Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Ecotoxicol Environ Saf ; 283: 116945, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39222612

RESUMO

The escalating use of inorganic fertilizers and pesticides to boost crop production has led to the depletion of natural resources, contamination of water sources, and environmental crises. In response, the scientific community is exploring eco-friendly alternatives, such as fungal-based biofertilizers and biopesticides, which have proven effectiveness in enhancing plant health and growth while sustainably managing plant diseases and pests. This review article examines the production methodologies of these bioproducts, highlighting their role in sustainable agriculture and advancing our understanding of soil microorganisms. Despite their increasing demand, their global market presence remains limited compared to traditional chemical counterparts. The article addresses: 1) the production of biofertilizers and biopesticides, 2) their contribution to crop productivity, 3) their environmental impact and regulations, and 4) current production technologies. This comprehensive approach aims to promote the transition towards more sustainable agricultural practices.


Assuntos
Agentes de Controle Biológico , Fertilizantes , Fungos , Agentes de Controle Biológico/normas , Fungos/metabolismo , Produção Agrícola , Micronutrientes , Solo/química , Microbiologia Industrial/métodos , Microbiologia Industrial/tendências
2.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2747-2760, 2024 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-39174480

RESUMO

Methanol has been considered one of the most important alternative carbon sources for the next-generation biomanufacturing due to its low price, mature production processes, and potential sustainability. Constructing microbial cell factories for methanol to chemical biotransformation has become a research hotspot in the green biomanufacturing industry. Focusing on the microorganisms that can naturally use methanol, we compare them with non-natural cell factories for chemical production from methanol. We discuss the key issues and challenges associated with natural cell factories for chemical production from methanol, summarize recent research progress surrounding these issues, and propose possible solutions to these challenges. This review helps to generate feasible guidelines and research strategies for the modification of natural cell factories for efficient methanol to chemical production in the future.


Assuntos
Microbiologia Industrial , Metanol , Metanol/metabolismo , Microbiologia Industrial/tendências , Biotransformação , Bactérias/metabolismo , Engenharia Metabólica
3.
Microb Biotechnol ; 17(8): e14535, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39075758

RESUMO

We here explore the potential of the fungal genus Aureobasidium as a prototype for a microbial chassis for industrial biotechnology in the context of a developing circular bioeconomy. The study emphasizes the physiological advantages of Aureobasidium, including its polyextremotolerance, broad substrate spectrum, and diverse product range, making it a promising candidate for cost-effective and sustainable industrial processes. In the second part, recent advances in genetic tool development, as well as approaches for up-scaled fermentation, are described. This review adds to the growing body of scientific literature on this remarkable fungus and reveals its potential for future use in the biotechnological industry.


Assuntos
Aureobasidium , Biotecnologia , Microbiologia Industrial , Microbiologia Industrial/tendências , Microbiologia Industrial/métodos , Biotecnologia/métodos , Biotecnologia/tendências , Aureobasidium/genética , Aureobasidium/metabolismo , Fermentação
4.
Braz J Microbiol ; 52(4): 1835-1843, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34561846

RESUMO

Baculoviruses have been applied for biocontrol of agricultural pests, such as velvetbean caterpillar (Anticarsia gemmatalis) and fall armyworm (Spodoptera frugiperda). Cell culture is an interesting approach for large-scale production of these viruses. Co-infection of a host cell with two distinct viruses can contribute to reduce costs due to saving cell culture media, bioreactor space and the resulting co-occluded polyhedra may help to reduce final biopesticide costs. The baculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) and Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) were chosen to test a model for in vitro co-infection in SF21 cells. Different proportions of SfMNPV/AgMNPV were evaluated along three in vitro passages by optical microscopy analysis of cells and real-time PCR (qPCR) of DNA obtained from budded viruses (BVs) and occlusion bodies (OBs). The kinetics of viral protein synthesis was carried out for analysis of the co-infection in first passage and bioassays with the resulting OBs were performed against A. gemmatalis and S. frugiperda larvae. The results demonstrated successful co-infection in these cells. The quantity of SfMNPV and AgMNPV in supernatants and sediments tends to be maintained stable during the three passages, although the amount of AgMNPV was higher than SfMPNV in most of the experiments. Analysis of the kinetics of radiolabed proteins showed that the cell protein synthesis was shut off and two distinct bands of about 30 kDa, regarded to be the polyhedrin of each virus, were strongly detected at 48 and 72 hp.i. Although the pathogenicity of the produced viruses was not completely satisfactory, the bioassays confirmed occurrence of co-infected larvae with disproportional amount of each virus.


Assuntos
Microbiologia Industrial , Nucleopoliedrovírus , Spodoptera , Virologia , Animais , Microbiologia Industrial/métodos , Microbiologia Industrial/tendências , Larva/virologia , Nucleopoliedrovírus/fisiologia , Células Sf9 , Spodoptera/virologia , Virologia/métodos , Virologia/tendências
5.
Microbiol Res ; 251: 126813, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34274880

RESUMO

Carbon dioxide (CO2) occurs naturally in the atmosphere as a trace gas, which is produced naturally as well as by anthropogenic activities. CO2 is a readily available source of carbon that in principle can be used as a raw material for the synthesis of valuable products. The autotrophic organisms are naturally equipped to convert CO2 into biomass by obtaining energy from sunlight or inorganic electron donors. This autotrophic CO2 fixation has been exploited in biotechnology, and microbial cell factories have been metabolically engineered to convert CO2 into biofuels and other value-added bio-based chemicals. A variety of metabolic engineering efforts for CO2 fixation ranging from basic copy, paste, and fine-tuning approaches to engineering and testing of novel synthetic CO2 fixing pathways have been demonstrated. In this paper, we review the current advances and innovations in metabolic engineering for bio-conversion of CO2 into bio biofuels and other value-added bio-based chemicals.


Assuntos
Biocombustíveis , Dióxido de Carbono , Engenharia Metabólica , Bactérias/metabolismo , Biotecnologia/tendências , Dióxido de Carbono/química , Microbiologia Industrial/tendências
6.
Folia Microbiol (Praha) ; 66(4): 483-507, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34060028

RESUMO

Myxobacteria belong to a group of bacteria that are known for their well-developed communication system and synchronized or coordinated movement. This typical behavior of myxobacteria is mediated through secondary metabolites. They are capable of producing secondary metabolites belonging to several chemical classes with unique and wide spectrum of bioactivities. It is predominantly significant that myxobacteria specialize in mechanisms of action that are very rare with other producers. Most of the metabolites have been explored for their medical and pharmaceutical values while a lot of them are still unexplored. This review is an attempt to understand the role of potential metabolites produced by myxobacteria in different applications. Different myxobacterial metabolites have demonstrated antibacterial, antifungal, and antiviral properties along with cytotoxic activity against various cell lines. Beside their metabolites, these myxobacteria have also been discussed for better exploitation and implementation in different industrial sectors.


Assuntos
Microbiologia Industrial , Myxococcales , Antibacterianos/biossíntese , Microbiologia Industrial/tendências , Myxococcales/química , Myxococcales/metabolismo
7.
FEMS Microbiol Lett ; 368(10)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34057181

RESUMO

Their biochemical versatility and biotechnological importance make actinomycete bacteria attractive targets for ambitious genetic engineering using the toolkit of synthetic biology. But their complex biology also poses unique challenges. This mini review discusses some of the recent advances in synthetic biology approaches from an actinomycete perspective and presents examples of their application to the rational improvement of industrially relevant strains.


Assuntos
Actinobacteria/genética , Biologia Sintética/métodos , Actinobacteria/metabolismo , Microbiologia Industrial/métodos , Microbiologia Industrial/tendências , Engenharia Metabólica , Biologia Sintética/tendências
8.
FEMS Yeast Res ; 20(8)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33406233

RESUMO

The peculiarities of Brazilian fuel ethanol fermentation allow the entry of native yeasts that may dominate over the starter strains of Saccharomyces cerevisiae and persist throughout the sugarcane harvest. The switch from the use of baker's yeast as starter to selected budding yeasts obtained by a selective pressure strategy was followed by a wealth of genomic information that enabled the understanding of the superiority of selected yeast strains. This review describes how the process of yeast selection evolved in the sugarcane-based bioethanol industry, the selection criteria and recent advances in genomics that could advance the fermentation process. The prospective use of genetically modified yeast strains, specially designed for increased robustness and product yield, with special emphasis on those obtained by the CRISPR (clustered regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) genome-editing approach, is discussed as a possible solution to confer higher performance and stability to the fermentation process for fuel ethanol production.


Assuntos
Biocombustíveis , Etanol , Microbiologia Industrial , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Saccharum , Sistemas CRISPR-Cas , Fermentação , Edição de Genes , Microbiologia Industrial/tendências , Saccharomyces cerevisiae/genética , Saccharomycetales/genética
9.
Trends Biotechnol ; 39(7): 648-650, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33199047

RESUMO

Thraustochytrids can accumulate over 150 g/l biomass, containing up to 55% lipids, without any genetic modification. Their broad substrate utilization capacity, several effective key metabolic pathways, and a well-developed suite of bioprocess engineering strategies all point toward great promise for the future development of these marine protists.


Assuntos
Organismos Aquáticos , Engenharia Celular , Lipídeos , Estramenópilas , Organismos Aquáticos/metabolismo , Biomassa , Microbiologia Industrial/tendências , Lipídeos/biossíntese , Estramenópilas/metabolismo
10.
Trends Biotechnol ; 39(3): 286-297, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32912649

RESUMO

Hemoglobin is a cofactor-containing protein with heme that plays important roles in transporting and storing oxygen. Hemoglobins have been widely applied as acellular oxygen carriers, bioavailable iron-supplying agents, and food-grade coloring and flavoring agents. To meet increasing demands and overcome the drawbacks of chemical extraction, the biosynthesis of hemoglobin has become an attractive alternative. Several hemoglobins have recently been synthesized by various microorganisms through metabolic engineering and synthetic biology. In this review, we summarize the novel strategies that have been used to biosynthesize hemoglobin. These strategies can also serve as references for producing other heme-binding proteins.


Assuntos
Hemoglobinas , Microbiologia Industrial , Transporte Biológico , Hemoglobinas/biossíntese , Hemoglobinas/genética , Microbiologia Industrial/métodos , Microbiologia Industrial/tendências , Engenharia Metabólica/tendências , Biologia Sintética/tendências
11.
Crit Rev Microbiol ; 46(6): 654-664, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32970952

RESUMO

Huperzine A (HupA) is an effective inhibitor of acetylcholinesterase and has attracted great interest as a therapeutic candidate for Alzheimer's disease. However, the use of HupA is limited by resource scarcity as well as by its low yields from Huperzia serrata, its primary plant source. Recent studies have shown that this compound is produced by various endophytic fungi, thereby providing a promising alternative source, as fungi are much more amenable than plants owing to their simpler genetics and the ease of manipulation. In this review, we summarize the progress in research on the methods to increase HupA production, including fermentation conditions, fungal elicitors, gene expression, and the activation of key enzymes. This review provides guidance for further studies on HupA-producing endophytic fungi aimed at efficient HupA synthesis and accumulation, and offers new approaches for studies on the regulation of high-value bioactive secondary metabolites.


Assuntos
Alcaloides/biossíntese , Endófitos/metabolismo , Fungos/metabolismo , Microbiologia Industrial/tendências , Endófitos/genética , Fermentação , Fungos/genética , Huperzia/metabolismo , Huperzia/microbiologia , Sesquiterpenos
12.
Biomolecules ; 10(9)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854378

RESUMO

cis,cis-Muconic acid (MA) is a valuable C6 dicarboxylic acid platform chemical that is used as a starting material for the production of various valuable polymers and drugs, including adipic acid and terephthalic acid. As an alternative to traditional chemical processes, bio-based MA production has progressed to the establishment of de novo MA pathways in several microorganisms, such as Escherichia coli, Corynebacterium glutamicum, Pseudomonas putida, and Saccharomyces cerevisiae. Redesign of the metabolic pathway, intermediate flux control, and culture process optimization were all pursued to maximize the microbial MA production yield. Recently, MA production from biomass, such as the aromatic polymer lignin, has also attracted attention from researchers focusing on microbes that are tolerant to aromatic compounds. This paper summarizes recent microbial MA production strategies that involve engineering the metabolic pathway genes as well as the heterologous expression of some foreign genes involved in MA biosynthesis. Microbial MA production will continue to play a vital role in the field of bio-refineries and a feasible way to complement various petrochemical-based chemical processes.


Assuntos
Engenharia Metabólica/métodos , Ácido Sórbico/análogos & derivados , Amycolatopsis/genética , Amycolatopsis/metabolismo , Biomassa , Vias Biossintéticas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microbiologia Industrial/métodos , Microbiologia Industrial/tendências , Engenharia Metabólica/tendências , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo , Ácido Sórbico/química , Ácido Sórbico/metabolismo , Estereoisomerismo
13.
FEMS Microbiol Lett ; 367(15)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32681640

RESUMO

Organic acids such as monocarboxylic acids, dicarboxylic acids or even more complex molecules such as sugar acids, have displayed great applicability in the industry as these compounds are used as platform chemicals for polymer, food, agricultural and pharmaceutical sectors. Chemical synthesis of these compounds from petroleum derivatives is currently their major source of production. However, increasing environmental concerns have prompted the production of organic acids by microorganisms. The current trend is the exploitation of industrial biowastes to sustain microbial cell growth and valorize biomass conversion into organic acids. One of the major bottlenecks for the efficient and cost-effective bioproduction is the export of organic acids through the microbial plasma membrane. Membrane transporter proteins are crucial elements for the optimization of substrate import and final product export. Several transporters have been expressed in organic acid-producing species, resulting in increased final product titers in the extracellular medium and higher productivity levels. In this review, the state of the art of plasma membrane transport of organic acids is presented, along with the implications for industrial biotechnology.


Assuntos
Ácidos/metabolismo , Bactérias/metabolismo , Biotecnologia , Fungos/metabolismo , Microbiologia Industrial , Proteínas de Membrana Transportadoras/metabolismo , Bactérias/genética , Biotecnologia/tendências , Fungos/genética , Microbiologia Industrial/tendências , Proteínas de Membrana Transportadoras/genética
14.
Sheng Wu Gong Cheng Xue Bao ; 36(6): 1031-1040, 2020 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-32597054

RESUMO

The use of microbial cell factories to achieve efficient conversion of raw materials and synthesis of target substances is one of the important research directions of synthetic biology. Traditional industrial microorganisms have mainly used sugar-based raw materials as fermentation substrates. How to adopt cheaper carbon resources and realize their efficient use has been widely concerned. Formic acid is an important organic one-carbon source and widely used in industrial manufacturing of pesticides, leather, dyes, medicine and rubber. In recent years, due to the demand fluctuation in downstream industries, formic acid production is facing the dilemma of overcapacity, and therefore, requiring new conversion paths for expansion and extension of the related industrial chain. Biological route is one of the important options. However, natural formate-utilizing microorganisms generally grow slowly when metabolizing formic acid, and moreover, are difficult to be artificially modified by the absence of effective genetic tools. Construction of non-natural formate-utilizing microorganisms is another alternative strategy, but still in its infancy and has a huge space for further improvements. Here, we briefly summarize the recent research progress of biological utilization of formic acid, and also propose the future research focus and direction.


Assuntos
Formiatos , Microbiologia Industrial , Fermentação , Formiatos/metabolismo , Microbiologia Industrial/tendências , Biologia Sintética/tendências
15.
Sheng Wu Gong Cheng Xue Bao ; 36(6): 1083-1100, 2020 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-32597059

RESUMO

Chlorinated hydrocarbons (CAHs) threaten human health and the ecological environment due to their strong carcinogenic, teratogenic, mutagenic and heritable properties. Heterotrophic assimilation degradation can completely and effectively degrade CAHs, without secondary pollution. However, it is crucial to comprehensively understand the heterotrophic assimilation process of CAHs for its application. Therefore, we review here the characteristics and advantages of heterotrophic assimilation degradation of CAHs. Moreover, we systematically summarize current research status of heterotrophic assimilation of CAHs. Furthermore, we analyze bacterial genera and metabolism, key enzymes and characteristic genes involved in the metabolic process. Finally, we indicate existing problems of heterotrophic assimilation research and future research needs.


Assuntos
Hidrocarbonetos Clorados , Microbiologia Industrial , Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos Clorados/metabolismo , Microbiologia Industrial/tendências
16.
Sheng Wu Gong Cheng Xue Bao ; 36(6): 1101-1112, 2020 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-32597060

RESUMO

As an important platform compound, 3-hydroxypropionic acid (3-HP) can be used as a substrate to synthesize a variety of biological products with commercial potential. The titer of 3-HP by wild-type bacteria is low, which severely limits the large-scale application and production of 3-HP. By modifying the genes related to the metabolic pathway, engineered bacteria using cheap substrates as carbon sources are constructed, the aim of reducing production cost and increasing output is realized. In this paper, the recent progress in the synthesis of 3-HP by metabolic engineering at home and abroad is reviewed. The advantages and disadvantages of glycerol pathway, malonyl-CoA pathway and beta-alanine pathway for synthesis of 3-HP are also summarized and analyzed, and the future development of 3-HP is prospected.


Assuntos
Microbiologia Industrial , Ácido Láctico/análogos & derivados , Engenharia Metabólica , Glicerol/metabolismo , Microbiologia Industrial/tendências , Ácido Láctico/biossíntese , Redes e Vias Metabólicas/genética
17.
Sheng Wu Gong Cheng Xue Bao ; 36(5): 820-828, 2020 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-32567265

RESUMO

Corynebacterium glutamicum, an important microorganism to produce amino acids and organic acids, has been widely applied in food and medicine fields. Therefore, using editing tools to study the function of unknown genes in C. glutamicum has great significance for systematic development of industrial strain with efficient and novel production capability. Recently, gene editing has been greatly developed. Traditional gene editing based on homologous recombination and gene editing mediated by nuclease are successfully applied in C. glutamicum. Among these, the CRISPR system has been developed to be a main tool used for gene knockout of C. glutamicum due to its advantages of efficiency, simplicity and good target specificity. However, more efficient and reliable knockout system is still urgently demanded, to help develop high-performing strains in industrial application.


Assuntos
Corynebacterium glutamicum , Edição de Genes , Microbiologia Industrial , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Corynebacterium glutamicum/genética , Edição de Genes/tendências , Ácido Glutâmico , Microbiologia Industrial/tendências
18.
Trends Biotechnol ; 38(7): 811-822, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32359971

RESUMO

Metabolic engineering has emerged as an important tool for reconstructing heterologous isoprenoid metabolic pathways in microbial hosts. Here, we provide an overview of promising engineering strategies that have proven to be successful for the high-yield production of isoprenoids. Besides 'conventional' approaches, such as the 'push-pull' and protein engineering to optimize the isoprenoid flux and limited catalytic activity of enzymes, we review emerging strategies in the field, including compartmentalization between synthetic consortia members, novel bypass pathways for isoprenoid synthesis, cell-free systems, and improvement of the lipid content to overcome storage isoprenoid limitations. Pitfalls, along with lessons learned from the application of these strategies, will be addressed with the hope of guiding future efforts toward cost-effective and sustainable production of isoprenoids.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas/genética , Engenharia de Proteínas , Terpenos/metabolismo , Biocombustíveis/microbiologia , Microbiologia Industrial/tendências , Terpenos/química
19.
FEMS Microbiol Rev ; 44(5): 523-537, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32433763

RESUMO

As a phenotypically and phylogenetically diverse group, lactic acid bacteria are found in a variety of natural environments and occupy important roles in medicine, biotechnology, food and agriculture. The widespread use of lactic acid bacteria across these industries fuels the need for new and functionally diverse strains that may be utilized as starter cultures or probiotics. Originally characterized in lactic acid bacteria, CRISPR-Cas systems and derived molecular machines can be used natively or exogenously to engineer new strains with enhanced functional attributes. Research on CRISPR-Cas biology and its applications has exploded over the past decade with studies spanning from the initial characterization of CRISPR-Cas immunity in Streptococcus thermophilus to the use of CRISPR-Cas for clinical gene therapies. Here, we discuss CRISPR-Cas classification, overview CRISPR biology and mechanism of action, and discuss current and future applications in lactic acid bacteria, opening new avenues for their industrial exploitation and manipulation of microbiomes.


Assuntos
Sistemas CRISPR-Cas , Microbiologia Industrial/tendências , Lactobacillales/genética , Microbiota/genética
20.
Arch Microbiol ; 202(7): 1597-1615, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32451592

RESUMO

Extracellular enzymes produced from Streptomyces have the potential to replace toxic chemicals that are being used in various industries. The endorsement of this replacement has not received a better platform in developing countries. In this review, we have discussed the impact of chemicals and conventional practices on environmental health, and the role of extracellular enzymes to replace these practices. Burning of fossil fuels and agriculture residue is a global issue, but the production of biofuel using extracellular enzymes may be the single key to solve all these issues. We have discussed the replacement of hazardous chemicals with the use of xylanase, cellulase, and pectinase in food industries. In paper industries, delignification was done by the chemical treatment, but xylanase and laccase have the efficient potential to remove the lignin from pulp. In textile industries, the conventional method includes the chemicals which affect the nervous system and other organs. The use of xylanase, cellulase, and pectinase in different processes can give a safe and environment-friendly option to textile industries. Hazardous chemical pesticides can be replaced by the use of chitinase as an insecticide and fungicide in agricultural practices.


Assuntos
Proteínas de Bactérias/metabolismo , Enzimas/metabolismo , Microbiologia Industrial/tendências , Streptomyces/enzimologia , Agricultura , Biocombustíveis , Lignina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA