Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.260
Filtrar
1.
Cancer Immunol Immunother ; 73(6): 113, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693312

RESUMO

Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.


Assuntos
Neoplasias da Mama , Senescência Celular , Neutrófilos , Piperazinas , Piridinas , Humanos , Piperazinas/farmacologia , Piridinas/farmacologia , Senescência Celular/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Neutrófilos/metabolismo , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação de Neutrófilo/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
2.
J Nanobiotechnology ; 22(1): 234, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724978

RESUMO

Radiotherapy-induced immune activation holds great promise for optimizing cancer treatment efficacy. Here, we describe a clinically used radiosensitizer hafnium oxide (HfO2) that was core coated with a MnO2 shell followed by a glucose oxidase (GOx) doping nanoplatform (HfO2@MnO2@GOx, HMG) to trigger ferroptosis adjuvant effects by glutathione depletion and reactive oxygen species production. This ferroptosis cascade potentiation further sensitized radiotherapy by enhancing DNA damage in 4T1 breast cancer tumor cells. The combination of HMG nanoparticles and radiotherapy effectively activated the damaged DNA and Mn2+-mediated cGAS-STING immune pathway in vitro and in vivo. This process had significant inhibitory effects on cancer progression and initiating an anticancer systemic immune response to prevent distant tumor recurrence and achieve long-lasting tumor suppression of both primary and distant tumors. Furthermore, the as-prepared HMG nanoparticles "turned on" spectral computed tomography (CT)/magnetic resonance dual-modality imaging signals, and demonstrated favorable contrast enhancement capabilities activated by under the GSH tumor microenvironment. This result highlighted the potential of nanoparticles as a theranostic nanoplatform for achieving molecular imaging guided tumor radiotherapy sensitization induced by synergistic immunotherapy.


Assuntos
Ferroptose , Imunoterapia , Compostos de Manganês , Proteínas de Membrana , Camundongos Endogâmicos BALB C , Nanopartículas , Nucleotidiltransferases , Óxidos , Radiossensibilizantes , Animais , Camundongos , Imunoterapia/métodos , Óxidos/química , Óxidos/farmacologia , Feminino , Nucleotidiltransferases/metabolismo , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Linhagem Celular Tumoral , Nanopartículas/química , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química , Proteínas de Membrana/metabolismo , Ferroptose/efeitos dos fármacos , Glucose Oxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Dano ao DNA , Microambiente Tumoral/efeitos dos fármacos
3.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727266

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the first-line therapy in PDAC. However, it is quickly deaminated to its inactive metabolite. Several GEM prodrugs have emerged to improve its cytotoxicity. Here, we analyzed how the acidic/hypoxic tumor microenvironment (TME) affects the response of PDAC cell death and invadopodia-mediated ECM proteolysis to both GEM and its C18 prodrug. METHODS: For this, two PDAC cell lines, PANC-1 and Mia PaCa-2 were adapted to pHe 6.6 or not for 1 month, grown as 3D organotypic cultures and exposed to either GEM or C18 in the presence and absence of acidosis and the hypoxia inducer, deferoxamine. RESULTS: We found that C18 has higher cytotoxic and anti-invadopodia activity than GEM in all culture conditions and especially in acid and hypoxic environments. CONCLUSIONS: We propose C18 as a more effective approach to conventional GEM in developing new therapeutic strategies overcoming PDAC chemoresistance.


Assuntos
Desoxicitidina , Gencitabina , Neoplasias Pancreáticas , Microambiente Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Podossomos/metabolismo , Podossomos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pró-Fármacos/farmacologia
4.
Proc Natl Acad Sci U S A ; 121(20): e2321545121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713621

RESUMO

The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Humanos , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Porfirinas/farmacologia , Porfirinas/química , Ligação Proteica , Nanopartículas/química
5.
Cell Commun Signal ; 22(1): 251, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698424

RESUMO

Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.


Assuntos
Imunoterapia , Neoplasias , Transdução de Sinais , Esfingolipídeos , Fator de Necrose Tumoral alfa , Humanos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Esfingolipídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
6.
Cancer Res ; 84(10): 1546-1547, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745496

RESUMO

Antibody-based immune checkpoint blockade therapy has revolutionized the field of cancer immunotherapy, yet its efficacy remains limited in immunologically cold tumors. Combining checkpoint inhibitors with costimulatory agonists improves tumoricidal activity of T cells but also can lead to off-target hepatotoxicity. Although bispecific antibodies confer tumor selectivity to alleviate undesirable adverse effects, toxicity concerns persist with increased dosing. In this issue of Cancer Research, Yuwen and colleagues introduce ATG-101, a tetravalent PD-L1×4-1BB bispecific antibody with high programmed death ligand 1 (PD-L1) affinity and low 4-1BB affinity, aiming to mitigate hepatotoxicity. ATG-101 demonstrates PD-L1-dependent 4-1BB activation, leading to selective T-cell activation within the tumor microenvironment. ATG-101 exhibits potent antitumor activity, even in large, immunologically cold, and monotherapy-resistant tumor models. Single-cell RNA sequencing reveals significant shifts of immune cell populations in the tumor microenvironment from protumor to antitumor phenotypes following ATG-101 treatment. In cynomolgus monkeys, no serious cytokine storm and hepatotoxicity are observed after ATG-101 treatment, indicating a broad therapeutic window for ATG-101 in cancer treatment. This study highlights the potential of tetravalent bispecific antibodies in cancer immunotherapy, with implications for various antibody-based treatment modalities across different fields. See related article by Yuwen et al., p. 1680.


Assuntos
Anticorpos Biespecíficos , Antígeno B7-H1 , Microambiente Tumoral , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Humanos , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Macaca fascicularis
7.
Cancer Immunol Immunother ; 73(7): 128, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743074

RESUMO

The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.


Assuntos
Codonopsis , Fenótipo , Microambiente Tumoral , Macrófagos Associados a Tumor , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Humanos , Glicopeptídeos/metabolismo , Glicopeptídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/imunologia
8.
Clin Transl Med ; 14(5): e1655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711203

RESUMO

BACKGROUND: Uterine leiomyosarcomas (uLMS) are aggressive tumours with poor prognosis and limited treatment options. Although immune checkpoint blockade (ICB) has proven effective in some 'challenging-to-treat' cancers, clinical trials showed that uLMS do not respond to ICB. Emerging evidence suggests that aberrant PI3K/mTOR signalling can drive resistance to ICB. We therefore explored the relevance of the PI3K/mTOR pathway for ICB treatment in uLMS and explored pharmacological inhibition of this pathway to sensitise these tumours to ICB. METHODS: We performed an integrated multiomics analysis based on TCGA data to explore the correlation between PI3K/mTOR dysregulation and immune infiltration in 101 LMS. We assessed response to PI3K/mTOR inhibitors in immunodeficient and humanized uLMS patient-derived xenografts (PDXs) by evaluating tumour microenvironment modulation using multiplex immunofluorescence. We explored response to single-agent and a combination of PI3K/mTOR inhibitors with PD-1 blockade in humanized uLMS PDXs. We mapped intratumoural dynamics using single-cell RNA/TCR sequencing of serially collected biopsies. RESULTS: PI3K/mTOR over-activation (pS6high) associated with lymphocyte depletion and wound healing immune landscapes in (u)LMS, suggesting it contributes to immune evasion. In contrast, PI3K/mTOR inhibition induced profound tumour microenvironment remodelling in an ICB-resistant humanized uLMS PDX model, fostering adaptive anti-tumour immune responses. Indeed, PI3K/mTOR inhibition induced macrophage repolarisation towards an anti-tumourigenic phenotype and increased antigen presentation on dendritic and tumour cells, but also promoted infiltration of PD-1+ T cells displaying an exhausted phenotype. When combined with anti-PD-1, PI3K/mTOR inhibition led to partial or complete tumour responses, whereas no response to single-agent anti-PD-1 was observed. Combination therapy reinvigorated exhausted T cells and induced clonal hyper-expansion of a cytotoxic CD8+ T-cell population supported by a CD4+ Th1 niche. CONCLUSIONS: Our findings indicate that aberrant PI3K/mTOR pathway activation contributes to immune escape in uLMS and provides a rationale for combining PI3K/mTOR inhibition with ICB for the treatment of this patient population.


Assuntos
Leiomiossarcoma , Microambiente Tumoral , Neoplasias Uterinas , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Leiomiossarcoma/tratamento farmacológico , Humanos , Feminino , Neoplasias Uterinas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Animais , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico
9.
Int J Nanomedicine ; 19: 3919-3942, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708176

RESUMO

Typical physiological characteristics of tumors, such as weak acidity, low oxygen content, and upregulation of certain enzymes in the tumor microenvironment (TME), provide survival advantages when exposed to targeted attacks by drugs and responsive nanomedicines. Consequently, cancer treatment has significantly progressed in recent years. However, the evolution and adaptation of tumor characteristics still pose many challenges for current treatment methods. Therefore, efficient and precise cancer treatments require an understanding of the heterogeneity degree of various factors in cancer cells during tumor evolution to exploit the typical TME characteristics and manage the mutation process. The highly heterogeneous tumor and infiltrating stromal cells, immune cells, and extracellular components collectively form a unique TME, which plays a crucial role in tumor malignancy, including proliferation, invasion, metastasis, and immune escape. Therefore, the development of new treatment methods that can adapt to the evolutionary characteristics of tumors has become an intense focus in current cancer treatment research. This paper explores the latest understanding of cancer evolution, focusing on how tumors use new antigens to shape their "new faces"; how immune system cells, such as cytotoxic T cells, regulatory T cells, macrophages, and natural killer cells, help tumors become "invisible", that is, immune escape; whether the diverse cancer-associated fibroblasts provide support and coordination for tumors; and whether it is possible to attack tumors in reverse. This paper discusses the limitations of targeted therapy driven by tumor evolution factors and explores future strategies and the potential of intelligent nanomedicines, including the systematic coordination of tumor evolution factors and adaptive methods, to meet this therapeutic challenge.


Assuntos
Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/imunologia , Nanomedicina/métodos , Animais , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacologia
10.
Colloids Surf B Biointerfaces ; 238: 113930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692174

RESUMO

Breast cancer is a wide-spread threat to the women's health. The drawbacks of conventional treatments necessitate the development of alternative strategies, where gene therapy has regained hope in achieving an efficient eradication of aggressive tumors. Monocarboxylate transporter 4 (MCT4) plays pivotal roles in the growth and survival of various tumors, which offers a promising target for treatment. In the present study, pH-responsive lipid nanoparticles (LNPs) based on the ionizable lipid,1,2-dioleoyl-3-dimethylammonium propane (DODAP), were designed for the delivery of siRNA targeting MCT4 gene to the breast cancer cells. Following multiple steps of characterization and optimization, the anticancer activities of the LNPs were assessed against an aggressive breast cancer cell line, 4T1, in comparison with a normal cell line, LX-2. The selection of the helper phospholipid to be incorporated into the LNPs had a dramatic impact on their gene delivery performance. The optimized LNPs enabled a powerful MCT4 silencing by ∼90 % at low siRNA concentrations, with a subsequent ∼80 % cytotoxicity to 4T1 cells. Meanwhile, the LNPs demonstrated a 5-fold higher affinity to the breast cancer cells versus the normal cells, in which they had a minimum effect. Moreover, the MCT4 knockdown by the treatment remodeled the cytokine profile in 4T1 cells, as evidenced by 90 % and ∼64 % reduction in the levels of TNF-α and IL-6; respectively. The findings of this study are promising for potential clinical applications. Furthermore, the simple and scalable delivery vector developed herein can serve as a breast cancer-targeting platform for the delivery of other RNA therapeutics.


Assuntos
Neoplasias da Mama , Citocinas , Transportadores de Ácidos Monocarboxílicos , Proteínas Musculares , Nanopartículas , RNA Interferente Pequeno , Microambiente Tumoral , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Nanopartículas/química , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Feminino , Citocinas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Animais , Camundongos , Técnicas de Silenciamento de Genes , Tamanho da Partícula , Concentração de Íons de Hidrogênio
11.
Nihon Yakurigaku Zasshi ; 159(3): 169-172, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692882

RESUMO

Since the approval of HIF-PH inhibitors, HIF-PH inhibitors have been used clinically, and many studies and clinical case reports have been reported in Japan. A lot of information has been accumulated on clinical usage. However, HIF-PH inhibitors require careful administration for cancer patients due to their action mechanism through upregulating hypoxia-inducible factors (HIFs) level. In cancer cells, HIFs affect tumor progression and contribute to chemo- and radio-resistance. On the other hand, upregulation of HIFs in immune cells is associated with inflammation and suppress tumor progression. However, these controversial effects are not clear in in vivo model. It is needed to reveal whether upregulating HIFs level is beneficial for cancer therapy or not. We have previously reported that HIF-PH inhibitor treatment in tumor bearing mice model led to reconstitute tumor blood vessel and inhibit tumor growth. In addition, these phenomena were caused by tumor infiltrated macrophages and they altered these phenotypes. In this review, we will describe our findings on the mechanism of tumor growth suppression by HIF-PH inhibitors. We also want to mention the risks and benefits of future HIF-PH inhibitors.


Assuntos
Neoplasias , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo
12.
ACS Nano ; 18(19): 12194-12209, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38689426

RESUMO

In situ vaccines (ISVs) utilize the localized delivery of chemotherapeutic agents or radiotherapy to stimulate the release of endogenous antigens from tumors, thereby eliciting systemic and persistent immune activation. Recently, a bioinspired ISV strategy has attracted tremendous attention due to its features such as an immune adjuvant effect and genetic plasticity. M13 bacteriophages are natural nanomaterials with intrinsic immunogenicity, genetic flexibility, and cost-effectiveness for large-scale production, demonstrating the potential for application in cancer vaccines. In this study, we propose an ISV based on the engineered M13 bacteriophage targeting CD40 (M13CD40) for dendritic cell (DC)-targeted immune stimulation, named H-GM-M13CD40. We induce immunogenic cell death and release tumor antigens through local delivery of (S)-10-hydroxycamptothecin (HCPT), followed by intratumoral injection of granulocyte-macrophage colony stimulating factor (GM-CSF) and M13CD40 to enhance DC recruitment and activation. We demonstrate that this ISV strategy can result in significant accumulation and activation of DCs at the tumor site, reversing the immunosuppressive tumor microenvironment. In addition, H-GM-M13CD40 can synergize with the PD-1 blockade and induce abscopal effects in cold tumor models. Overall, our study verifies the immunogenicity of the engineered M13CD40 bacteriophage and provides a proof of concept that the engineered M13CD40 phage can function as an adjuvant for ISVs.


Assuntos
Bacteriófago M13 , Vacinas Anticâncer , Células Dendríticas , Microambiente Tumoral , Vacinas Anticâncer/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Bacteriófago M13/imunologia , Bacteriófago M13/química , Camundongos , Células Dendríticas/imunologia , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Linhagem Celular Tumoral , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Antígenos de Neoplasias/imunologia , Humanos
13.
ACS Nano ; 18(19): 12295-12310, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695532

RESUMO

Immune checkpoint blockade (ICB) has brought tremendous clinical progress, but its therapeutic outcome can be limited due to insufficient activation of dendritic cells (DCs) and insufficient infiltration of cytotoxic T lymphocytes (CTLs). Evoking immunogenic cell death (ICD) is one promising strategy to promote DC maturation and elicit T-cell immunity, whereas low levels of ICD induction of solid tumors restrict durable antitumor efficacy. Herein, we report a genetically edited cell membrane-coated cascade nanozyme (gCM@MnAu) for enhanced cancer immunotherapy by inducing ICD and activating the stimulator of the interferon genes (STING) pathway. In the tumor microenvironment (TME), the gCM@MnAu initiates a cascade reaction and generates abundant cytotoxic hydroxyl (•OH), resulting in improved chemodynamic therapy (CDT) and boosted ICD activation. In addition, released Mn2+ during the cascade reaction activates the STING pathway and further promotes the DC maturation. More importantly, activated immunogenicity in the TME significantly improves gCM-mediated PD-1/PD-L1 checkpoint blockade therapy by eliciting systemic antitumor responses. In breast cancer subcutaneous and lung metastasis models, the gCM@MnAu showed synergistically enhanced therapeutic effects and significantly prolonged the survival of mice. This work develops a genetically edited nanozyme-based therapeutic strategy to improve DC-mediated cross-priming of T cells against poorly immunogenic solid tumors.


Assuntos
Imunoterapia , Animais , Camundongos , Feminino , Humanos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Morte Celular Imunogênica/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Nanopartículas/química
14.
ACS Nano ; 18(19): 12386-12400, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38699808

RESUMO

Current cancer vaccines face challenges due to an immunosuppressive tumor microenvironment and their limited ability to produce an effective immune response. To address the above limitations, we develop a 3-(2-spiroadamantyl)-4-methoxy-4-(3-phosphoryloxy)-phenyl-1,2-dioxetane (alkaline phosphatase substrate) and XMD8-92 (extracellular signal-regulated kinase 5 inhibitor)-codelivered copper-tetrahydroxybenzoquinone (Cu-THBQ/AX) nanosized metal-organic framework to in situ-generate therapeutic vaccination. Once inside the early endosome, the alkaline phosphatase overexpressed in the tumor cells' membrane activates the in situ type I photodynamic effect of Cu-THBQ/AX for generating •O2-, and the Cu-THBQ/AX catalyzes O2 and H2O2 to •O2- and •OH via semiquinone radical catalysis and Fenton-like reactions. This surge of ROS in early endosomes triggers caspase-3-mediated proinflammatory pyroptosis via activating phospholipase C. Meanwhile, Cu-THBQ/AX can also induce the oligomerization of dihydrolipoamide S-acetyltransferase to trigger tumor cell cuproptosis. The production of •OH could also trigger the release of XMD8-92 for effectively inhibiting the efferocytosis of macrophages to convert immunosuppressive apoptosis of cancer cells into proinflammatory secondary necrosis. The simultaneous induction of pyroptosis, cuproptosis, and secondary necrosis effectively converts the tumor microenvironment from "cold" to "hot" conditions, making it an effective antigen pool. This transformation successfully activates the antitumor immune response, inhibiting tumor growth and metastasis.


Assuntos
Vacinas Anticâncer , Cobre , Macrófagos , Estruturas Metalorgânicas , Piroptose , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Animais , Camundongos , Piroptose/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Humanos , Cobre/química , Cobre/farmacologia , Vacinas Anticâncer/química , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Fagocitose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Camundongos Endogâmicos BALB C , Eferocitose , Nanovacinas
15.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731601

RESUMO

Alterations in cellular metabolism, such as dysregulation in glycolysis, lipid metabolism, and glutaminolysis in response to hypoxic and low-nutrient conditions within the tumor microenvironment, are well-recognized hallmarks of cancer. Therefore, understanding the interplay between aerobic glycolysis, lipid metabolism, and glutaminolysis is crucial for developing effective metabolism-based therapies for cancer, particularly in the context of colorectal cancer (CRC). In this regard, the present review explores the complex field of metabolic reprogramming in tumorigenesis and progression, providing insights into the current landscape of small molecule inhibitors targeting tumorigenic metabolic pathways and their implications for CRC treatment.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Glicólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos
16.
ACS Biomater Sci Eng ; 10(5): 3470-3477, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652035

RESUMO

The laminar flow profiles in microfluidic systems coupled to rapid diffusion at flow streamlines have been widely utilized to create well-controlled chemical gradients in cell cultures for spatially directing cell migration. However, within hydrogel-based closed microfluidic systems of limited depth (≤0.1 mm), the biomechanical cues for the cell culture are dominated by cell interactions with channel surfaces rather than with the hydrogel microenvironment. Also, leaching of poly(dimethylsiloxane) (PDMS) constituents in closed systems and the adsorption of small molecules to PDMS alter chemotactic profiles. To address these limitations, we present the patterning and integration of a PDMS-free open fluidic system, wherein the cell-laden hydrogel directly adjoins longitudinal channels that are designed to create chemotactic gradients across the 3D culture width, while maintaining uniformity across its ∼1 mm depth to enhance cell-biomaterial interactions. This hydrogel-based open fluidic system is assessed for its ability to direct migration of U87 glioma cells using a hybrid hydrogel that includes hyaluronic acid (HA) to mimic the brain tumor microenvironment and gelatin methacrylate (GelMA) to offer the adhesion motifs for promoting cell migration. Chemotactic gradients to induce cell migration across the hydrogel width are assessed using the chemokine CXCL12, and its inhibition by AMD3100 is validated. This open-top hydrogel-based fluidic system to deliver chemoattractant cues over square-centimeter-scale areas and millimeter-scale depths can potentially serve as a robust screening platform to assess emerging glioma models and chemotherapeutic agents to eradicate them.


Assuntos
Movimento Celular , Quimiotaxia , Glioma , Hidrogéis , Humanos , Glioma/patologia , Glioma/metabolismo , Movimento Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Quimiotaxia/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cultura de Células em Três Dimensões/métodos , Microambiente Tumoral/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Quimiocina CXCL12/metabolismo , Ciclamos/farmacologia , Ciclamos/química , Técnicas de Cultura de Células/métodos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Gelatina/química , Benzilaminas/farmacologia , Benzilaminas/química , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo
17.
Biomacromolecules ; 25(5): 3044-3054, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38662992

RESUMO

Photodynamic therapy (PDT) has demonstrated efficacy in eliminating local tumors, yet its effectiveness against metastasis is constrained. While immunotherapy has exhibited promise in a clinical context, its capacity to elicit significant systemic antitumor responses across diverse cancers is often limited by the insufficient activation of the host immune system. Consequently, the combination of PDT and immunotherapy has garnered considerable attention. In this study, we developed pH-responsive porphyrin-peptide nanosheets with tumor-targeting capabilities (PRGD) that were loaded with the IDO inhibitor NLG919 for a dual application involving PDT and immunotherapy (PRGD/NLG919). In vitro experiments revealed the heightened cellular uptake of PRGD/NLG919 nanosheets in tumor cells overexpressing αvß3 integrins. The pH-responsive PRGD/NLG919 nanosheets demonstrated remarkable singlet oxygen generation and photocytotoxicity in HeLa cells in an acidic tumor microenvironment. When treating HeLa cells with PRGD/NLG919 nanosheets followed by laser irradiation, a more robust adaptive immune response occurred, leading to a substantial proliferation of CD3+CD8+ T cells and CD3+CD4+ T cells compared to control groups. Our pH-responsive targeted PRGD/NLG919 nanosheets therefore represent a promising nanosystem for combination therapy, offering effective PDT and an enhanced host immune response.


Assuntos
Imunoterapia , Nanoestruturas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Concentração de Íons de Hidrogênio , Imunoterapia/métodos , Nanoestruturas/química , Células HeLa , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Porfirinas/química , Porfirinas/farmacologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Imidazóis , Isoindóis
18.
J Colloid Interface Sci ; 668: 88-97, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669999

RESUMO

Nanotheranostic platforms, which can respond to tumor microenvironments (TME, such as low pH and hypoxia), are immensely appealing for photodynamic therapy (PDT). However, hypoxia in solid tumors harms the treatment outcome of PDT which depends on oxygen molecules to generate cytotoxic singlet oxygen (1O2). Herein, we report the design of TME-responsive smart nanotheranostic platform (DOX/ZnO2@Zr-Ce6/Pt/PEG) which can generate endogenously hydrogen peroxide (H2O2) and oxygen (O2) to alleviate hypoxia for improving photodynamic-chemo combination therapy of tumors. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite was prepared by the synthesis of ZnO2 nanoparticles, in-situ assembly of Zr-Ce6 as typical metal-organic framework (MOF) on ZnO2 surface, in-situ reduction of Pt nanozymes, amphiphilic lipids surface coating and then doxorubicin (DOX) loading. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite exhibits average sizes of ∼78 nm and possesses a good loading capacity (48.8 %) for DOX. When DOX/ZnO2@Zr-Ce6/Pt/PEG dispersions are intratumorally injected into mice, the weak acidic TEM induces the decomposition of ZnO2 core to generate endogenously H2O2, then Pt nanozymes catalyze H2O2 to produce O2 for alleviating tumor hypoxia. Upon laser (630 nm) irradiation, the Zr-Ce6 component in DOX/ZnO2@Zr-Ce6/Pt/PEG can produce cytotoxic 1O2, and 1O2 generation rate can be enhanced by 2.94 times due to the cascaded generation of endogenous H2O2/O2. Furthermore, the generated O2 can suppress the expression of hypoxia-inducible factor α, and further enable tumor cells to become more sensitive to chemotherapy, thereby leading to an increased effectiveness of chemotherapy treatment. The photodynamic-chemo combination therapy from DOX/ZnO2@Zr-Ce6/Pt/PEG nanoplatform exhibits remarkable tumor growth inhibition compared to chemotherapy or PDT. Thus, the present study is a good demonstration of a TME-responsive nanoplatform in a multimodal approach for cancer therapy.


Assuntos
Doxorrubicina , Peróxido de Hidrogênio , Oxigênio , Fotoquimioterapia , Nanomedicina Teranóstica , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Animais , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Oxigênio/química , Oxigênio/metabolismo , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Tamanho da Partícula , Propriedades de Superfície , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Peróxidos/química , Peróxidos/farmacologia , Nanopartículas/química , Camundongos Endogâmicos BALB C , Zinco/química , Zinco/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem
19.
Biomolecules ; 14(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672409

RESUMO

The remarkable efficacy of cancer immunotherapy has been established in several tumor types. Of the various immunotherapies, PD-1/PD-L1 inhibitors are most extensively used in the treatment of many cancers in clinics. These inhibitors restore the suppressed antitumor immune response and inhibit tumor progression by blocking the PD-1/PD-L1 signaling. However, the low response rate is a major limitation in the clinical application of PD-1/PD-L1 inhibitors. Therefore, combination strategies that enhance the response rate are the need of the hour. In this investigation, PT-100 (also referred to as Talabostat, Val-boroPro, and BXCL701), an orally administered and nonselective dipeptidyl peptidase inhibitor, not only augmented the effectiveness of anti-PD-1 therapy but also significantly improved T immune cell infiltration and reversed the immunosuppressive tumor microenvironment. The combination of PT-100 and anti-PD-1 antibody increased the number of CD4+ and CD8+ T cells. Moreover, the mRNA expression of T cell-associated molecules was elevated in the tumor microenvironment. The results further suggested that PT-100 dramatically reduced the ratio of tumor-associated macrophages. These findings provide a promising combination strategy for immunotherapy in lung cancer.


Assuntos
Carcinoma Pulmonar de Lewis , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Animais , Camundongos , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral/efeitos dos fármacos
20.
Int Immunopharmacol ; 133: 112053, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615380

RESUMO

Although PD-1 inhibitors have revolutionized the treatment paradigm of non-small cell lung cancer (NSCLC), their efficacy in treating NSCLC has remained unsatisfactory. Targeting cancer-associated fibroblasts (CAFs) is a potential approach for improving the immunotherapy response. Multitarget antiangiogenic tyrosine kinase receptor inhibitors (TKIs) can enhance the efficacy of PD-1 inhibitors in NSCLC patients. However, the effects and mechanisms of antiangiogenic TKIs on CAFs have not been elucidated. In this study, we first compared anlotinib with other antiangiogenic TKIs and confirmed the superior efficacy of anlotinib. Furthermore, we established NSCLC-associated CAF models and found that anlotinib impaired CAF viability and migration capacity and contributed to CAF apoptosis and cell cycle arrest in the G2/M phase. Moreover, anlotinib treatment attenuated the capacity of CAFs to recruit lung cancer cells and macrophages. Experiments in animal models suggested that anlotinib could enhance the efficacy of anti-PD1 therapy in NSCLC and affect CAF proliferation and apoptosis. Anlotinib increased the abundance of tumor-infiltrating CD8 + T cells, and PD-1 inhibitor-induced cytotoxicity to tumor cells was achieved through the transformation of the tumor microenvironment (TME) caused by anlotinib, which may partly explain the synergistic antitumor effect of anlotinib and PD-1 inhibitors. Mechanistically, anlotinib affects CAF apoptosis and cell viability at least in part by inhibiting the AKT pathway. In conclusion, our study suggested that anlotinib could regulate the TME, inhibit the AKT pathway and promote CAF apoptosis, providing new insights into the antitumor effect of anlotinib and improving the efficacy of immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Apoptose , Indóis , Neoplasias Pulmonares , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas c-akt , Quinolinas , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Animais , Indóis/farmacologia , Indóis/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Sinergismo Farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...