Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biodegradation ; 34(4): 371-381, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36879077

RESUMO

3, 5, 6-Trichloro-2-pyridinol (TCP) is a metabolite of the insecticide chlorpyrifos and the herbicide triclopyr, and it is higher toxic than the parent compounds. Microbially-mediated mineralization appears to be the primary degradative pathway and the important biological process of detoxification. However, little information is available on TCP complete metabolic pathways and mechanisms. In this study, the degradation of TCP was studied with a novel strain Micrococcus luteus ML isolated from a stable TCP degrading microbiota. Strain ML was capable of degrading 61.6% of TCP (50 mg/L) and 35.4% of chlorpyrifos (50 mg/L) at 24 h and 48 h under the optimal conditions (temperature: 35 °C; pH: 7.0), respectively. It could also degrade 3, 5-dichloro-2-pyridone, 6-chloropyridin-2-ol, 2-hydroxypyridine and phoxim when provided as sole carbon and energy sources. Seven TCP intermediate metabolites were detected in strain ML and two possible degradation pathways of TCP were proposed on the basis of LC-MS analysis. Both the hydrolytic-oxidative dechlorination pathway and the denitrification pathway might be involved in TCP biodegradation by strain ML. To the best of our knowledge, this is the first report on two different pathways responsible for TCP degradation in one strain, and this finding also provides novel information for studying the metabolic mechanism of TCP in pure culture.


Assuntos
Clorpirifos , Inseticidas , Clorpirifos/metabolismo , Micrococcus luteus/metabolismo , Piridinas , Inseticidas/metabolismo , Biodegradação Ambiental , Redes e Vias Metabólicas
2.
Exp Mol Med ; 55(1): 196-204, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639716

RESUMO

Bacterial extracellular vesicles (EVs) have been shown to regulate various pulmonary diseases, but their functions in asthma remain uncertain. To demonstrate the clinical significance of Micrococcus luteus-derived EVs (MlEVs) in asthma, we enrolled 45 asthmatic patients (20 patients with neutrophilic asthma [NA], 25 patients with eosinophilic asthma [EA]) and 40 healthy controls (HCs). When the prevalence of IgG1 and IgG4 specific to MlEVs was evaluated in serum by ELISA, lower levels of MlEV-specific IgG4 (but not IgG1) were noted in asthmatic patients than in HCs. Among asthmatic patients, significantly lower levels of MIEV-specific IgG4 were noted in patients with NA than in those with EA. Moreover, there was a positive correlation between serum MlEV-specific IgG4 levels and FEV1 (%) values. In asthmatic C57BL/6 mice, MlEVs significantly attenuated neutrophilic airway inflammation by reducing the production of IL-1ß and IL-17 in bronchoalveolar lavage fluid as well as the number of group 3 innate lymphoid cells (ILC3s) in lung tissues. To clarify the functional mechanism of MlEVs in NA, the effect of MlEVs on airway epithelial cells (AECs) and immune cells was investigated ex vivo. According to microarray analysis, MlEVs upregulated hsa-miR-4517 expression in AECs. Moreover, this miRNA could suppress IL-1ß production by monocytes, resulting in the inhibition of ILC3 activation and neutrophil recruitment. These findings suggest that MlEVs could be a novel therapeutic agent for managing unresolved NA by regulating miRNA expression in AECs.


Assuntos
Asma , Vesículas Extracelulares , MicroRNAs , Camundongos , Animais , MicroRNAs/metabolismo , Micrococcus luteus/genética , Micrococcus luteus/metabolismo , Imunidade Inata , Camundongos Endogâmicos C57BL , Linfócitos/metabolismo , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Modelos Animais de Doenças
3.
Arch Microbiol ; 204(10): 642, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36161364

RESUMO

Aim of this study was to optimize the production of Ligninolytic enzyme for the degradation of complex pollutants present in pulp paper industrial effluent (PPIE). Two ligninolytic enzyme-producing bacterial strains were isolated from PPIE and identified as Bacillus paramycoides strain BL2 (MZ676667) and Micrococcus luteus strains BL3 (MZ676668). The identified bacterial strain Bacillus paramycoides strain BL2 showed optimum production of LiP (4.30 U/ml), MnP (3.38 U/ml) at 72 h of incubation, while laccase (4.43 U/ml) at 96 h of incubation. While, Micrococcus luteus strains BL3 produced maximum LiP (3.98) and MnP (3.85 U/ml) at 96 h of incubation and maximum laccase (3.85 U/ml) at 72 h of incubation, pH 7-8, and temperatures of 30-35 °C. Furthermore, in the presence of glucose (1.0%) and peptone (0.5%) as nutrient sources, the enzyme activity of consortium leads to reduction of lignin (70%), colour (63%) along with COD (71%) and BOD (58%). The pollutants detected in control i.e. 3.6-Dioxa-2,7-disilaoctane, 2-Heptnoic acid,trimethylsilyl ester, 7-Methyldinaphtho [2,1-b,1',2'-d] silole, Hexadeconoic acid, trimethylysilyl ester, Methyl1(Z)-3,3-dipheny.1-4-hexenoale, 2,6,10,14,18,22-Tetracosahexane,2,2-dimethylpropyl(2Z,6E)-10,11epoxy5,6 Dihyrostigmasterol, acetate were completely diminished. The toxicity of PPIE was reduced up to 75%. Hence, knowledge of this study will be very useful for industrial sector for treatment of complex wastewater.


Assuntos
Poluentes Ambientais , Lacase , Bacillus , Biodegradação Ambiental , Ésteres , Glucose , Lacase/metabolismo , Lignina/metabolismo , Micrococcus luteus/metabolismo , Peptonas , Peroxidases/metabolismo , Águas Residuárias/toxicidade
4.
Arch Microbiol ; 204(7): 402, 2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35718788

RESUMO

Biodegradation is the most promising environmentally sustainable method that offers a significant opportunity with minimal negative environmental consequences while searching for solutions to this global problem of plastic pollution that has now spread to almost everywhere in the entire world. In the present work, HDPE-degrading bacterial strain CGK112 was isolated from the fecal matter of a cow. The bacterial strain was identified as Micrococcus luteus CGK112 by 16S rRNA sequence coding analysis. Significant weight loss, i.e., 3.85% was recorded in the HDPE film treated with strain CGK112 for 90 days. The surface micromorphology was examined using FE-SEM, which revealed spectacular bacterial colonization as well as structural deformation. Furthermore, the EDX study indicated a significant decrease in the atomic percentage of carbon content, whereas FTIR analysis confirmed functional groups alternation as well as an increase in the carbonyl index which can be attributed to the metabolic activity of biofilm. Our findings provide insight into the capacity of our strain CGK112 to colonize and utilize HDPE as a single carbon source, thus promoting its degradation.


Assuntos
Micrococcus luteus , Polietileno , Animais , Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes , Carbono/metabolismo , Bovinos , Feminino , Micrococcus luteus/genética , Micrococcus luteus/metabolismo , Polietileno/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Insect Biochem Mol Biol ; 147: 103775, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35504546

RESUMO

Melanization is a key immune response mediated by serine protease (SP) cascade in insects. Multiple SP pathways exist in different species and it is unclear how conserved these cascades are. The cotton bollworm Helicoverpa armigera is a major worldwide agricultural pest. We reported a conserved melanization pathway in this species, which consists of SP41, cSP1, and cSP6. In this study, we attempted to identify an insect pathogen that elicits the cascade and test whether or not there are other SP cascades in H. armigera. After Micrococcus luteus, Enterobacter cloacae, Beauveria bassiana, or Helicoverpa armigera nucleopolyhedrovirus were injected into larvae, pathogen-induced hemolymph samples were collected for in vitro biochemical assays, which failed to detect proSP41 or procSP1 activation. In contrast, we found that procSP4, a protein proposed to participate in H. armigera melanization, was activated in M. luteus infected hemolymph. We further revealed that cSP8 was a prophenoloxidase (PPO) activating protease downstream of cSP4, and cSP4 was activated by cSP10. The pathway of cSP10-cSP4-cSP8 activated PPO in vitro. Efficiently cleaved procSPH11 and procSPH50 by cSP8 substantially enhanced phenoloxidase activity, suggesting they work together as a cofactor for cSP8 mediated PPO activation. Hemolymph from larvae challenged with M. luteus or its peptidoglycan effectively activated procSP10. Collectively, these results revealed a new PPO activation cascade specifically triggered by the bacterium. In addition, we found that the PPO activation cascades in H. armigera and Manduca sexta are conserved.


Assuntos
Micrococcus luteus , Mariposas , Animais , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Larva/metabolismo , Micrococcus luteus/metabolismo , Mariposas/metabolismo , Serina Endopeptidases , Serina Proteases/metabolismo
6.
Protoplasma ; 259(5): 1139-1155, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34792622

RESUMO

The interaction of plant roots with bacteria is influenced by chemical signaling, where auxins play a critical role. Auxins exert positive or negative influences on the plant traits responsible of root architecture configuration such as root elongation and branching and root hair formation, but how bacteria that modify the plant auxin response promote or repress growth, as well as root structure, remains unknown. Here, we isolated and identified via molecular and electronic microscopy analysis a Micrococcus luteus LS570 strain as a plant growth promoter that halts primary root elongation in Arabidopsis seedlings and strongly triggers root branching and absorptive potential. The root biomass was exacerbated following root contact with bacterial streaks, and this correlated with inducible expression of auxin-related gene markers DR5:GUS and DR5:GFP. Cellular and structural analyses of root growth zones indicated that the bacterium inhibits both cell division and elongation within primary root tips, disrupting apical dominance, and as a consequence differentiation programs at the pericycle and epidermis, respectively, triggers the formation of longer and denser lateral roots and root hairs. Using Arabidopsis mutants defective on auxin signaling elements, our study uncovers a critical role of the auxin response factors ARF7 and ARF19, and canonical auxin receptors in mediating both the primary root and lateral root response to M. luteus LS570. Our report provides very basic information into how actinobacteria interact with plants and direct evidence that the bacterial genus Micrococcus influences the cellular and physiological plant programs ultimately responsible of biomass partitioning.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Micrococcus luteus/metabolismo , Raízes de Plantas/metabolismo
7.
Macromol Biosci ; 21(11): e2100086, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34414670

RESUMO

Bioremediation of copper (Cu2+ ) with immobilized Micrococcus luteus in polymer matrices has been broadly studied for a wide range of applications including wastewater treatment. Herein, the bioremediation efficiency based on modified immobilization techniques and by the addition of Cu2+ is investigated. Porous composite nonwovens with living M. luteus (living polymer composites) are prepared by encapsulation of the bacterial cells in poly(vinyl alcohol) (PVA) microparticles (M. luteus/PVA microparticles) produced by spray drying method. The M. luteus/PVA microparticles are chemically cross-linked. The hydrogel microparticles with encapsulated M. luteus are embedded in a nonwoven of poly (lactic acid) (PLA) electrospun short fibers provided by wet-laid method. Two different models of composite nonwovens are reported, in which the place position of the hydrogel PVA microparticles with encapsulated M. luteus and PLA nonwoven can affect the bioremediation process.


Assuntos
Biodegradação Ambiental , Cobre/metabolismo , Micrococcus luteus/metabolismo , Álcool de Polivinil/química , Hidrogéis , Microscopia Eletrônica de Varredura
8.
Syst Appl Microbiol ; 44(5): 126234, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34343788

RESUMO

Rpf protein, a kind of resuscitation promoting factor, was first found in the culture supernatant of Micrococcus luteus. It can resuscitate the growth of M. luteus in "viable but non-culture, VBNC" state and promote the growth of Gram-positive bacteria with high G + C content. This paper investigates the resuscitating activity of M. luteus ACCC 41016T Rpf protein, which was heterologously expressed in E. coli, to cells of M. luteus ACCC 41016T and Rhodococcus marinonascens HBUM200062 in VBNC state, and examines the effect on the cultivation of actinobacteria in soil. The results showed that the recombinant Rpf protein had resuscitation effect on M. luteus ACCC 41016T and R. marinonascens HBUM200062 in VBNC state. 83 strains of actinobacteria, which were distributed in 9 families and 12 genera, were isolated from the experimental group with recombinant Rpf protein in the culture medium. A total of 41 strains of bacteria, which were distributed in 8 families and 9 genera, were isolated from the control group without Rpf protein. The experimental group showed richer species diversity than the control group. Two rare actinobacteria, namely HBUM206391T and HBUM206404T, were obtained in the experimental group supplemented with Rpf protein. Both may be potential new species of Actinomadura and Actinokineospora, indicating that the recombinant expression of M. luteus ACCC 41016T Rpf protein can effectively promote the isolation and culture of actinobacteria in soil.


Assuntos
Actinobacteria , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Micrococcus luteus/metabolismo , Microbiologia do Solo , Actinobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Citocinas/genética , Escherichia coli , Rhodococcus
9.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445637

RESUMO

DNA is a polymeric macromolecule that can display a variety of backbone conformations. While the classical B-DNA is a right-handed double helix, Z-DNA is a left-handed helix with a zig-zag orientation. The Z conformation depends upon the base sequence, base modification and supercoiling and is considered to be transient. To determine whether the presence of Z-DNA can be detected immunochemically, the binding of monoclonal and polyclonal anti-Z-DNA antibodies to a panel of natural DNA antigens was assessed by an ELISA using brominated poly(dG-dC) as a control for Z-DNA. As these studies showed, among natural DNA tested (Micrococcus luteus, calf thymus, Escherichiacoli, salmon sperm, lambda phage), micrococcal (MC) DNA showed the highest binding with both anti-Z-DNA preparations, and E. coli DNA showed binding with the monoclonal anti-DNA preparation. The specificity for Z-DNA conformation in MC DNA was demonstrated by an inhibition binding assay. An algorithm to identify propensity to form Z-DNA indicated that DNA from Mycobacterium tuberculosis could form Z-DNA, a prediction confirmed by immunoassay. Together, these findings indicate that anti-Z-DNA antibodies can serve as probes for the presence of Z-DNA in DNA of various species origin and that the content of Z-DNA varies significantly among DNA sources.


Assuntos
Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos , DNA Forma Z/metabolismo , Escherichia coli/imunologia , Micrococcus luteus/imunologia , Placenta/imunologia , Espermatozoides/imunologia , Animais , Anticorpos Monoclonais/imunologia , DNA Forma Z/química , DNA Forma Z/imunologia , Escherichia coli/metabolismo , Feminino , Humanos , Masculino , Micrococcus luteus/metabolismo , Conformação de Ácido Nucleico , Placenta/metabolismo , Gravidez , Salmão , Ovinos , Especificidade da Espécie , Espermatozoides/metabolismo
10.
Int J Biol Macromol ; 186: 125-134, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34246666

RESUMO

Marine microorganisms are reported to produce polyhydroxybutyrate (PHB) that has wide range of medical and industrial applications with the advantage of biodegradability. PHBs are synthesized as an energy and carbon storage element under metabolic pressure. The scope of this work is enhancing PHB production using marine microbial isolate, Micrococcus luteus by selectively optimizing various growth conditions such as different media components and growth parameters that influence the cell growth and PHB production were sampled. Micrococcus luteus produced 7.54 g/L of PHB utilizing glucose as a carbon source and ammonium sulphate as a nitrogen source with maximum efficiency. The same optimized operational conditions were further employed in batch fermentation over a time span of 72 h. Interestingly higher cell dry weight of 21.52 g/L with PHB yield of 12.18 g/L and 56.59% polymer content was observed in batch fermentation studies at 64 h. The chemical nature of the extracted polymer was validated with physio-chemical experiments and was at par with the commercially available PHB. This study will spotlight M. luteus as a potential source for large-scale industrial production of PHB with reducing environmental pollutions.


Assuntos
Butiratos/metabolismo , Sedimentos Geológicos/microbiologia , Hidroxibutiratos/isolamento & purificação , Microbiologia Industrial , Micrococcus luteus/metabolismo , Butiratos/química , Fermentação , Concentração de Íons de Hidrogênio , Micrococcus luteus/crescimento & desenvolvimento , Estrutura Molecular , Temperatura , Fatores de Tempo
11.
Molecules ; 25(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630666

RESUMO

Microbial conversion of oleic acid (1) to form value-added industrial products has gained increasing scientific and economic interest. So far, the production of natural lactones with flavor and fragrance properties from fatty acids by non-genetically modified organisms (non-GMO) involves whole cells of bacteria catalyzing the hydration of unsaturated fatty acids as well as yeast strains responsible for further ß-oxidation processes. Development of a non-GMO process, involving a sole strain possessing both enzymatic activities, significantly lowers the costs of the process and constitutes a better method from the customers' point of view regarding biosafety issues. Twenty bacteria from the genus of Bacillus, Comamonas, Dietzia, Gordonia, Micrococcus, Pseudomonas, Rhodococcus and Streptomyces were screened for oxidative functionalization of oleic acid (1). Micrococcus luteus PCM525 was selected as the sole strain catalyzing the one-pot transformation of oleic acid (1) into natural valuable peach and strawberry-flavored γ-dodecalactone (6) used in the food, beverage, cosmetics and pharmaceutical industries. Based on the identified products formed during the process of biotransformation, we clearly established a pathway showing that oleic acid (1) is hydrated to 10-hydroxystearic acid (2), then oxidized to 10-ketostearic acid (3), giving 4-ketolauric acid (4) after three cycles of ß-oxidation, which is subsequently reduced and cyclized to γ-dodecalactone (6) (Scheme 1). Moreover, three other strains (Rhodococcus erythropolis DSM44534, Rhodococcus ruber PCM2166, Dietzia sp. DSM44016), with high concomitant activities of oleate hydratase and alcohol dehydrogenase, were identified as efficient producers of 10-ketostearic acid (3), which can be used in lubricant and detergent formulations. Considering the prevalence of γ-dodecalactone (6) and 10-ketostearic acid (3) applications and the economic benefits of sustainable management, microbial bioconversion of oleic acid (1) is an undeniably attractive approach.


Assuntos
4-Butirolactona/análogos & derivados , Micrococcus luteus/metabolismo , Ácido Oleico/metabolismo , Ácidos Esteáricos/metabolismo , 4-Butirolactona/biossíntese , Carbono/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Microbiologia Industrial/métodos , Ácido Linoleico/metabolismo , Micrococcus luteus/efeitos dos fármacos , Micrococcus luteus/crescimento & desenvolvimento , Ácido Oleico/farmacocinética , Oxirredução , Tensoativos/química , Tensoativos/metabolismo , Ácido alfa-Linolênico/metabolismo
12.
Appl Microbiol Biotechnol ; 104(5): 2243-2254, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31927763

RESUMO

Multiple heavy metal-resistant bacterium, Micrococcus luteus strain AS2, was isolated from industrial waste water of District Sheikhupura, Pakistan. The isolated bacterium showed minimum inhibitory concentrations of 55 and 275 mM against arsenite and arsenate. The bacterial strain also showed resistance against other heavy metal ions, i.e., lead, cadmium, chromium, mercury, nickel, and zinc, apart from arsenic. The optimum temperature and pH were 37 °C and 7, respectively. The antioxidant enzymes such as catalase were significantly increased under arsenite stress. The increase in 43.9% of GSH/GSSG and 72.72% of non-protein thiol was determined under15 mM arsenite stress. Bacterial genome was sequenced through Illumina and Nanopore and genes related to arsenic and other heavy metals were identified and blast (tblastx) on NCBI. Through scanning electron microscopy, no morphological changes were observed in bacterial cells under arsenite stress. The peaks appeared in EDX showed that there is surface adsorption of arsenite in bacterial cell while it was confirmed from Fourier transformed infrared spectroscopy analysis that there is some interaction between arsenite and functional groups present on the surface of bacterial cell. The SDS-PAGE analysis of whole-cell proteins under 15 mM arsenite stress clearly revealed that there is upregulation of some proteins in ranged of 60 to 34 kDa. The bioremediation efficiency (E) of bacterial biomass was 72% after 2 h and 99% after 10 h. The bioremediation efficiency of bacterial biomass is an indicator for the isolated bacterium to employ as a potential candidate for the amelioration of sites contaminated with arsenic.


Assuntos
Arsênio/metabolismo , Micrococcus luteus/isolamento & purificação , Micrococcus luteus/metabolismo , Águas Residuárias/microbiologia , Biodegradação Ambiental , Cádmio/metabolismo , Cromo/metabolismo , Resíduos Industriais/análise , Micrococcus luteus/genética
13.
J Microbiol Biotechnol ; 29(11): 1777-1789, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31546292

RESUMO

Drought is more concerned to be a huge problem for agriculture as it affects plant growth and yield. Endophytic bacteria act as plant growth promoting bacteria that have roles for improving plant growth under stress conditions. The properties of four strains of endophytic bacteria were determined under water deficit medium with 20% polyethylene glycol. Bacillus aquimaris strain 3.13 showed high 1-aminocyclopropane-1-carboxylate (ACC) deaminase production; Micrococcus luteus strain 4.43 produced indole acetic acid (IAA). Exopolysaccharide production was high in Bacillus methylotrophicus strain 5.18 while Bacillus sp. strain 5.2 did not show major properties for drought response. Inoculation of endophytic bacteria into plants, strain 3.13 and 4.43 increased height, shoot and root weight, root length, root diameter, root volume, root area and root surface of Jerusalem artichoke grown under water limitation, clearly shown in water supply at 1/3 of available water. These increases were caused by bacteria ACC deaminase and IAA production; moreover, strain 4.43 boosted leaf area and chlorophyll levels, leading to increased photosynthesis under drought at 60 days of planting. The harvest index was high in the treatment with strain 4.43 and 3.13 under 1/3 of available water, promoting tuber numbers and tuber weight. Inulin content was unchanged in the control between well-watered and drought conditions. In comparison, inulin levels were higher in the endophytic bacteria treatment under both conditions, although yields dipped under drought. Thus, the endophytic bacteria promoted in plant growth and yield under drought; they had outstanding function in the enhancement of inulin content under wellwatered condition.


Assuntos
Secas , Endófitos/fisiologia , Helianthus/crescimento & desenvolvimento , Helianthus/microbiologia , Estresse Fisiológico , Bacillus/metabolismo , Bacillus/fisiologia , Biomassa , Carbono-Carbono Liases/metabolismo , Clorofila/metabolismo , Endófitos/metabolismo , Helianthus/metabolismo , Ácidos Indolacéticos/metabolismo , Inulina/metabolismo , Micrococcus luteus/metabolismo , Micrococcus luteus/fisiologia , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Polissacarídeos Bacterianos/metabolismo
14.
Sci Rep ; 9(1): 11030, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363120

RESUMO

Natural competence for genetic transformation refers to the natural ability of various bacteria to take up exogenous DNA from their surroundings and to incorporate internalized genetic information into their genomes. By promoting bacterial diversification and adaptability, this process represents a major driving force in bacterial evolution. Micrococcus luteus was one of the first organisms used to study natural transformation in bacteria. Since then, however, only very little information about this phenomenon has been reported in M. luteus or in any member of the Actinobacteria phylum (low-GC Gram-positive bacteria). Previous work in our group indicated major differences between the transformation apparatus of M. luteus and the transformation machinery described for various Gram-negative and Gram-positive model bacteria belonging to the phyla Proteobacteria and Firmicutes (high-GC Gram-positive bacteria). This prompted us to initiate a study concerning the regulation mechanism of competence development in M. luteus. In this report, we identify amino acids as a nutritional factor that influences competence in a concentration-dependent manner. By using a transcriptional reporter strain for one of the late competence genes, we demonstrate how increasing concentrations of both amino acids mixtures and single amino acids supplemented to the growth medium affect transformability on transcriptional and post-transcriptional level. Furthermore, we revisit previously generated auxotrophic mutants to show that the transformation machinery is turned down during a state of extreme hunger for amino acids presumably as a part of a general response to auxotrophy. Finally, by generating and analysing knockout mutants for two predicted stringent response enzymes, we provide evidence for the involvement of the alarmone (p)ppGpp as a putative mediator of the effects on transformation development caused by amino acids. As a member of the Actinobacteria phylum, M. luteus could serve as a model for other representatives of the phylum, including a number of important human pathogens.


Assuntos
Aminoácidos/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/metabolismo , Micrococcus luteus/genética , Transformação Genética , Guanosina Tetrafosfato/metabolismo , Micrococcus luteus/metabolismo
15.
Sci Rep ; 9(1): 2982, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814614

RESUMO

While the majority of the natural carotenoid pigments are based on 40-carbon (C40) skeleton, some carotenoids from bacteria have larger C50 skeleton, biosynthesized by attaching two isoprene units (C5) to both sides of the C40 carotenoid pigment lycopene. Subsequent cyclization reactions result in the production of C50 carotenoids with diverse and unique skeletal structures. To produce even larger nonnatural novel carotenoids with C50 + C5 + C5 = C60 skeletons, we systematically coexpressed natural C50 carotenoid biosynthetic enzymes (lycopene C5-elongases and C50-cyclases) from various bacterial sources together with the laboratory-engineered nonnatural C50-lycopene pathway in Escherichia coli. Among the tested enzymes, the elongases and cyclases from Micrococcus luteus exhibited significant activity toward C50-lycopene, and yielded the novel carotenoids C60-flavuxanthin and C60-sarcinaxanthin. Moreover, coexpression of M. luteus elongase with Corynebacterium cyclase resulted in the production of C60-sarcinaxanthin, C60-sarprenoxanthin, and C60-decaprenoxanthin.


Assuntos
Carotenoides/síntese química , Carotenoides/metabolismo , Engenharia de Proteínas/métodos , Vias Biossintéticas , Corynebacterium/metabolismo , Escherichia coli/genética , Elongases de Ácidos Graxos/metabolismo , Licopeno/síntese química , Micrococcus luteus/metabolismo , Família Multigênica , Xantofilas/síntese química
16.
FEMS Microbiol Lett ; 366(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30865770

RESUMO

Competition assays measure differences between populations of bacteria after stress adaptation, populations of different bacteria and mutations in antibiotic resistance genes. We have developed a competition-based assay to evaluate if genes upregulated under starvation are important for bacterial survival. Stress responses are critical for survival in non-pathogenic and pathogenic bacteria alike including Mycobacterium tuberculosis, Enterococcus fecaelis, Escherichia coli and Staphylococcus aureus. Unfortunately, most stress-survival proteins are poorly understood because suitable model bacteria and techniques are limited. To address this problem, we have engineered Micrococcus luteus NCTC 2665 (M. luteus) for competition assays by inactivating the sarcinaxanthin biosynthesis gene crtE (ΔcrtE), changing M. luteus colonies from yellow to white. This change allows easy identification in mixed cultures. The crtE knockout is relatively neutral for growth in complex and minimal acetate media and shows a measured fitness of one in competition with yellow wild-type bacteria. The ΔcrtE M. luteus competition assay identified a competition defect in a M. luteus strain when a specific universal stress protein was inactivated, suggesting a negative survival phenotype for this protein. We anticipate this competition assay can identify defects in other gene knockouts and mutational studies in M. luteus and will enhance our understanding of bacterial survival mechanisms.


Assuntos
Proteínas de Bactérias/genética , Técnicas Microbiológicas/métodos , Micrococcus luteus/fisiologia , Estresse Fisiológico/genética , Acetatos/metabolismo , Meios de Cultura , Técnicas de Inativação de Genes , Viabilidade Microbiana/genética , Micrococcus luteus/genética , Micrococcus luteus/crescimento & desenvolvimento , Micrococcus luteus/metabolismo , Xantofilas/metabolismo
17.
Macromol Biosci ; 19(5): e1800356, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30840362

RESUMO

Living Micrococcus luteus (M. luteus) and Escherichia coli (E. coli) are encapsulated in poly(vinyl alcohol), poly(vinylpyrrolidone), hydroxypropyl cellulose, and gelatin by high-temperature spray drying. The challenge is the survival of the bacteria during the standard spray-drying process at temperatures of 150 °C (M. luteus) and 120 °C (E. coli). Raman imaging and transmission electron microscopy indicate encapsulated bacteria in hollow composite microparticles. The versatility of the spray-dried polymer bacteria microparticles is successfully proved by standard polymer solution-processing techniques such as electrospinning, even with harmful solvents, to water-insoluble polyacrylonitrile, polystyrene, poly(methyl methacrylate), and poly(vinyl butyrate) nanofiber nonwovens, which opens numerous new opportunities for novel applications.


Assuntos
Células Imobilizadas , Escherichia coli , Viabilidade Microbiana , Micrococcus luteus , Nanofibras/química , Polímeros/química , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Micrococcus luteus/citologia , Micrococcus luteus/metabolismo
18.
Can J Microbiol ; 65(3): 224-234, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30485122

RESUMO

We have characterized the ability of eight bacterial strains to utilize powdered low-density polyethylene (LDPE) plastic (untreated and without any additives) as a sole carbon source. Cell mass production on LDPE-containing medium after 21 days of incubation varied between 0.083 ± 0.015 g/L cell dry mass (cdm) for Micrococcus luteus IRN20 and 0.39 ± 0.036 g/L for Cupriavidus necator H16. The percent decrease in LDPE mass ranged from 18.9% ± 0.72% for M. luteus IRN20 to 33.7% ± 1.2% for C. necator H16. Linear alkane hydrolysis products from LDPE degradation were detected in the culture media, and the carbon chain lengths of the hydrolysis products detected varied, depending on the species of bacteria. We also determined that C. necator H16 produced short-chain-length polyhydroxyalkanoate biopolymers, while Pseudomonas putida LS46 and Acinetobacter pittii IRN19 produced medium-chain-length biopolymers while growing on polyethylene powder. Cupriavidus necator H16 accumulated poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-V) polymers to 3.18% ± 0.4% of cdm. The monomer composition of the PHB-V was 94.9% ± 0.61% 3-hydroxybutyrate and 5.03% ± 0.56% 3-hydroxyvalerate. This is the first report that provides direct evidence for simultaneous bioconversion of LDPE plastic to biodegradable polyhydroxyalkanoate polymers.


Assuntos
Cupriavidus necator/metabolismo , Micrococcus luteus/metabolismo , Polietileno/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas putida/metabolismo , Carbono/metabolismo , Meios de Cultura , Hidrólise , Plásticos/metabolismo , Poliésteres
19.
PLoS One ; 13(5): e0197384, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29771957

RESUMO

The aim of the project was to find new catalysts capable of chlorolactone biotransformation. Three bicyclic chlorolactones with structures possessing one or two methyl groups in their cyclohexane ring were subjected to screening biotransformation using seven bacterial strains and one fungal strain from a salt mine. Three strains of bacteria (Micrococcus luteus Pb10, Micrococcus luteus WSP45, Gordonia alkanivorans Pd25) and one fungal strain (Aspergillus sydowii KGJ10) were able to catalyse hydrolytic dehalogenation of one substrate. The classification of the strains that were effective biocatalysts was confirmed by 16S rDNA analysis. The best result (76%) was obtained using Aspergillus sydowii KGJ10. All strains catalysed hydrolytic dehalogenation without changing the conformation. The equatorial position of the chlorine atom in the substrate turned out to be warrant of the positive result of the biotransformation process.


Assuntos
Lactonas/metabolismo , Mineração , Cloreto de Sódio , Aspergillus/metabolismo , Biocatálise , Cicloexanos/metabolismo , DNA Ribossômico/genética , Micrococcus luteus/metabolismo
20.
J Biotechnol ; 256: 21-26, 2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-28694185

RESUMO

Nisin is a safe, approved and commercial bacteriocin that is produced by Lactococcus lactis subsp. lactis. Since lactate accumulation in fermentation medium reduces L. lactis growth and nisin production, Yarrowia lipolytica, a lactate consuming yeast and L. lactis subsp. lactis, were simultaneously cultured in a molasses based medium. Y. lipolytica is not able to consume sucrose as carbon source, but rather consumes lactate and hence decrease lactic acid titer by 10% in the medium. Lactic acid consumption, 15% increased pH value and stimulated L. lactis growth. In the mixed culture, nisin production and L. lactis growth were 50% and 49% higher than that of pure culture, respectively. Also the results showed that specific growth rate of L. lactis increased 4 times more than that of the pure culture.


Assuntos
Ácido Láctico/metabolismo , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/metabolismo , Nisina/biossíntese , Yarrowia/metabolismo , Biomassa , Técnicas de Cocultura , Meios de Cultura , Fermentação , Concentração de Íons de Hidrogênio , Micrococcus luteus/metabolismo , Melaço , Sacarose/metabolismo , Soro do Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...