Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (195)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212554

RESUMO

The embedded 3D printing of cells inside a granular support medium has emerged in the past decade as a powerful approach for the freeform biofabrication of soft tissue constructs. However, granular gel formulations have been restricted to a limited number of biomaterials that allow for the cost-effective generation of large amounts of hydrogel microparticles. Therefore, granular gel support media have generally lacked the cell-adhesive and cell-instructive functions found in the native extracellular matrix (ECM). To address this, a methodology has been developed for the generation of self-healing annealable particle-extracellular matrix (SHAPE) composites. SHAPE composites consist of a granular phase (microgels) and a continuous phase (viscous ECM solution) that, together, allow for both programmable high-fidelity printing and an adjustable biofunctional extracellular environment. This work describes how the developed methodology can be utilized for the precise biofabrication of human neural constructs. First, alginate microparticles, which serve as the granular component in the SHAPE composites, are fabricated and combined with a collagen-based continuous component. Then, human neural stem cells are printed inside the support material, followed by the annealing of the support. The printed constructs can be maintained for weeks to allow the differentiation of the printed cells into neurons. Simultaneously, the collagen continuous phase allows for axonal outgrowth and the interconnection of regions. Finally, this works provides information on how to perform live-cell fluorescence imaging and immunocytochemistry to characterize the 3D-printed human neural constructs.


Assuntos
Bioimpressão , Microgéis , Humanos , Microgéis/análise , Engenharia Tecidual/métodos , Matriz Extracelular/química , Materiais Biocompatíveis/química , Hidrogéis/química , Impressão Tridimensional , Alicerces Teciduais/química , Bioimpressão/métodos
2.
ACS Appl Mater Interfaces ; 12(42): 47309-47319, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33026794

RESUMO

Material scaffolds that mimic the structure, function, and bioactivity of native biological tissues are in constant development. Recently, material scaffolds composed of microgel particles have shown promise for applications ranging from bone regeneration to spheroid cell growth. Previous studies with poly N-isopropylacrylamide microgel scaffolds utilized a layer-by-layer (LBL) technique where individual, uniform microgel layers are built on top of each other resulting in a multilayer scaffold. However, this technique is limited in its applications due to the inability to control microscale deposition or patterning of multiple particle types within a microgel layer. In this study, an ultrasonic microplotting technique is used to address the limitations of LBL fabrication to create patterned microgel films. Printing parameters, such as bioink formulation, surface contact angle, and print head diameter, are optimized to identify the ideal parameters needed to successfully print microgel films. It was found that bioinks composed of 2 mg/mL of microgels and 20% polyethylene glycol by volume (v/v), on bovine serum albumin-coated glass, with a print head diameter of 50 µm resulted in the highest quality prints. Patterned films were created with a maximum resolution of 50 µm with the potential for finer resolutions to be achieved with alternative bioink compositions and printing parameters. Overall, ultrasonic microplotting can be used to create more complex microgel films than is possible with LBL techniques and offers the possibility of greater printing resolution in 3D with further technology development.


Assuntos
Tinta , Microgéis/análise , Ondas Ultrassônicas , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA