Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Biosensors (Basel) ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37366954

RESUMO

In 2019, over 21% of an estimated 10 million new tuberculosis (TB) patients were either not diagnosed at all or diagnosed without being reported to public health authorities. It is therefore critical to develop newer and more rapid and effective point-of-care diagnostic tools to combat the global TB epidemic. PCR-based diagnostic methods such as Xpert MTB/RIF are quicker than conventional techniques, but their applicability is restricted by the need for specialized laboratory equipment and the substantial cost of scaling-up in low- and middle-income countries where the burden of TB is high. Meanwhile, loop-mediated isothermal amplification (LAMP) amplifies nucleic acids under isothermal conditions with a high efficiency, helps in the early detection and identification of infectious diseases, and can be performed without the need for sophisticated thermocycling equipment. In the present study, the LAMP assay was integrated with screen-printed carbon electrodes and a commercial potentiostat for real time cyclic voltammetry analysis (named as the LAMP-Electrochemical (EC) assay). The LAMP-EC assay was found to be highly specific to TB-causing bacteria and capable of detecting even a single copy of the Mycobacterium tuberculosis (Mtb) IS6110 DNA sequence. Overall, the LAMP-EC test developed and evaluated in the present study shows promise to become a cost-effective tool for rapid and effective diagnosis of TB.


Assuntos
Técnicas Biossensoriais , Microeletrodos , Tuberculose , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/diagnóstico , Tuberculose/microbiologia , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/normas , Carbono/química , Microeletrodos/normas , Sensibilidade e Especificidade , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , DNA Bacteriano/análise
2.
Biochem Biophys Res Commun ; 576: 117-122, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34487889

RESUMO

Cardiac reentry is a lethal arrhythmia associated with cardiac diseases. Although arrhythmias are reported to be due to localized propagation abnormalities, little is known about the mechanisms underlying the initiation and termination of reentry. This is primarily because of a lack of an appropriate experimental system in which activity pattern switches between reentry and normal beating can be investigated. In this study, we aimed to develop a culture system for measuring the spatial dynamics of reentry-like activity during its onset and termination. Rat cardiomyocytes were seeded in microelectrode arrays and purified with a glucose-free culture medium to generate a culture with a heterogeneous cell density. Reentry-like activity was recorded in purified cardiomyocytes, but not in the controls. Reentry-like activity occurred by a unidirectional conduction block after shortening of the inter-beat interval. Furthermore, reentry-like activity was terminated after propagation with a conduction delay of less than 300 ms, irrespective of whether the propagation pattern changed or not. These results indicate that a simple purification process is sufficient to induce reentry-like activity. In the future, a more detailed evaluation of spatial dynamics will contribute to the development of effective treatment methods.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/fisiopatologia , Bloqueio Cardíaco/fisiopatologia , Sistema de Condução Cardíaco/fisiologia , Microeletrodos/normas , Miócitos Cardíacos/fisiologia , Animais , Células Cultivadas , Modelos Animais , Ratos , Ratos Wistar
3.
Stereotact Funct Neurosurg ; 99(1): 48-54, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33075799

RESUMO

Deep brain stimulation (DBS) is a complex surgical procedure that requires detailed anatomical knowledge. In many fields of neurosurgery navigation systems are used to display anatomical structures during an operation to aid performing these surgeries. In frame-based DBS, the advantage of visualization has not yet been evaluated during the procedure itself. In this study, we added live visualization to a frame-based DBS system, using a standard navigation system and investigated its accuracy and potential use in DBS surgery. As a first step, a phantom study was conducted to investigate the accuracy of the navigation system in conjunction with a frame-based approach. As a second step, 5 DBS surgeries were performed with this combined approach. Afterwards, 3 neurosurgeons and 2 neurologists with different levels of experience evaluated the potential use of the system with a questionnaire. Moreover, the additional personnel, costs and required set up time were noted and compared to 5 consecutive standard procedures. In the phantom study, the navigation system showed an inaccuracy of 2.1 mm (mean SD 0.69 mm). In the questionnaire, a mean of 9.4/10 points was awarded for the use of the combined approach as a teaching tool, a mean of 8.4/10 for its advantage in creating a 3-dimensional (3-D) map and a mean of 8/10 points for facilitating group discussions. Especially neurosurgeons and neurologists in training found it useful to better interpret clinical results and side effects (mean 9/10 points) and neurosurgeons appreciated its use to better interpret microelectrode recordings (mean 9/10 points). A mean of 6/10 points was awarded when asked if the benefits were worth the additional efforts. Initially 2 persons, then one additional person was required to set up the system with no relevant added time or costs. Using a navigation system for live visualization during frame-based DBS surgery can improve the understanding of the complex 3-D anatomy and many aspects of the procedure itself. For now, we would regard it as an excellent teaching tool rather than a necessity to perform DBS surgeries.


Assuntos
Estimulação Encefálica Profunda/normas , Neuronavegação/normas , Neurocirurgiões/normas , Técnicas Estereotáxicas/normas , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados/normas , Feminino , Humanos , Imageamento Tridimensional/métodos , Imageamento Tridimensional/normas , Masculino , Microeletrodos/normas , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/cirurgia , Neuronavegação/métodos , Procedimentos Neurocirúrgicos/métodos , Procedimentos Neurocirúrgicos/normas , Imagens de Fantasmas/normas
4.
Small ; 16(6): e1906436, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31965738

RESUMO

A balanced concentration of ions is essential for biological processes to occur. For example, [H+ ] gradients power adenosine triphosphate synthesis, dynamic changes in [K+ ] and [Na+ ] create action potentials in neuronal communication, and [Cl- ] contributes to maintaining appropriate cell membrane voltage. Sensing ionic concentration is thus important for monitoring and regulating many biological processes. This work demonstrates an ion-selective microelectrode array that simultaneously and independently senses [K+ ], [Na+ ], and [Cl- ] in electrolyte solutions. To obtain ion specificity, the required ion-selective membranes are patterned using microfluidics. As a proof of concept, the change in ionic concentration is monitored during cell proliferation in a cell culture medium. This microelectrode array can easily be integrated in lab-on-a-chip approaches to physiology and biological research and applications.


Assuntos
Íons , Microeletrodos , Microfluídica , Animais , Linhagem Celular , Proliferação de Células , Meios de Cultura/química , Íons/análise , Camundongos , Microeletrodos/normas , Microfluídica/instrumentação
5.
Stereotact Funct Neurosurg ; 97(4): 225-231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31707386

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an accepted treatment for patients with medication-resistant Tourette syndrome (TS). Sedation is commonly required during electrode implantation to attenuate anxiety, pain, and severe tics. Anesthetic agents potentially impair the quality of microelectrode recordings (MER). Little is known about the effect of these anesthetics on MER in patients with TS. We describe our experience with different sedative regimens on MER and tic severity in patients with TS. METHODS: The clinical records of all TS patients who underwent DBS surgery between 2010 and 2018 were reviewed. Demographic data, stimulation targets, anesthetic agents, perioperative complications, and MER from each hemisphere were collected and analyzed. Single-unit activity was identified by filtering spiking activity from broadband MER data and principal component analysis with K-means clustering. Vocal and motor tics which caused artifacts in the MER data were manually selected using visual and auditory inspection. RESULTS: Six patients underwent bilateral DBS electrode implantation. In all patients, the target was the anterior internal globus pallidus. Patient comfort and hemodynamic and respiratory stability were maintained with conscious sedation with one or more of the following anesthetic drugs: propofol, midazolam, remifentanil, clonidine, and dexmedetomidine. Good quality MER and clinical testing were obtained in 9 hemispheres of 6 patients. In 3 patients, MER quality was poor on one side. CONCLUSION: Cautiously applied sedative drugs can provide patient comfort, hemodynamic and respiratory stability, and suppress severe tics, with minimal interference with MER.


Assuntos
Anestesia/tendências , Anestésicos/administração & dosagem , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Síndrome de Tourette/terapia , Adulto , Anestesia/efeitos adversos , Anestésicos/efeitos adversos , Estimulação Encefálica Profunda/normas , Eletrodos Implantados/normas , Feminino , Globo Pálido/efeitos dos fármacos , Globo Pálido/fisiologia , Humanos , Masculino , Microeletrodos/normas , Pessoa de Meia-Idade
6.
J Vis Exp ; (151)2019 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-31609344

RESUMO

Marmosets (Callithrix jacchus) are small non-human primates that are gaining popularity in biomedical and preclinical research, including the neurosciences. Phylogenetically, these animals are much closer to humans than rodents. They also display complex behaviors, including a wide range of vocalizations and social interactions. Here, an effective stereotaxic neurosurgical procedure for implantation of recording electrode arrays in the common marmoset is described. This protocol also details the pre- and postoperative steps of animal care that are required to successfully perform such a surgery. Finally, this protocol shows an example of local field potential and spike activity recordings in a freely behaving marmoset 1 week after the surgical procedure. Overall, this method provides an opportunity to study the brain function in awake and freely behaving marmosets. The same protocol can be readily used by researchers working with other small primates. In addition, it can be easily modified to allow other studies requiring implants, such as stimulating electrodes, microinjections, implantation of optrodes or guide cannulas, or ablation of discrete tissue regions.


Assuntos
Microeletrodos/normas , Procedimentos Neurocirúrgicos/métodos , Animais , Callithrix
7.
J Neural Eng ; 16(6): 066047, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31374559

RESUMO

OBJECTIVE: The goal of this study was to evaluate the long-term behavior of the surface electrode through electrochemical characterization and follow-up of implanted parylene/platinum microelectrodes. APPROACH: To this aim, we designed and manufactured specific planar electrodes for cortical implantation for a rat model. This work was included in the INTENSE® project, one of the goals of which was to prove the feasibility of selective neural recording or stimulation with cuff electrodes around the vagus nerve. MAIN RESULTS: After a 12-week implantation in a rat model, we can report that these microelectrodes have withstood in vivo use. Regarding the biocompatibility of the electrodes (materials and manufacturing process), no adverse effect was reported. Indeed, after the three-month implantation, we characterized limited tissue reaction beneath the electrodes and showed an increase and a stabilization of their impedance. Interestingly, the follow-up of the electrochemical impedance combined with electrical stimulation highlighted a drop in the impedance up to 60% at 1 kHz after ten minutes of electrical stimulation at 110 Hz. SIGNIFICANCE: This study gives evidence of the biocompatibility of the parylene platinum contact array designed for the project and confirms the effect of stimulation on the contact impedance.


Assuntos
Materiais Biocompatíveis/normas , Encéfalo/fisiologia , Eletrodos Implantados/normas , Polímeros/normas , Xilenos/normas , Fatores Etários , Animais , Estimulação Elétrica/métodos , Microeletrodos/normas , Ratos , Reprodutibilidade dos Testes
8.
Adv Neurobiol ; 22: 155-167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073935

RESUMO

Since their introduction in the early 1970s, microelectrode arrays (MEAs) have been dominating the electrophysiology market thanks to their reliability, extreme robustness, and usability. Over the past 40 years, silicon technology has also played a role in the advancement of the field, and CMOS-based in vitro and in vivo systems are now able to achieve unprecedented spatial resolutions, giving the possibility to unveil hidden behavior of cellular aggregates down to the subcellular level. However, both the MEAs and silicon-based electronic devices present unavoidable problems such as their expensiveness, the usual rigidity of the employed materials, and the need of an (usually bulky) external reference electrode. Possible interesting alternatives to these incredibly useful devices unexpectedly lie in the field of organic electronics, thanks to the fast-growing pace of improvement that this discipline has undergone in the last 10-15 years. In this chapter, a particular organic transistor called organic charge-modulated field-effect transistor (OCMFET) will be presented as a promising bio-electronic interface, and a complete description of its employment as a detector of cellular electrical activity and as an ultrasensitive pH sensor will be provided, together with the discussion about the possibility of using such a device as an innovative multisensing tool for both electrophysiology and (neuro)pharmacology.


Assuntos
Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Microeletrodos , Neurônios/citologia , Técnicas de Cultura de Células , Eletrofisiologia/normas , Microeletrodos/normas , Reprodutibilidade dos Testes
10.
J Neural Eng ; 16(1): 016001, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444215

RESUMO

OBJECTIVE: Non-invasive imaging techniques are undoubtedly the ideal methods for continuous monitoring of neural activity. One such method, fast neural electrical impedance tomography (EIT) has been developed over the past decade in order to image neural action potentials with non-penetrating electrode arrays. APPROACH: The goal of this study is two-fold. First, we present a detailed fabrication method for silicone-based multiple electrode arrays which can be used for epicortical or neural cuff applications. Secondly, we optimize electrode material coatings in order to achieve the best accuracy in EIT reconstructions. MAIN RESULTS: The testing of nanostructured electrode interface materials consisting of platinum, iridium oxide, and PEDOT:pTS in saline tank experiments demonstrated that the PEDOT:pTS coating used in this study leads to more accurate reconstruction dimensions along with reduced phase separation between recording channels. The PEDOT:pTS electrodes were then used in vivo to successfully image and localize the evoked activity of the recurrent laryngeal fascicle from within the cervical vagus nerve. SIGNIFICANCE: These results alongside the simple fabrication method presented here position EIT as an effective method to image neural activity.


Assuntos
Impedância Elétrica , Desenho de Equipamento/métodos , Nervos Laríngeos/diagnóstico por imagem , Nervos Laríngeos/fisiologia , Microeletrodos , Tomografia/métodos , Animais , Feminino , Microeletrodos/normas , Sistema Nervoso Periférico/diagnóstico por imagem , Sistema Nervoso Periférico/fisiologia , Ovinos , Silicones , Tomografia/normas
11.
J Neural Eng ; 16(1): 016002, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444217

RESUMO

OBJECTIVE: Intracortical microstimulation has shown promise as a means of evoking somatosensory percepts as part of a bidirectional brain-computer interface (BCI). However, microstimulation generates large electrical artifacts that dominate the recordings necessary for BCI control. These artifacts must be eliminated from the signal in real-time to allow for uninterrupted BCI decoding. APPROACH: We present a simple, robust modification to an existing clinical BCI system to allow for simultaneous recording and stimulation using a combination of signal blanking and digital filtering, without needing to explicitly account for varying parameters such as electrode locations or amplitudes. We validated our artifact rejection scheme by recording from microelectrodes in primary motor cortex (M1) while stimulating in somatosensory cortex of a person with a spinal cord injury. MAIN RESULTS: M1 recordings were digitally blanked using a sample-and-hold circuit triggered just prior to stimulus onset and a first-order 750 Hz high-pass Butterworth filter was used to reduce distortion of the remaining artifact. This scheme enabled spike detection in M1 to resume as soon as 740 µs after each stimulus pulse. We demonstrated the effectiveness of the complete bidirectional BCI system by comparing functional performance during a 5 degree of freedom robotic arm control task, with and without stimulation. When stimulation was delivered without this artifact rejection scheme, the number of objects the subject was able to move across a table in 2 min under BCI control declined significantly compared to trials without stimulation (p < 0.01). When artifact rejection was implemented, performance was no different than in trials that did not include stimulation (p = 0.621). SIGNIFICANCE: The proposed technique uses simple changes in filtering and digital signal blanking with FDA-cleared hardware and enables artifact-free recordings during bidirectional BCI control.


Assuntos
Artefatos , Interfaces Cérebro-Computador , Microeletrodos , Córtex Motor/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Adulto , Interfaces Cérebro-Computador/normas , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados/normas , Humanos , Masculino , Microeletrodos/normas
12.
J Neural Eng ; 16(1): 016024, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30524060

RESUMO

OBJECTIVE: Microwire and Utah-style neural recording arrays are the predominant devices used for cortical neural recording, but the implanted electrodes cause a significant adverse biological response and suffer from well-studied performance degradation. Recent work has demonstrated that carbon fiber electrodes do not elicit this same adverse response, but these existing designs are not practically scalable to hundreds or thousands of recording sites. We present technology that overcomes these issues while additionally providing fine electrode pitch for spatial oversampling. APPROACH: We present a 32-channel carbon fiber monofilament-based intracortical neural recording array fabricated through a combination of bulk silicon microfabrication processing and microassembly. This device represents the first truly two-dimensional carbon fiber neural recording array. The density, channel count, and size scale of this array are enabled by an out-of-plane microassembly technique in which individual fibers are inserted through metallized and isotropically conductive adhesive-filled holes in an oxide-passivated microfabricated silicon substrate. MAIN RESULTS: Five-micron diameter fibers are spaced at a pitch of 38 microns, four times denser than state of the art one-dimensional arrays. The fine diameter of the carbon fibers affords both minimal cross-section and nearly three orders of magnitude greater lateral compliance than standard tungsten microwires. Typical [Formula: see text] impedances are on the order of hundreds of kiloohms, and successful in vivo recording is demonstrated in the motor cortex of a rat. 22 total units are recorded on 20 channels, with unit SNR ranging from 1.4 to 8.0. SIGNIFICANCE: This is the highest density microwire-style electrode array to date, and this fabrication technique is scalable to a larger number of electrodes and allows for the potential future integration of microelectronics. Large-scale carbon fiber neural recording arrays are a promising technology for reducing the inflammatory response and increasing the information density, particularly in neural recording applications where microwire arrays are already used.


Assuntos
Potenciais de Ação/fisiologia , Fibra de Carbono/normas , Córtex Cerebral/fisiologia , Eletrodos Implantados/normas , Microeletrodos/normas , Fibra de Carbono/química , Humanos
13.
ACS Chem Neurosci ; 10(1): 313-322, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30285418

RESUMO

In this work, we report the electrochemical response of a boron-doped ultrananocrystalline diamond (BDUNCD) microelectrode during long-term dopamine (DA) detection. Specifically, changes to its electrochemical activity and electroactive area due to DA byproducts and surface oxidation are studied via scanning electron microscopy, energy dispersive spectroscopy, electrochemical impedance spectroscopy, and silver deposition imaging (SDI). The fouling studies with amperometry (AM) and fast scan cyclic voltammetry (FSCV) methods suggest that the microelectrodes are heavily fouled due to poor DA-dopamine- o-quinone cyclization rates followed by a combination of polymer formation and major changes in their surface chemistry. SDI data confirms the presence of the insulating polymer with sparsely distributed tiny electroactive regions. This resulted in severely distorted DA signals and a 90% loss in signal starting as early as 3 h for AM and a 56% loss at 6.5 h for FSCV. This underscores the need for cleaning of the fouled microelectrodes if they have to be used long-term. Out of the three in vivo suitable electrochemical cycling cleaning waveforms investigated, the standard waveform (-0.4 V to +1.0 V) provides the best cleaned surface with a fully retained voltammogram shape, no hysteresis, no DA signal loss (a 90 ± 0.72 nA increase), and the smallest charge transfer resistance value of 0.4 ± 0.02 MΩ even after 6.5 h of monitoring. Most importantly, this is the same waveform that is widely used for in vivo detection with carbon fiber microelectrodes. Future work to test these microelectrodes for more than 24 h of DA detection is anticipated.


Assuntos
Diamante/química , Dopamina/análise , Técnicas Eletroquímicas/instrumentação , Nanopartículas/química , Técnicas Eletroquímicas/métodos , Microeletrodos/normas , Propriedades de Superfície
14.
J Vis Exp ; (142)2018 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-30582587

RESUMO

Microelectrode arrays (MEAs) are widely used to study neuronal function in vitro. These devices allow concurrent non-invasive recording/stimulation of electrophysiological activity for long periods. However, the property of sensing signals from all sources around every microelectrode can become unfavorable when trying to understand communication and signal propagation in neuronal circuits. In a neuronal network, several neurons can be simultaneously activated and can generate overlapping action potentials, making it difficult to discriminate and track signal propagation. Considering this limitation, we have established an in vitro setup focused on assessing electrophysiological communication, which is able to isolate and amplify axonal signals with high spatial and temporal resolution. By interfacing microfluidic devices and MEAs, we are able to compartmentalize neuronal cultures with a well-controlled alignment of the axons and microelectrodes. This setup allows recordings of spike propagation with a high signal-to-noise ratio over the course of several weeks. Combined with specialized data analysis algorithms, it provides detailed quantification of several communication related properties such as propagation velocity, conduction failure, firing rate, anterograde spikes, and coding mechanisms. This protocol demonstrates how to create a compartmentalized neuronal culture setup over substrate-integrated MEAs, how to culture neurons in this setup, and how to successfully record, analyze and interpret the results from such experiments. Here, we show how the established setup simplifies the understanding of neuronal communication and axonal signal propagation. These platforms pave the way for new in vitro models with engineered and controllable neuronal network topographies. They can be used in the context of homogeneous neuronal cultures, or with co-culture configurations where, for example, communication between sensory neurons and other cell types is monitored and assessed. This setup provides very interesting conditions to study, for example, neurodevelopment, neuronal circuits, information coding, neurodegeneration and neuroregeneration approaches.


Assuntos
Axônios/fisiologia , Microeletrodos/normas , Microfluídica/métodos , Neurônios/fisiologia , Transdução de Sinais
15.
J Neurophysiol ; 120(4): 2083-2090, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020844

RESUMO

Multisite implantable electrode arrays serve as a tool to understand cortical network connectivity and plasticity. Furthermore, they enable electrical stimulation to drive plasticity, study motor/sensory mapping, or provide network input for controlling brain-computer interfaces. Neurobehavioral rodent models are prevalent in studies of motor cortex injury and recovery as well as restoration of auditory/visual cues due to their relatively low cost and ease of training. Therefore, it is important to understand the chronic performance of relevant electrode arrays in rodent models. In this report, we evaluate the chronic recording and electrochemical performance of 16-channel Utah electrode arrays, the current state-of-the-art in pre-/clinical cortical recording and stimulation, in rat motor cortex over a period of 6 mo. The single-unit active electrode yield decreased from 52.8 ± 10.0 ( week 1) to 13.4 ± 5.1% ( week 24). Similarly, the total number of single units recorded on all electrodes across all arrays decreased from 106 to 15 over the same time period. Parallel measurements of electrochemical impedance spectra and cathodic charge storage capacity exhibited significant changes in electrochemical characteristics consistent with development of electrolyte leakage pathways over time. Additionally, measurements of maximum cathodal potential excursion indicated that only a relatively small fraction of electrodes (10-35% at 1 and 24 wk postimplantation) were capable of delivering relevant currents (20 µA at 4 nC/ph) without exceeding negative or positive electrochemical potential limits. In total, our findings suggest mainly abiotic failure modes, including mechanical wire breakage as well as degradation of conducting and insulating substrates. NEW & NOTEWORTHY Multisite implantable electrode arrays serve as a tool to record cortical network activity and enable electrical stimulation to drive plasticity or provide network feedback. The use of rodent models in these fields is prevalent. We evaluated chronic recording and electrochemical performance of 16-channel Utah electrode arrays in rat motor cortex over a period of 6 mo. We primarily observed abiotic failure modes suggestive of mechanical wire breakage and/or degradation of insulation.


Assuntos
Eletroencefalografia/métodos , Córtex Motor/fisiologia , Animais , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos Implantados/normas , Eletroencefalografia/instrumentação , Masculino , Microeletrodos/normas , Ratos , Razão Sinal-Ruído
16.
J Neural Eng ; 15(4): 045003, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29717707

RESUMO

OBJECTIVE: Retinal prostheses have shown promising results in restoring some visual perception to blind patients but successful identification of objects of different size remains a challenge. Here we investigated electrode-size specific stimulation thresholds and their variability for subretinal electrical stimulation. Our findings indicate the range of charge densities required to achieve identification of small objects and the object-size-specific scaling of stimulation threshold. APPROACH: Using biphasic voltage-limited current stimuli provided by a light-sensitive microchip, we determined threshold charge densities for stimulation with variable electrode sizes. The stimulated activation of the retinal network was identified by recording the spiking of retinal ganglion cells in photoreceptor-degenerated mouse rd10 retinas. Stimulation thresholds were determined for cells with saturating stimulus response relationships (SRRs) but not for cells characterized by monotonically increasing or decreasing SRRs. MAIN RESULTS: Stimulation thresholds estimated in rd10 retinas ranged between 100-900 µC cm-2 for stimulation with small electrodes (30 µm diameter). Threshold charge density decreased with increasing electrode size and plateaued at 20 µC cm-2 for an electrode diameter larger than 300 µm. This trend of decreasing threshold down to a plateau value was confirmed in wild-type mouse retina suggesting an underlying physiological source. SIGNIFICANCE: Our results suggest the following guidelines for retinal prosthetics employing biphasic current pulses. The encoding of small objects may be achieved through the activation of a confined set of different retinal ganglion cells, with individual stimulation thresholds spanning a wide range of charge densities. The encoding of increasing object sizes may be achieved by decreasing stimulation charge density.


Assuntos
Desenho de Prótese/métodos , Retina/fisiologia , Próteses Visuais , Potenciais de Ação/fisiologia , Animais , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Líquido Extracelular/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos/normas , Desenho de Prótese/instrumentação , Desenho de Prótese/normas , Próteses Visuais/normas
17.
J Neural Eng ; 15(3): 036002, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29485103

RESUMO

OBJECTIVE: Despite the feasibility of short-term neural recordings using implantable microelectrodes, attaining reliable, chronic recordings remains a challenge. Most neural recording devices suffer from a long-term tissue response, including gliosis, at the device-tissue interface. It was hypothesized that smaller, more flexible intracortical probes would limit gliosis by providing a better mechanical match with surrounding tissue. APPROACH: This paper describes the in vivo evaluation of flexible parylene microprobes designed to improve the interface with the adjacent neural tissue to limit gliosis and thereby allow for improved recording longevity. The probes were coated with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)) polymer that provides temporary mechanical support for device implantation, yet degrades within 2 h post-implantation. A parametric study of probes of varying dimensions and polymer coating thicknesses were implanted in rat brains. The glial tissue response and neuronal loss were assessed from 72 h to 24 weeks post-implantation via immunohistochemistry. MAIN RESULTS: Experimental results suggest that both probe and polymer coating sizes affect the extent of gliosis. When an appropriate sized coating dimension (100 µm × 100 µm) and small probe (30 µm × 5 µm) was implanted, a minimal post-implantation glial response was observed. No discernible gliosis was detected when compared to tissue where a sham control consisting of a solid degradable polymer shuttle of the same dimensions was inserted. A larger polymer coating (200 µm × 200 µm) device induced a more severe glial response at later time points, suggesting that the initial insertion trauma can affect gliosis even when the polymer shuttle degrades rapidly. A larger degree of gliosis was also observed when comparing a larger sized probe (80 µm × 5 µm) to a smaller probe (30 µm × 5 µm) using the same polymer coating size (100 µm × 100 µm). There was no significant neuronal loss around the implantation sites for most device candidates except the group with largest polymer coating and probe sizes. SIGNIFICANCE: These results suggest that: (1) the degree of mechanical trauma at device implantation and mechanical mismatches at the probe-tissue interface affect long term gliosis; (2) smaller, more flexible probes may minimize the glial response to provide improved tissue biocompatibility when used for chronic neural signal recording; and (3) some degree of glial scarring did not significantly affect neuronal distribution around the probe.


Assuntos
Implantes Absorvíveis/tendências , Córtex Cerebral/metabolismo , Eletrodos Implantados/tendências , Neuroglia/metabolismo , Polímeros/metabolismo , Xilenos/metabolismo , Implantes Absorvíveis/efeitos adversos , Animais , Córtex Cerebral/cirurgia , Eletrodos Implantados/efeitos adversos , Eletrodos Implantados/normas , Masculino , Microeletrodos/efeitos adversos , Microeletrodos/normas , Microeletrodos/tendências , Polímeros/síntese química , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Xilenos/síntese química
18.
J Neural Eng ; 15(3): 031001, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28885187

RESUMO

This review intends to present a comprehensive analysis of the mechanical considerations for chronically-implanted neural probes. Failure of neural electrical recordings or stimulation over time has shown to arise from foreign body reaction and device material stability. It seems that devices that match most closely with the mechanical properties of the brain would be more likely to reduce the mechanical stress at the probe/tissue interface, thus improving body acceptance. The use of low Young's modulus polymers instead of hard substrates is one way to enhance this mechanical mimetism, though compliance can be achieved through a variety of means. The reduction of probe width and thickness in comparison to a designated length, the use of soft hydrogel coatings and the release in device tethering to the skull, can also improve device compliance. Paradoxically, the more compliant the device, the more likely it will fail during the insertion process in the brain. Strategies have multiplied this past decade to offer partial or temporary stiffness to the device to overcome this buckling effect. A detailed description of the probe insertion mechanisms is provided to analyze potential sources of implantation failure and the need for a mechanically-enhancing structure. This leads us to present an overview of the strategies that have been put in place over the last ten years to overcome buckling issues. Particularly, great emphasis is put on bioresorbable polymers and their assessment for neural applications. Finally, a discussion is provided on some of the key features for the design of mechanically-reliable, polymer-based next generation of chronic neuroprosthetic devices.


Assuntos
Encéfalo/cirurgia , Eletrodos Implantados/normas , Desenho de Equipamento/normas , Reação a Corpo Estranho/prevenção & controle , Teste de Materiais/normas , Animais , Encéfalo/patologia , Eletrodos Implantados/efeitos adversos , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Reação a Corpo Estranho/etiologia , Humanos , Hidrogéis/efeitos adversos , Hidrogéis/normas , Teste de Materiais/instrumentação , Teste de Materiais/métodos , Microeletrodos/efeitos adversos , Microeletrodos/normas , Polímeros/efeitos adversos , Polímeros/normas , Estresse Mecânico , Fatores de Tempo
19.
Neuromodulation ; 20(8): 745-752, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29076214

RESUMO

OBJECTIVES: Neural stimulation is well-accepted as an effective therapy for a wide range of neurological disorders. While the scale of clinical devices is relatively large, translational, and pilot clinical applications are underway for microelectrode-based systems. Microelectrodes have the advantage of stimulating a relatively small tissue volume which may improve selectivity of therapeutic stimuli. Current microelectrode technology is associated with chronic tissue response which limits utility of these devices for neural recording and stimulation. One approach for addressing the tissue response problem may be to reduce physical dimensions of the device. "Thinking small" is a trend for the electronics industry, and for implantable neural interfaces, the result may be a device that can evade the foreign body response. MATERIALS AND METHODS: This review paper surveys our current understanding pertaining to the relationship between implant size and tissue response and the state-of-the-art in ultrasmall microelectrodes. A comprehensive literature search was performed using PubMed, Web of Science (Clarivate Analytics), and Google Scholar. RESULTS: The literature review shows recent efforts to create microelectrodes that are extremely thin appear to reduce or even eliminate the chronic tissue response. With high charge capacity coatings, ultramicroelectrodes fabricated from emerging polymers, and amorphous silicon carbide appear promising for neurostimulation applications. CONCLUSION: We envision the emergence of robust and manufacturable ultramicroelectrodes that leverage advanced materials where the small cross-sectional geometry enables compliance within tissue. Nevertheless, future testing under in vivo conditions is particularly important for assessing the stability of thin film devices under chronic stimulation.


Assuntos
Eletrodos Implantados/tendências , Desenho de Equipamento/tendências , Microeletrodos/tendências , Neurônios/fisiologia , Animais , Eletrodos Implantados/normas , Desenho de Equipamento/normas , Humanos , Microeletrodos/normas
20.
J Neurophysiol ; 118(6): 3132-3143, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855292

RESUMO

Self-referencing H+-selective electrodes were used to measure extracellular H+ fluxes from Müller (glial) cells isolated from the tiger salamander retina. A novel chamber enabled stable recordings using H+-selective microelectrodes in a self-referencing format using bicarbonate-based buffer solutions. A small basal H+ flux was observed from the end foot region of quiescent cells bathed in 24 mM bicarbonate-based solutions, and increasing extracellular potassium induced a dose-dependent increase in H+ flux. Barium at 6 mM also increased H+ flux. Potassium-induced extracellular acidifications were abolished when bicarbonate was replaced by 1 mM HEPES. The carbonic anhydrase antagonist benzolamide potentiated the potassium-induced extracellular acidification, while 300 µM DIDS, 300 µM SITS, and 30 µM S0859 significantly reduced the response. Potassium-induced extracellular acidifications persisted in solutions lacking extracellular calcium, although potassium-induced changes in intracellular calcium monitored with Oregon Green were abolished. Exchange of external sodium with choline also eliminated the potassium-induced extracellular acidification. Removal of extracellular sodium by itself induced a transient alkalinization, and replacement of sodium induced a transient acidification, both of which were blocked by 300 µM DIDS. Recordings at the apical portion of the cell showed smaller potassium-induced extracellular H+ fluxes, and removal of the end foot region further decreased the H+ flux, suggesting that the end foot was the major source of acidifications. These studies demonstrate that self-referencing H+-selective electrodes can be used to monitor H+ fluxes from retinal Müller cells in bicarbonate-based solutions and confirm the presence of a sodium-coupled bicarbonate transporter, the activity of which is largely restricted to the end foot of the cell.NEW & NOTEWORTHY The present study uses self-referencing H+-selective electrodes for the first time to measure H+ fluxes from Müller (glial) cells isolated from tiger salamander retina. These studies demonstrate bicarbonate transport as a potent regulator of extracellular levels of acidity around Müller cells and point toward a need for further studies aimed at addressing how such glial cell pH regulatory mechanisms may shape neuronal signaling.


Assuntos
Células Ependimogliais/fisiologia , Eletrodos Seletivos de Íons/normas , Microeletrodos/normas , Prótons , Ambystoma , Animais , Bário/farmacologia , Benzolamida/farmacologia , Sinalização do Cálcio , Células Cultivadas , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Concentração de Íons de Hidrogênio , Potássio/farmacologia , Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...