos fármacos , Citocinas/biossíntese , Feminino , Humanos , Imunossupressores/farmacologia , Linfopenia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/metabolismo , Plasmócitos/efeitos dos fármacos , Receptores de Lisoesfingolipídeo/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
12.
J Neuroimmunol ; 312: 24-30, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912035

RESUMO

Myasthenia gravis (MG) is caused by autoantibodies, the majority of which target the muscle acetylcholine receptor (AChR). Plasmapheresis and IgG-immunoadsorption are useful therapy options, but are highly non-specific. Antigen-specific immunoadsorption would remove only the pathogenic autoantibodies, reducing the possibility of side effects while maximizing the benefit. We have extensively characterized such adsorbents, but in vivo studies are missing. We used rats with experimental autoimmune MG to perform antigen-specific immunoadsorptions over three weeks, regularly monitoring symptoms and autoantibody titers. Immunoadsorption was effective, resulting in a marked autoantibody titer decrease while the immunoadsorbed, but not the mock-treated, animals showed a dramatic symptom improvement. Overall, the procedure was found to be efficient, suggesting the subsequent initiation of clinical trials.


Assuntos
Autoanticorpos/sangue , Remoção de Componentes Sanguíneos/métodos , Imunoadsorventes/uso terapêutico , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/terapia , Animais , Peso Corporal , Modelos Animais de Doenças , Eletromiografia , Feminino , Miastenia Gravis Autoimune Experimental/metabolismo , Miastenia Gravis Autoimune Experimental/fisiopatologia , Ratos , Ratos Endogâmicos Lew , Receptores Colinérgicos/imunologia , Fatores de Tempo , Resultado do Tratamento
13.
Autoimmunity ; 50(6): 346-353, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28850269

RESUMO

Experimental autoimmune myasthenia gravis (EAMG), an animal model of myasthenia gravis (MG), can be induced in C57BL/6 (B6, H-2 b) mice by 2-3 injections with Torpedo californica AChR (tAChR) in complete Freund's adjuvant. Some EAMG mice exhibit weight loss with muscle weakness. The loss in body weight, which is closely associated with bone structure, is particularly evident in EAMG mice with severe muscle weakness. However, the relationship between muscle weakness and bone loss in EAMG has not been studied before. Recent investigations on bone have shed light on association of bone health and immunological states. It is possible that muscle weakness in EAMG developed by anti-tAChR immune responses might accompany bone loss. We determined whether reduced muscle strength associates with decreased bone mineral density (BMD) in EAMG mice. EAMG was induced by two injections at 4-week interval of tAChR and adjuvants in two different age groups. The first tAChR injection was either at age 8 weeks or at 15 weeks. We measured BMD at three skeletal sites, including femur, tibia, and lumbar vertebrae, using dual energy X-ray absorptiometry. Among these bone areas, femur of EAMG mice in both age groups showed a significant decrease in BMD compared to control adjuvant-injected and to non-immunized mice. Reduction in BMD in induced EAMG at a later-age appears to parallel the severity of the disease. The results indicate that anti-tAChR autoimmune response alone can reduce bone density in EAMG mice. BMD reduction was also observed in adjuvant-injected mice in comparison to normal un-injected mice, suggesting that BMD decrease can occur even when muscle activity is normal. Decreased BMD observed in both tAChR-injected and adjuvant-injected mice groups were discussed in relation to innate immunity and bone-related immunology involving activated T cells and tumour necrosis factor-related cytokines that trigger osteoclastogenesis and bone loss.


Assuntos
Densidade Óssea/imunologia , Reabsorção Óssea/patologia , Debilidade Muscular/patologia , Miastenia Gravis Autoimune Experimental/patologia , Absorciometria de Fóton , Fatores Etários , Animais , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/imunologia , Fêmur/diagnóstico por imagem , Fêmur/imunologia , Fêmur/patologia , Proteínas de Peixes/administração & dosagem , Adjuvante de Freund/administração & dosagem , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/imunologia , Vértebras Lombares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Debilidade Muscular/induzido quimicamente , Debilidade Muscular/diagnóstico por imagem , Debilidade Muscular/imunologia , Miastenia Gravis Autoimune Experimental/induzido quimicamente , Miastenia Gravis Autoimune Experimental/diagnóstico por imagem , Miastenia Gravis Autoimune Experimental/metabolismo , Receptores Colinérgicos/administração & dosagem , Índice de Gravidade de Doença , Tíbia/diagnóstico por imagem , Tíbia/imunologia , Tíbia/patologia , Fatores de Tempo , Torpedo/metabolismo
14.
Neurosci Lett ; 656: 169-176, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28743581

RESUMO

We have previously demonstrated that Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor ameliorates experimental autoimmune myasthenia gravis (EAMG) by inhibited cellular immune response, via suppressing DC IL-1 ß, CD4+ T and γdT cells IL-17 pathways. In this study, we investigated the effect of caspase-1 inhibitor on humoral immune response of EAMG and further explore the underlying mechanisms. An animal model of MG was induced by region 97-116 of the rat AChR α subunit (R97-116 peptide) in Lewis rats. Rats were treated with caspase-1 inhibitor Ac-YVAD-cmk intraperitoneally (i.p.) every second day from day 13 after the first immunization. Flow cytometry, western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the neuroprotective effect of caspase-1 inhibitor on humoral immune response of EAMG. The results showed that caspase-1 inhibitor reduced the relative affinity of anti-R97-116 IgG, suppressed germinal center response, decreased follicular helper T cells, and increased follicular regulatory T cells and regulatory B cells. In addition, we found that caspase-1 inhibitor inhibited humoral immunity response in EAMG rats via suppressing IL-6-STAT3-Bcl-6 pathways. These results suggest that caspase-1 inhibitor ameliorates EAMG by regulating humoral immune response, thus providing new insights into the development of myasthenia gravis and other autoimmune diseases therapies.


Assuntos
Caspase 1/metabolismo , Inibidores de Caspase/uso terapêutico , Interleucina-6/metabolismo , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Feminino , Imunidade Humoral , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Ratos Endogâmicos Lew , Linfócitos T Auxiliares-Indutores/imunologia
15.
J Neuroinflammation ; 14(1): 117, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28599652

RESUMO

Multiple sclerosis (MS) is a chronic debilitating disease of the central nervous system primarily mediated by T lymphocytes with specificity to neuronal antigens in genetically susceptible individuals. On the other hand, myasthenia gravis (MG) primarily involves destruction of the neuromuscular junction by antibodies specific to the acetylcholine receptor. Both autoimmune diseases are thought to result from loss of self-tolerance, which allows for the development and function of autoreactive lymphocytes. Although the mechanisms underlying compromised self-tolerance in these and other autoimmune diseases have not been fully elucidated, one possibility is numerical, functional, and/or migratory deficits in T regulatory cells (Tregs). Tregs are thought to play a critical role in the maintenance of peripheral immune tolerance. It is believed that Tregs function by suppressing the effector CD4+ T cell subsets that mediate autoimmune responses. Dysregulation of suppressive and migratory markers on Tregs have been linked to the pathogenesis of both MS and MG. For example, genetic abnormalities have been found in Treg suppressive markers CTLA-4 and CD25, while others have shown a decreased expression of FoxP3 and IL-10. Furthermore, elevated levels of pro-inflammatory cytokines such as IL-6, IL-17, and IFN-γ secreted by T effectors have been noted in MS and MG patients. This review provides several strategies of treatment which have been shown to be effective or are proposed as potential therapies to restore the function of various Treg subsets including Tr1, iTr35, nTregs, and iTregs. Strategies focusing on enhancing the Treg function find importance in cytokines TGF-ß, IDO, interleukins 10, 27, and 35, and ligands Jagged-1 and OX40L. Likewise, strategies which affect Treg migration involve chemokines CCL17 and CXCL11. In pre-clinical animal models of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune myasthenia gravis (EAMG), several strategies have been shown to ameliorate the disease and thus appear promising for treating patients with MS or MG.


Assuntos
Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/terapia , Linfócitos T Reguladores/imunologia , Animais , Humanos , Tolerância Imunológica/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Imunoterapia/tendências , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Esclerose Múltipla/metabolismo , Miastenia Gravis Autoimune Experimental/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
16.
J Neuroimmunol ; 303: 13-21, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28038891

RESUMO

Myasthenia gravis (MG) is usually caused by antibodies against the muscle acetylcholine receptor (AChR). Experimental autoimmune MG (EAMG) is the animal model of MG, typically induced by immunization of rodents with AChR isolated from the electric organ of Torpedo californica. We have successfully induced EAMG in Lewis rats by immunization with the extracellular domains (ECDs) of the human AChR subunits (α, ß, γ, δ and ε) expressed in yeast. Analysis of the antibody titers revealed a robust antigenic response against all the peptides, but a marked difference in their pathogenicity; the α subunit ECD was the most pathogenic, resulting in the highest percentage of affected animals. Measurements of antibody titers, electromyographic tests and quantitation of the muscle AChR content, offered further support to these findings. The EAMG models presented herein, could be used for studying subunit-specific pathogenic mechanisms, and, more importantly, as tools for the evaluation of antigen-specific therapeutic approaches, which rely on the human AChR.


Assuntos
Modelos Animais de Doenças , Miastenia Gravis Autoimune Experimental/induzido quimicamente , Miastenia Gravis Autoimune Experimental/imunologia , Receptores Colinérgicos/administração & dosagem , Receptores Colinérgicos/imunologia , Animais , Feminino , Humanos , Miastenia Gravis Autoimune Experimental/metabolismo , Domínios Proteicos/fisiologia , Subunidades Proteicas/imunologia , Subunidades Proteicas/toxicidade , Ratos , Ratos Endogâmicos Lew
17.
Neurosci Lett ; 626: 25-34, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27181511

RESUMO

Curcumin is a traditional Asian medicine with diverse immunomodulatory properties used therapeutically in the treatment of many autoimmune diseases. However, the effects of curcumin on myasthenia gravis (MG) remain undefined. Here we investigated the effects and potential mechanisms of curcumin in experimental autoimmune myasthenia gravis (EAMG). Our results demonstrated that curcumin ameliorated the clinical scores of EAMG, suppressed the expression of T cell co-stimulatory molecules (CD80 and CD86) and MHC class II, down-regulated the levels of pro-inflammatory cytokines (IL-17, IFN-γ and TNF-α) and up-regulated the levels of the anti-inflammatory cytokine IL-10, shifted the balance from Th1/Th17 toward Th2/Treg, and increased the numbers of NKR-P1(+) cells (natural killer cell receptor protein 1 positive cells, including NK and NKT cells). Moreover, the administration of curcumin promoted the differentiation of B cells into a subset of B10 cells, increased the anti-R97-166 peptide IgG1 levels and decreased the relative affinity indexes of anti-R97-116 peptide IgG. In summary, curcumin effectively ameliorate EAMG, indicating that curcumin may be a potential candidate therapeutic agent for MG.


Assuntos
Curcumina/administração & dosagem , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/psicologia , Animais , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Feminino , Genes MHC da Classe II , Mediadores da Inflamação/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Miastenia Gravis Autoimune Experimental/metabolismo , Miastenia Gravis Autoimune Experimental/prevenção & controle , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo , Ratos , Ratos Endogâmicos Lew
18.
Oncotarget ; 7(7): 7550-62, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26771137

RESUMO

Abnormal overexpression of CXCL13 is observed in many inflamed tissues and in particular in autoimmune diseases. Myasthenia gravis (MG) is a neuromuscular disease mainly mediated by anti-acetylcholine receptor autoantibodies. Thymic hyperplasia characterized by ectopic germinal centers (GCs) is a common feature in MG and is correlated with high levels of anti-AChR antibodies. We previously showed that the B-cell chemoattractant, CXCL13 is overexpressed by thymic epithelial cells in MG patients. We hypothesized that abnormal CXCL13 expression by the thymic epithelium triggered B-cell recruitment in MG. We therefore created a novel transgenic (Tg) mouse with a keratin 5 driven CXCL13 expression. The thymus of Tg mice overexpressed CXCL13 but did not trigger B-cell recruitment. However, in inflammatory conditions, induced by Poly(I:C), B cells strongly migrated to the thymus. Tg mice were also more susceptible to experimental autoimmune MG (EAMG) with stronger clinical signs, higher titers of anti-AChR antibodies, increased thymic B cells, and the development of germinal center-like structures. Consequently, this mouse model finally mimics the thymic pathology observed in human MG. Our data also demonstrated that inflammation is mandatory to reveal CXCL13 ability to recruit B cells and to induce tertiary lymphoid organ development.


Assuntos
Linfócitos B/patologia , Quimiocina CXCL13/fisiologia , Inflamação/complicações , Miastenia Gravis Autoimune Experimental/patologia , Hiperplasia do Timo/fisiopatologia , Animais , Linfócitos B/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Citometria de Fluxo , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Humanos , Técnicas Imunoenzimáticas , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miastenia Gravis Autoimune Experimental/etiologia , Miastenia Gravis Autoimune Experimental/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
J Autoimmun ; 67: 57-64, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26489998

RESUMO

Adoptive transfer of regulatory T (Treg) cells have been employed effectively for suppression of several animal models for autoimmune diseases. In order to employ Treg cell therapy in patients, it is necessary to generate Treg cells from the patient's own cells (autologous) that would be able to suppress effectively the disease in vivo, upon their reintroduction to the patient. Towards this objective, we report in the present study on a protocol for a successful immune-regulation of experimental autoimmune myasthenia gravis (EAMG) by ex vivo--generated autologous Treg cells. For this protocol bone marrow (BM) cells, are first cultured in the presence of GM-CSF, giving rise to a population of CD11c(+)MHCII(+)CD45RA(+)CD8(-) DCs (BMDCs). Splenic CD4(+) T cells are then co-cultured with the differentiated BM cells and expand to 90% of Foxp3(+) Treg cells. In vitro assay exhibits a similar dose dependent manner in the suppression of T effector cells proliferation between Treg cells obtained from either healthy or sick donors. In addition, both Treg cells inhibit similarly the secretion of IFN-γ from activated splenocytes. Administration of 1 × 10(6) ex-vivo generated Treg cells, I.V, to EAMG rats, modulates the disease following a single treatment, given 3 days or 3 weeks after disease induction. Similar disease inhibition was achieved when CD4 cells were taken from either healthy or sick donors. The disease suppression was accompanied by reduced levels of total AChR specific antibodies in the serum. Moreover, due to the polyclonality of the described Treg cell, we have examined whether this treatment approach could be also employed for the treatment of other autoimmune diseases involving Treg cells. Indeed, we demonstrated that the ex-vivo generated autologous Treg cells suppress Adjuvant Arthritis (AA) in rats. This study opens the way for the application of induced autologous Treg cell therapy for myasthenia gravis, as well as for other human autoimmune diseases involving Treg cells.


Assuntos
Terapia de Imunossupressão , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transferência Adotiva , Animais , Comunicação Celular , Movimento Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Imunofenotipagem , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Fenótipo , Ratos , Receptores Nicotínicos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
20.
Med Sci Monit ; 21: 1774-80, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26087886

RESUMO

BACKGROUND: miR-15b is significantly and consistently downregulated in different clinical phenotypes of myasthenia gravis (MG). However, its role in pathogenesis of MG is still not clear. This study aimed to explore the function of miR-15b in MG. MATERIAL AND METHODS: Blood samples from early-onset MG, late-onset MG, thymoma patients, and healthy participants were collected. The expression pattern of IL-15 and miR-15b was identified by qRT-PCR and ELISA in patient serum and mouse tissue samples. The regulative role of miR-15b on IL-15 expression was verified in an experimental autoimmune myasthenia gravis (EAMG) mice model. RESULTS: qRT-PCR and ELISA showed that miR-15b expression was significantly lower and IL-15 expression was significantly higher in all EMG, LMG, and thymoma cases compared to healthy controls. Based on mouse model, we confirmed that miR-15b knockdown could increase IL-15 expression in healthy mice, while miR-15b overexpression could inhibit IL-15 expression in EAMG mice. Through searching in bioinformatics databases, we identified a highly conserved consequential pairing between IL-15 and miR-15b. Subsequent dual luciferase assay further verified this match. CONCLUSIONS: This study is the first to report the miR-15b-IL-15 axis can directly regulate IL15 expression, which helps to further explain the abnormal IL-15 expression in MG patients and the pathogenesis of MG.


Assuntos
Regulação da Expressão Gênica/fisiologia , Interleucina-15/metabolismo , MicroRNAs/sangue , Miastenia Gravis Autoimune Experimental/metabolismo , Miastenia Gravis/fisiopatologia , Animais , Biologia Computacional , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Humanos , Luciferases , Camundongos , MicroRNAs/genética , Miastenia Gravis/sangue , Reação em Cadeia da Polimerase em Tempo Real , Timoma/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...