RESUMO
Because of the exoskeleton, arthropods must have flexible areas to be able to move. Such regions are called arthrodial membranes and are particularly vulnerable to bacteria and fungi. Here, we analyzed the secretion in the glands underneath it in a Neotropical harvester Mischonyx squalidus (Arachnida: Opiliones) and tested whether it has antiseptical properties. Wepuncturedthemembrane,collectedand quantified ina spectrophotometer. We also fractionated and analyzed the samples in reversed-phase high-performance liquid chromatography (RP-HPLC) and then incubated the treated fractions and determined growth inhibition by measuring absorbance. The secretions resulted in 100 fractions, among which two had activity against the Gram-positive bacteria Micrococcus luteus and against the yeast Candida albicans. The low concentrations at which the secretions were active are relevant from a biotechnological point of view. For the organism, the secretions possibly prevent infections, including when they are attacked in these regions by predators that pick that spot to bite.
Assuntos
Aracnídeos , Animais , Aracnídeos/metabolismo , Candida albicans/efeitos dos fármacos , Micrococcus luteus/efeitos dos fármacos , Anti-Infecciosos/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/farmacologiaRESUMO
In recent years, some microorganisms have shown resistance to conventional treatments. Considering this increase in resistant pathogens, treatment alternatives are needed to promote greater treatment efficiency. In this sense, antimicrobial photodynamic therapy (aPDT) has been an alternative treatment. This technique uses a photosensitizer that is activated by light with a specific wavelength producing reactive species, leading to the death of pathogenic microorganisms. In this study, bacteriochlorophyll derivatives such as bacteriochlorin metoxi (Bchl-M) and bacteriochlorin trizma (Bchl-T) obtained from purple bacterium (Rhodopseudomonas faecalis), were evaluated as photosensitizers in the aPDT. Photodynamic inactivation (PDI) of the microorganisms Staphylococcus aureus, Micrococcus luteus, Candida albicans and Pseudomonas aeruginosa was investigated with both bacteriochlorins (Bchl-M and Bchl-T) at different concentrations (1, 15 and 30 µM for S. aureus; 1, 15, 30, 45, 60 and 75 µM for M. luteus; 30, 60, 90, 105, 120 and 150 µM for C. albicans; and 200 µM for P. aeruginosa) and different doses of light (20 and 30 J/cm2 for S. aureus and M. luteus; 30 and 45 J/cm2 for C. albicans; and 45 J/cm2 for P. aeruginosa) to inactivate them. Both photosensitizers showed good activation against S. aureus and for M. luteus, we observed the inactivation of these microorganisms at approximately 3 log, showing to be a good photosensitizers for these microorganisms.
Assuntos
Candida albicans , Luz , Fotoquimioterapia , Fármacos Fotossensibilizantes , Pseudomonas aeruginosa , Staphylococcus aureus , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Candida albicans/efeitos dos fármacos , Candida albicans/efeitos da radiação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Porfirinas/química , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Micrococcus luteus/efeitos dos fármacos , Micrococcus luteus/efeitos da radiação , Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiaçãoRESUMO
Micrococcus luteus SA211, isolated from the Salar del Hombre Muerto in Argentina, developed responses that allowed its survival and growth in presence of high concentrations of lithium chloride (LiCl). In this research, analysis of total genome sequencing and a comparative proteomic approach were performed to investigate the responses of this bacterium to the presence of Li. Through proteomic analysis, we found differentially synthesized proteins in growth media without LiCl (DM) and with 10 (D10) and 30 g/L LiCl (D30). Bi-dimensional separation of total protein extracts allowed the identification of 17 over-synthesized spots when growth occurred in D30, five in D10, and six in both media with added LiCl. The results obtained showed different metabolic pathways involved in the ability of M. luteus SA211 to interact with Li. These pathways include defense against oxidative stress, pigment and protein synthesis, energy production, and osmolytes biosynthesis and uptake. Furthermore, mono-dimensional gel electrophoresis revealed differential protein synthesis at equivalent NaCl and LiCl concentrations, suggesting that this strain would be able to develop different responses depending on the nature of the ion. Moreover, the percentage of proteins with acidic pI predicted and observed was highlighted, indicating an adaptation to saline environments. To the best of our knowledge, this is the first report showing the relationship between protein synthesis and genome sequence analysis in response to Li, showing the great biotechnological potential that native microorganisms present, especially those isolated from extreme environments.
Assuntos
Micrococcus luteus , Proteômica , Argentina , Genômica , LítioRESUMO
Different evidences suggest that pericardial cells play an important role during the immune response against pathogens that invade the mosquito hemocoel. Previously, we identified two lysozyme genes in Anopheles albimanus heart transcriptome. The present study showed that one of these genes (IDVB: AALB004517) has high percentage of identity to mosquito lysozyme genes related to immunity, suggesting its possible participation during the mosquito immune response. This An. albimanus gen, constitutively expressed lysozyme c-1 mRNA (albLys c-1) in mosquito heart; however, it was overexpressed in bacteria-injected mosquitoes. In heart extract samples, we identified a protein of approximately 14 kDa (likely lysozyme c-1), which lysed M. luteus. In addition, mRNA-FISH assay in heart samples, showed specific fluorescent hybridization signal in pericardial cells from M. luteus-injected mosquitos. We conclude that for the first time an inducible immune factor (lysozyme c-1) is identified in Anopheles albimanus mosquito pericardial cells, which could be a key component in the response against pathogens that interact with the mosquito heart.
Assuntos
Anopheles/imunologia , Escherichia coli/fisiologia , Infecções por Bactérias Gram-Positivas/imunologia , Proteínas de Insetos/metabolismo , Micrococcus luteus/fisiologia , Muramidase/metabolismo , Pericárdio/metabolismo , Animais , Clonagem Molecular , Biologia Computacional , Proteínas de Escherichia coli/imunologia , Imunidade Inata , Proteínas de Insetos/genética , Muramidase/genética , Pericárdio/patologia , Filogenia , Transcriptoma , Regulação para CimaRESUMO
The radish (Raphanus sativus L.) is a vegetable of the Brassicaceae family cultivated worldwide and has several medicinal properties. Its biological activities are related to various secondary metabolites present in the species, especially phenolics. Thus, the objectives of this study were the chemical analysis and evaluation of the antioxidant and antimicrobial activities of the dry extract and fractions of the fodder turnip leaves (R. sativus var. oleiferus Metzg.). Samples were analyzed by mass spectrometry and the antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method and the reducing power method. Antimicrobial activity was determined by the agar diffusion and microdilution methods. The total phenols were concentrated in the butanol fraction (121.27 mg GAE/g) and the flavonoids were concentrated in the ethyl acetate fraction (98.02 mg EQ/g). The ethyl acetate fraction showed the best antioxidants results, with 83.45% of free radical scavenging and 11.34% of ferric ions reduction. The analysis of antimicrobial activity showed that the dry extract had the highest average zone of inhibition against Bacillus subtilis (18.67 mm). Smaller values of the minimum inhibitory concentration for Micrococcus luteus were, and the ethyl acetate fraction showed a lower minimum inhibitory concentration (0.1 mg/ml) for that microorganism. There was a strong correlation between the antioxidant activity and the content of phenols and flavonoids. The results showed the potential antioxidant and antimicrobial activities of this extract with the ethyl acetate fraction being most promising for further studies.
O rabanete(Raphanus sativus L.) é um vegetal da família Brassicaceae cultivado em todo o mundo e possui diversas propriedades medicinais. Suas atividades biológicas estão relacionadas aos vários metabólitos secundários presentes na espécie, especialmente os compostos fenólicos. Desta forma, os objetivos deste estudo foram realizar análises químicas e avaliar as atividades antioxidante e antimicrobiana do extrato seco e das frações das folhas de R. sativus var. oleiferus Metzg. As amostras foram analisadas em espectrômetro de massas e o potencial antioxidante foi avaliado pelos métodos do radical DPPH (2,2-difenil-1-picrilhidrazila) e do poder redutor. A atividade antimicrobiana foi determinada pelos métodos de difusão em ágar e da microdiluição. Observou-se que os fenóis totais se concentraram na fração butanólica (121,27 mg EAG/g), enquanto que e os teores de flavonoides concentraram-se na fração acetato de etila (98,02 mg EQ/g). A fração acetato de etila apresentou os melhores resultados antioxidantes, com porcentagem de sequestro dos radicais DPPH de 83,45% e com porcentagem de redução dos íons férrico de 11,34%. A análise da atividade antimicrobiana revelou que o extrato seco teve maior média de halos de inibição frente ao Bacillus subtilis(18,67 mm). Os menores valores da concentração inibitória mínima foram para Micrococcus luteus, sendo que a fração acetato de etila demonstrou menor concentração inibitória mínima (0,1 mg/mL) para esse micro-organismo. Houve uma forte correlação entre a atividade antioxidante e o teor de fenóis e de flavonoides. Os resultados demonstraram potenciais ações antioxidante e antimicrobiana do extrato e das frações avaliados, sendo a fração acetato de etila promissora para estudos posteriores.
Assuntos
Raphanus , Anti-Infecciosos , Antioxidantes , Plantas Medicinais , Bacillus subtilis , Micrococcus luteus , Brassicaceae , Compostos Fenólicos , Fenômenos QuímicosRESUMO
Gaiadandendron punctatum G.Don. (violeta de campo) is a plant used in traditional medicine by the Saraguro people, an ancient indigenous group that lives in southern Ecuador. From samples collected in the region, six glycoside flavonoids, five with quercetin and one with kaempferol as aglycon, were isolated and characterized from hydroalcoholic extracts of leaves and flowers. Rutin (2) was found in flowers and leaves, nicotiflorin (1) was found in flowers, artabotryside A (3) was found in leaves, and three novel quercetin flavonoid glycosides were isolated, elucidated, and characterized via 1D and 2D NMR experiments (1H, 13C, COSY, DEPT, HMBC, HSQC, TOCSY, NOESY, ROESY), acid hydrolysis-derivatization-GC-MS analysis, HPLC-MS, IR, UV, and optical rotation. The new quercetin flavonoid glycosides were named hecpatrin (4) (isolated from leaves), gaiadendrin (5) (isolated from leaves), and puchikrin (6) (isolated from flowers). The hydroalcoholic extracts of the leaves presented antimicrobial activity against Micrococcus luteus, Staphylococcus aureus, and Enterococcus faecalis and the hydroalcoholic extract of the flowers was active against Micrococcus luteus. However, glycoside flavonoids presented scarce antimicrobial activity against bacteria. Hydroalcoholic extracts from leaves and flowers and their secondary metabolites showed inhibition against the α-glucosidase enzyme at different concentrations. Rutin, gaiadendrin, and nicotiflorin showed competitive α-glucosidase inhibition, while hecpatrin presented non-competitive inhibition.
Assuntos
Anti-Infecciosos/isolamento & purificação , Flavonoides/isolamento & purificação , Glicosídeos/isolamento & purificação , Loranthaceae/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Equador , Enterococcus faecalis/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeos/química , Glicosídeos/farmacologia , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Quercetina , Staphylococcus aureus/efeitos dos fármacosRESUMO
Antimicrobial peptides (AMPs) are small molecules, which have a potential use as antibiotic or pharmacological tools. In chelicerate organisms, such as scorpions, these molecules constitute an alternative defense system against microorganisms. The aim of this work was to identify AMPs in the hemolymph of the Tityus serrulatus scorpion. Fractions of plasma and hemocytes were subjected to high-performance liquid chromatography (HPLC) and then analyzed to determine their activity in inhibiting microbial growth. One of the fractions from the hemocytes presents antimicrobial activity against microorganisms, such as Gram-negative and Gram-positive bacteria, fungi, and yeast. These fractions were analyzed by mass spectrometry, and a fragment of 3564 Da. was identified. The peptide was called serrulin, because it is derived from the species T. serrulatus. A comparison of the amino acid sequence of serrulin with databases shows that it has a similarity to the glycine-rich peptides described in Cupienius salai and Acanthoscurria gomesiana (spiders). Furthermore, serrulin has no hemolytic activity against human erythrocytes. While the presence of AMPs in T. serrulatus venom has been described in other works, this is the first work to characterize the presence of these molecules in the hemolymph (hemocytes) of this species and show its potential use as an alternative to conventional antibiotics against different species of microorganisms.
Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Adulto , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Glicina , Hemolinfa , Humanos , Micrococcus luteus/efeitos dos fármacos , Micrococcus luteus/crescimento & desenvolvimento , EscorpiõesRESUMO
The importance of antimicrobial peptides (AMPs) in relation to the survival of invertebrates is well known. The source and the mode of action on the insects' immune system of these molecules have been described from different perspectives. Insects produce their own AMPs as well as obtain these molecules from various sources, for example by absorption through the intestinal tract, as previously described for Boophilus microplus. Blood-sucking barber bug Triatoma infestans attracts social, economic and medical interest owing to its role in the transmission of Chagas disease. Despite new studies, descriptions of AMPs from this insect have remained elusive. Thus, the aims of this work were to characterize the antimicrobial potential of human fibrinopeptide A (FbPA) obtained from the T. infestans haemolymph and identify its natural source. Therefore, FbPA was isolated from the T. infestans haemolymph through liquid chromatography and identified by mass spectrometry. This peptide exhibited antimicrobial activity against Micrococcus luteus. Native FbPA from human blood and the synthetic FbPA also exhibited antimicrobial activity. The synthetic FbPA was conjugated with fluorescein isothiocyanate and offered to the insects. The haemolymph collected after 72 h exhibited fluorescence at the same wavelength as fluorescein isothiocyanate. Our experiments show that beyond intrinsic AMP production, T. infestans is able to co-opt molecules via internalization and may use them as AMPs for protection.
Assuntos
Anti-Infecciosos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Fibrinopeptídeo A/isolamento & purificação , Hemolinfa/química , Insetos Vetores/química , Triatoma/química , Animais , Cromatografia Líquida , Humanos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Micrococcus luteus/crescimento & desenvolvimentoRESUMO
Acute hepatopancreatic necrosis disease (AHPND) was first reported in China in 2009 and afterwards in Mexico in 2013. AHPND is caused by Vibrio parahaemolyticus and affects Penaeus monodon and Litopenaeus vannamei shrimp cultures. The bacterium contains the pirA- and pirB-like genes in 69- to 70-Kb plasmids, which encode the toxins that produce the disease. The aim of this study was to determine whether pirA- and pirB-like genes existed in bacterial genera distinct from Vibrio before the first cases of AHPND were documented in Mexico. Two bacterial isolates were selected from shrimp farms in Nayarit in 2006 and analysed by nested-PCR to determine the presence of pirA- and pirB-like genes. The two isolates chosen did indeed show the presence of these genes, and those findings were confirmed by sequencing. Both strains matched to the bacterial species Micrococcus luteus. Results revealed two important situations: (a) the pirA- and pirB-like genes were present in a bacterial species that has not been reported previously (Micrococcus luteus); and (b) pirA- and pirB-like bacterial genes were present in Mexico before the first AHPND outbreak was reported in China.
Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos/genética , Micrococcus luteus/genética , Animais , México , Penaeidae/microbiologia , Reação em Cadeia da Polimerase/veterináriaRESUMO
The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall and disrupt the bacterial life cycle by cleaving the linkage between the NAG and NAM carbohydrates. Lab exercises focused on the effects of lysozyme on the bacterial cell wall are frequently incorporated in biochemistry classes designed for undergraduate students in diverse fields as biology, microbiology, chemistry, agronomy, medicine, and veterinary medicine. Such exercises typically do not include structural data. We describe here a sequence of computer tasks designed to illustrate and reinforce both physiological and structural concepts involved in lysozyme effects on the bacterial cell-wall structure. This lab class usually lasts 3.5 hours. First, the instructor presents introductory concepts of the bacterial cell wall and the effect of lysozyme on its structure. Then, students are taught to use computer modeling to visualize the three-dimensional structure of a lysozyme in complex with bacterial cell-wall fragments. Finally, the lysozyme inhibitory effect on a bacterial culture is optionally proposed as a simple microbiological assay. The computer lab exercises described here give students a realistic understanding of the disruptive effect of lysozymes on the bacterial cell wall, a crucial component in bacterial survival. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):83-90, 2018.
Assuntos
Parede Celular/química , Parede Celular/metabolismo , Simulação por Computador , Muramidase/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo , Configuração de Carboidratos , Laboratórios , Micrococcus luteus/química , Micrococcus luteus/citologia , Peptidoglicano/química , Peptidoglicano/metabolismo , EnsinoRESUMO
Linear cationic α-helical antimicrobial peptides are promising chemotherapeutics. Most of them act by different mechanisms, making it difficult to microorganisms acquiring resistance. Decoralin is an example of antimicrobial peptide; it was described by Konno et al. and presented activity against microorganisms, but with pronounced hemolytic activity. We synthesized leucine-substituted decoralin analogs designed based on important physicochemical properties, which depend on the maintenance of the amphiphilic α-helical tendency of the native molecule. Peptides were synthesized, purified, and characterized, and the conformational studies were performed. The results indicated that the analogs presented both higher therapeutic indexes, but with antagonistic behavior. While [Leu]10 -Dec-NH2 analog showed similar activity against different microorganisms (c.a. 0.4-0.8 µmol L-1 ), helical structuration, and some hemolytic activity, [Leu]8 -Dec-NH2 analog did not tend to helical structure and presented antimicrobial activities two orders higher than the other two peptides analyzed. On the other hand, this analog showed to be the less hemolytic (MHC value = 50.0 µmol L-1 ). This approach provided insight for understanding the effects of the leucine substitution in the amphiphilic balance. They led to changes on the conformational tendency, which showed to be important for the mechanism of action and affecting antimicrobial and hemolytic activities. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Assuntos
Antibacterianos/farmacologia , Peptídeos Penetradores de Células/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Dicroísmo Circular , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise , Humanos , Leucina/química , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella arizonae/efeitos dos fármacosRESUMO
Protein aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. It has been shown that lysine residues play a key role in the formation of these aggregates. Thus, the ability to disrupt aggregate formation by covalently modifying lysine residues could lead to the discovery of therapeutically relevant antiamyloidogenesis compounds. Herein, we demonstrate that an ortho-iminoquinone (IQ) can be utilized to inhibit amyloid aggregation. Using alpha-synuclein and Aß1-40 as model amyloidogenic proteins, we observed that IQ was able to react with lysine residues and reduce amyloid aggregation. We also observed that IQ reacted with free amines within the amyloid fibrils preventing their dissociation and seeding capacity.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Quinonas/farmacologia , alfa-Sinucleína/metabolismo , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Células HEK293 , Humanos , Lisina/metabolismo , Metionina/metabolismo , Camundongos , Micrococcus luteus , Proteínas Associadas aos Microtúbulos/metabolismo , Muramidase/metabolismo , Fármacos Neuroprotetores/toxicidade , Oxirredução , Agregação Patológica de Proteínas/metabolismo , Quinonas/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
CONTEXT: Lippia thymoides Mart. & Schauer (Verbenaceae) is used in folk medicine to treat wounds, fever, bronchitis, rheumatism, headaches, and weakness. OBJECTIVE: This study determinates the chemical composition of essential oils from L. thymoides, obtained at during each of the four seasons and correlates with pharmacological properties. MATERIALS AND METHODS: Essential oils were obtained by hydrodistillation and analyzed by gas chromatography coupled to mass spectroscopy (GC-MS). Antioxidant activity was determined by DPPH free radical scavenging and ß-carotene bleaching methods. The antimicrobial assays were performed by minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) methods. Isolated rat aorta and uterus, and guinea-pig trachea were utilized to evaluate relaxant potential in pre-contracted smooth muscle. RESULTS AND DISCUSSION: Essential oils from leaves of L. thymoides had the sesquiterpene ß-caryophyllene (17.22-26.27%) as the major constituent followed by borneol (4.45-7.36%), camphor (3.22-8.61%), camphene (2.64-5.66%), and germacrene D (4.72-6.18%). In vitro assays showed that these essential oils do not have antioxidant activity, have antimicrobial selectivity to Gram-positive bacteria Staphylococcus aureus (MIC = 0.004 mg/mL and MMC = 0.26-10.19 mg/mL) and Micrococcus luteus (MIC = 0.03 mg/mL and MMC = 8.43 mg/mL), relax isolated rat aorta (EC50 = 305-544 µg/mL, with endothelium; and EC50 = 150-283 µg/mL, without endothelium), and uterus (EC50 = 74-257 µg/mL), and minor potency, isolated guinea-pig trachea. CONCLUSIONS: Lippia thymoides is a source of natural products of pharmaceutical interest, being necessary additional studies to determine the substances involved in the biological activities.
Assuntos
Lippia/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Estações do Ano , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Compostos de Bifenilo/química , Relação Dose-Resposta a Droga , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Cobaias , Masculino , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Micrococcus luteus/crescimento & desenvolvimento , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Oxirredução , Fitoterapia , Picratos/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Plantas Medicinais , Ratos Wistar , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Tocolíticos/química , Tocolíticos/isolamento & purificação , Tocolíticos/farmacologia , Traqueia/efeitos dos fármacos , Traqueia/fisiologia , Contração Uterina/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/química , Vasodilatadores/isolamento & purificação , Vasodilatadores/farmacologia , beta Caroteno/químicaRESUMO
Keratinolytic microorganisms have become the subject of scientific interest due to their ability to biosynthesize specific keratinases and their prospective application in keratinic waste management. Among several bacterial classes, actinobacteria remain one of the most important sources of keratin-degrading strains, however members of the Micrococcaceae family are rarely scrutinized in regard to their applicatory keratinolytic potential. The tested Micrococcus sp. B1pz isolate from poultry feather waste was identified as M. luteus. The strain, grown in the medium with 1-2% chicken feathers and a yeast extract supplement, produced keratinases of 32 KU and lower level of proteases, 6 PU. It was capable to effectively decompose feathers or "soft" keratin of stratum corneum, in contrast to other "hard" hair-type keratins. The produced keratinolytic enzymes were mainly a combination of alkaline serine or thiol proteases, active at the optimum pH 9.4, 55 °C. Four main protease fractions of 62, 185, 139 and 229 kDa were identified in the crude culture fluid. The research on the auxiliary role of reducing factors revealed that reducing sulfur compounds could be applied in keratinolysis enhancement during enzymatic digestion of keratin, rather than in culture conditions. The presented M. luteus isolate exhibits a significant keratinolytic potential, which determines its feasible applicatory capacity towards biodegradation of poultry by-products or formulation of keratin-based feed components.
Assuntos
Queratinas/metabolismo , Micrococcus luteus/enzimologia , Micrococcus luteus/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Biodegradação Ambiental , Galinhas/microbiologia , Plumas/microbiologia , Micrococcus luteus/isolamento & purificação , NADH NADPH Oxirredutases/metabolismo , Oxirredução , Aves Domésticas/microbiologia , Compostos de Enxofre/metabolismo , Gerenciamento de ResíduosRESUMO
Keratinolytic microorganisms have become the subject of scientific interest due to their ability to biosynthesize specific keratinases and their prospective application in keratinic waste management. Among several bacterial classes, actinobacteria remain one of the most important sources of keratin-degrading strains, however members of the
Assuntos
Animais , Queratinas/metabolismo , Micrococcus luteus/enzimologia , Micrococcus luteus/metabolismo , Peptídeo Hidrolases/metabolismo , Biodegradação Ambiental , Galinhas/microbiologia , Plumas/microbiologia , Micrococcus luteus/isolamento & purificação , ética , Oxirredução , Aves Domésticas/microbiologia , Compostos de Enxofre/metabolismo , Gerenciamento de ResíduosRESUMO
Keratinolytic microorganisms have become the subject of scientific interest due to their ability to biosynthesize specific keratinases and their prospective application in keratinic waste management. Among several bacterial classes, actinobacteria remain one of the most important sources of keratin-degrading strains, however members of the
Assuntos
Animais , Queratinas/metabolismo , Micrococcus luteus/enzimologia , Micrococcus luteus/metabolismo , Peptídeo Hidrolases/metabolismo , Biodegradação Ambiental , Galinhas/microbiologia , Plumas/microbiologia , Micrococcus luteus/isolamento & purificação , NADH NADPH Oxirredutases/metabolismo , Oxirredução , Aves Domésticas/microbiologia , Compostos de Enxofre/metabolismo , Gerenciamento de ResíduosRESUMO
A new series of 1,2,3-triazole eugenol glucosides were synthesized. The new compound structures were confirmed by MS, (1)H NMR and (13)C NMR. All of the synthesized compounds were screened for antimicrobial and cytotoxic activity. Five compounds exerted significant activity against the Gram-negative bacteria Salmonella typhimurium with low IC50 values (49.73-68.53 µΜ), and seven compounds were active against the Gram-positive bacteria Micrococcus luteus (42.89-210.94 µM). In vitro cytotoxicity on mouse spleen cells was also evaluated. One compound bearing a phenyl substituent at the triazole ring showed good activity against Salmonella typhimurium (49.73 µM) and low toxicity to normal cells (CC50=157.83 µM). Thus, the compounds herein can be considered for further modification for improving their antibacterial activity or obtaining novel antibacterial drug candidates.
Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Eugenol/síntese química , Eugenol/farmacologia , Glucosídeos/síntese química , Glucosídeos/farmacologia , Anti-Infecciosos/toxicidade , Glucosídeos/química , Concentração Inibidora 50 , Micrococcus luteus/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Triazóis/químicaRESUMO
Bioassay-guided fractionation of Alternanthera brasiliana stem extracts resulted in the isolation of an antibiotically active fraction. Five human pathogenic bacteria were used to guide the fractionation process for the isolation of antimicrobial compounds. Finally, 17 linoleate oxylipins were identified by LC-MS/MS and NMR spectroscopy. Five of the isolated compounds present in A. brasiliana tissues were also detected to be synthesized by endophytic bacteria of the genus Bacillus that were isolated from A. brasiliana. It is speculated that the antibiotic oxylipins from A. brasiliana might derive from bacteria and be involved in an ecological relationship between this plant and its endophytes.
Assuntos
Amaranthaceae/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Endófitos/química , Oxilipinas/isolamento & purificação , Oxilipinas/farmacologia , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oxilipinas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacosRESUMO
The effect of solvent polarity (methanol and pentane) on the chemical composition of hydrodistilled essential oils (EO's) of Lippia graveolens H.B.K. (MXO) and Origanum vulgare L. (EUO) was studied by GC-MS. Composition of modified starch microencapsulated EO's was conducted by headspace-solid-phase microextraction (HS-SPME). The antimicrobial activity of free and microencapsulated EO's was evaluated. They were tested against Salmonella sp., Brochothrix thermosphacta, Pseudomonas fragi, Lactobacillus plantarum, and Micrococcus luteus. Thymol and carvacrol were among the main components of EO's and their free and microencapsulated inhibitory activity was tested against M. luteus, showing an additive combined effect. Chemical composition of EO's varied according to the solvent used for GC analysis and to volatile fraction as evaluated by HS-SPME. Thymol (both solvents) was the main component in essential oil of MXO, while carvacrol was the main component of the volatile fraction. EUO showed α-pinene (methanol) and γ-terpinene (pentane) as major constituents, the latter being the main component of the volatile fraction. EO's showed good stability after 3 months storage at 4°C, where antimicrobial activity of microencapsulated EO's remained the same, while free EO's decreased 41% (MXO) and 67% (EUO) from initial activity. Microencapsulation retains most antimicrobial activity and improves stability of EO's from oregano.
Assuntos
Antibacterianos/química , Cápsulas/química , Lippia/química , Óleos Voláteis/química , Origanum/química , Antibacterianos/farmacologia , Monoterpenos Bicíclicos , Brochothrix/efeitos dos fármacos , Monoterpenos Cicloexânicos , Cimenos , Lactobacillus plantarum/efeitos dos fármacos , Micrococcus luteus/efeitos dos fármacos , Monoterpenos/análise , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Pseudomonas fragi/efeitos dos fármacos , Salmonella/efeitos dos fármacos , Amido/química , Timol/análise , Timol/farmacologiaRESUMO
Gomesin (Gm) has a broad antimicrobial activity making it of great interest for development of drugs. In this study, we analyzed three Gm analogs, [Trp(1) ]-Gm, [Trp(7) ]-Gm, and [Trp(9) ]-Gm, in an attempt to gain insight into the contributions of different regions of the peptide sequence to its activity. The incorporation of the tryptophan residue in different positions has no effect on the antimicrobial and hemolytic activities of the Gm analogs in relation to Gm. Spectroscopic studies (circular dichroism, fluorescence and absorbance) of Gm and its analogs were performed in the presence of SDS, below and above its critical micelle concentration (CMC) (~8 mM), in order to monitor structural changes induced by the interaction with this anionic surfactant (0-15 mM). Interestingly, we found that the analogs interact more strongly with SDS at low concentrations (0.3-6.0 mM) than close to or above its CMC. This suggests that SDS monomers are able to cover the whole peptide, forming large detergent-peptide aggregates. On the other hand, the peptides interact differently with SDS micelles, inserting partially into the micelle core. Among the peptides, Trp in position 1 becomes more motionally-restricted in the presence of SDS, probably because this residue is located at the N-terminal region, which presents higher conformational freedom to interact stronger with SDS molecules. Trp residues in positions 7 and 9, close to and in the region of the turn of the molecule, respectively, induced a more constrained structure and the compounds cannot insert deeper into the micelle core or be completely buried by SDS monomers.