Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
Methods Mol Biol ; 2807: 261-270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743234

RESUMO

The development of 3D-organoid models has revolutionized the way diseases are studied. Recently, our brain organoid model has been shown to recapitulate in in vitro the human brain cytoarchitecture originally encountered in HIV-1 neuropathogenesis, allowing downstream applications. Infected monocytes, macrophages, and microglia are critically important immune cells for infection and dissemination of HIV-1 throughout brain during acute and chronic phase of the disease. Once in the brain parenchyma, long-lived infected monocytes/macrophages along with resident microglia contribute to the establishment of CNS latency in people with HIV (PWH). Hence, it is important to better understand how HIV-1 enters and establishes infection and latency in CNS to further develop cure strategies. Here we detailed an accessible protocol to incorporate monocytes (infected and/or labeled) as a model of transmigration of peripheral monocytes into brain organoids that can be applied to characterize HIV-1 neuroinvasion and virus dissemination.


Assuntos
Encéfalo , Infecções por HIV , HIV-1 , Monócitos , Organoides , Organoides/virologia , Organoides/patologia , Humanos , HIV-1/fisiologia , HIV-1/patogenicidade , Monócitos/virologia , Monócitos/imunologia , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/patologia , Encéfalo/virologia , Encéfalo/patologia , Encéfalo/imunologia , Microglia/virologia , Microglia/imunologia , Microglia/patologia , Macrófagos/virologia , Macrófagos/imunologia , Latência Viral
2.
Front Cell Infect Microbiol ; 14: 1380736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716191

RESUMO

Introduction: Chikungunya virus (CHIKV) infection is associated with acute clinical manifestations and chronic joint inflammation. CHIKV has emerged as a significant causative agent of central nervous system (CNS) complications, including encephalitis and related sequelae. Microglial cells, crucial for immune responses and tissue repair in the CNS, play a vital role in the host response to viral infections, with their activation potentially leading to either protection or pathology. In this study, the infection biology of CHIKV in the C20 human microglial cell line was investigated. Methods: The permissiveness of C20 cells to CHIKV infection was assessed, and viral replication kinetics were compared to Vero E6 cells. Cytopathic effects of CHIKV infection on C20 cells were examined, along with ultrastructural changes using transmission electron microscopy. Additionally, apoptosis induction, mitochondrial membrane potential, and alterations in cell surface marker expression were evaluated by flow cytometry. Results: CHIKV infection demonstrated permissiveness in C20 cells, similar to Vero cells, resulting in robust viral replication and cytopathic effects. Ultrastructural analysis revealed viral replication, mature virion formation, and distinctive cytoplasmic and nuclear changes in infected C20 cells. CHIKV infection induced significant apoptosis in C20 cells, accompanied by mitochondrial membrane depolarization and altered expression of cell surface markers such as CD11c, CD14, and HLA-DR. Notably, decreased CD14 expression was observed in CHIKV-infected C20 cells. Discussion: The study findings suggest that CHIKV infection induces apoptosis in C20 microglial cells via the mitochondrial pathway, with significant alterations in cell surface marker expression, particularly CD14 that is linked with apoptosis induction. These observations provide valuable insights into the role of human microglial cells in the host response to CHIKV infection and contribute to the knowledge on the neuropathogenesis of this virus.


Assuntos
Apoptose , Febre de Chikungunya , Vírus Chikungunya , Microglia , Mitocôndrias , Replicação Viral , Microglia/virologia , Vírus Chikungunya/fisiologia , Humanos , Mitocôndrias/ultraestrutura , Linhagem Celular , Chlorocebus aethiops , Animais , Células Vero , Febre de Chikungunya/virologia , Potencial da Membrana Mitocondrial , Efeito Citopatogênico Viral
3.
Anal Chem ; 96(19): 7479-7486, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38689560

RESUMO

In the pathogenesis of microglia, brain immune cells promote nitrergic stress by overproducing nitric oxide (NO), leading to neuroinflammation. Furthermore, NO has been linked to COVID-19 progression, which has caused significant morbidity and mortality. SARS-CoV-2 infection activates inflammation by releasing excess NO and causing cell death in human microglial clone 3 (HMC3). In addition, NO regulates lysosomal functions and complex machinery to neutralize pathogens through phagocytosis. Therefore, developing lysosome-specific NO probes to monitor phagocytosis in microglia during the COVID-19 infection would be a significant study. Herein, a unique synthetic strategy was adopted to develop a NO selective fluorescent probe, PDM-NO, which can discriminate activated microglia from their resting state. The nonfluorescent PDM-NO exhibits a turn-on response toward NO only at lysosomal pH (4.5-5.5). Quantum chemical calculations (DFT/TD-DFT/PCM) and photophysical study revealed that the photoinduced electron transfer (PET) process is pivotal in tuning optical properties. PDM-NO demonstrated good biocompatibility and lysosomal specificity in activated HMC3 cells. Moreover, it can effectively map the dynamics of lysosomal NO against SARS-CoV-2 RNA-induced neuroinflammation in HMC3. Thus, PDM-NO is a potential fluorescent marker for detecting RNA virus infection and monitoring phagocytosis in HMC3.


Assuntos
COVID-19 , Corantes Fluorescentes , Lisossomos , Microglia , Óxido Nítrico , Fagocitose , SARS-CoV-2 , Microglia/virologia , Microglia/metabolismo , SARS-CoV-2/isolamento & purificação , Humanos , Lisossomos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/análise , COVID-19/virologia , COVID-19/diagnóstico , COVID-19/metabolismo , Corantes Fluorescentes/química , RNA Viral/análise , RNA Viral/metabolismo , Doenças Neuroinflamatórias , Linhagem Celular , Fenótipo
4.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674036

RESUMO

CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.


Assuntos
Quimiocina CX3CL1 , Viroses , Quimiocina CX3CL1/metabolismo , Humanos , Viroses/metabolismo , Viroses/imunologia , Viroses/virologia , Animais , COVID-19/virologia , COVID-19/metabolismo , COVID-19/imunologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Microglia/metabolismo , Microglia/virologia , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética
5.
J Virol ; 97(12): e0159523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032195

RESUMO

IMPORTANCE: Our mouse model is a powerful tool for investigating the genetic mechanisms governing central nervous system (CNS) human immunodeficiency virus type-1 (HIV-1) infection and latency in the CNS at a single-cell level. A major advantage of our model is that it uses induced pluripotent stem cell-derived microglia, which enables human genetics, including gene function and therapeutic gene manipulation, to be explored in vivo, which is more challenging to study with current hematopoietic stem cell-based models for neuroHIV. Our transgenic tracing of xenografted human cells will provide a quantitative medium to develop new molecular and epigenetic strategies for reducing the HIV-1 latent reservoir and to test the impact of therapeutic inflammation-targeting drug interventions on CNS HIV-1 latency.


Assuntos
Infecções por HIV , HIV-1 , Células-Tronco Pluripotentes Induzidas , Microglia , Animais , Humanos , Camundongos , Sistema Nervoso Central , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/fisiologia , Microglia/virologia , Latência Viral , Xenoenxertos
6.
J Med Virol ; 95(11): e29217, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933090

RESUMO

As a key immune cell in the brain, microglia are essential for protecting the central nervous system (CNS) from viral infections, including HIV. Microglia possess functional Toll-like receptor 3 (TLR3), a key viral sensor for activating interferon (IFN) signaling pathway-mediated antiviral immunity. We, therefore, studied the effect of poly (I:C), a synthetic ligand of TLR3, on the activation of the intracellular innate immunity against HIV in human iPSC-derived microglia (iMg). We found that poly (I:C) treatment of iMg effectively inhibits HIV infection/replication at both mRNA and protein levels. Investigations of the mechanisms revealed that TLR3 activation of iMg by poly (I:C) induced the expression of both type I and type III IFNs. Compared with untreated cells, the poly (I:C)-treated iMg expressed significantly higher levels of IFN-stimulated genes (ISGs) with known anti-HIV activities (ISG15, MxB, Viperin, MxA, and OAS-1). In addition, TLR3 activation elicited the expression of the HIV entry coreceptor CCR5 ligands (CC chemokines) in iMg. Furthermore, the transcriptional profile analysis showed that poly (I:C)-treated cells had the upregulated IFN signaling genes (ISG15, ISG20, IFITM1, IFITM2, IFITM3, IFITM10, APOBEC3A, OAS-2, MxA, and MxB) and the increased CC chemokine signaling genes (CCL1, CCL2, CCL3, CCL4, and CCL15). These observations indicate that TLR3 is a potential therapy target for activating the intracellular innate immunity against HIV infection/replication in human microglial cells. Therefore, further studies with animal models and clinical specimens are necessary to determine the role of TLR3 activation-driven antiviral response in the control and elimination of HIV in infected host cells.


Assuntos
Infecções por HIV , Células-Tronco Pluripotentes Induzidas , Microglia , Receptor 3 Toll-Like , Humanos , Células Cultivadas , Imunidade Inata , Microglia/virologia , Poli I-C/farmacologia , Receptor 3 Toll-Like/genética
7.
J Virol ; 96(17): e0095722, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35975998

RESUMO

HIV-1 infection within the central nervous system (CNS) includes evolution of the virus, damaging inflammatory cascades, and the involvement of multiple cell types; however, our understanding of how Env tropism and inflammation can influence CNS infectivity is incomplete. In this study, we utilize macrophage-tropic and T cell-tropic HIV-1 Env proteins to establish accurate infection profiles for multiple CNS cells under basal and interferon alpha (IFN-α) or lipopolysaccharide (LPS)-induced inflammatory states. We found that macrophage-tropic viruses confer entry advantages in primary myeloid cells, including monocyte-derived macrophage, microglia, and induced pluripotent stem cell (iPSC)-derived microglia. However, neither macrophage-tropic or T cell-tropic HIV-1 Env proteins could mediate infection of astrocytes or neurons, and infection was not potentiated by induction of an inflammatory state in these cells. Additionally, we found that IFN-α and LPS restricted replication in myeloid cells, and IFN-α treatment prior to infection with vesicular stomatitis virus G protein (VSV G) Envs resulted in a conserved antiviral response across all CNS cell types. Further, using RNA sequencing (RNA-seq), we found that only myeloid cells express HIV-1 entry receptor/coreceptor transcripts at a significant level and that these transcripts in select cell types responded only modestly to inflammatory signals. We profiled the transcriptional response of multiple CNS cells to inflammation and found 57 IFN-induced genes that were differentially expressed across all cell types. Taken together, these data focus attention on the cells in the CNS that are truly permissive to HIV-1, further highlight the role of HIV-1 Env evolution in mediating infection in the CNS, and point to limitations in using model cell types versus primary cells to explore features of virus-host interaction. IMPORTANCE The major feature of HIV-1 pathogenesis is the induction of an immunodeficient state in the face of an enhanced state of inflammation. However, for many of those infected, there can be an impact on the central nervous system (CNS) resulting in a wide range of neurocognitive defects. Here, we use a highly sensitive and quantitative assay for viral infectivity to explore primary and model cell types of the brain for their susceptibility to infection using viral entry proteins derived from the CNS. In addition, we examine the ability of an inflammatory state to alter infectivity of these cells. We find that myeloid cells are the only cell types in the CNS that can be infected and that induction of an inflammatory state negatively impacts viral infection across all cell types.


Assuntos
Sistema Nervoso Central , Infecções por HIV , HIV-1 , Inflamação , Macrófagos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Infecções por HIV/complicações , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Inflamação/complicações , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia , Interferon-alfa/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/virologia , Glicoproteínas de Membrana/metabolismo , Microglia/citologia , Microglia/virologia , RNA-Seq , Receptores de HIV/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
8.
PLoS Pathog ; 18(7): e1010110, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797416

RESUMO

Human immune deficiency virus (HIV) infection in the brain leads to chronic neuroinflammation due to the production of pro-inflammatory cytokines, which in turn promotes HIV transcription in infected microglial cells. However, powerful counteracting silencing mechanisms in microglial cells result in the rapid shutdown of HIV expression after viral reactivation to limit neuronal damage. Here we investigated whether the Nerve Growth Factor IB-like nuclear receptor Nurr1 (NR4A2), which is a repressor of inflammation in the brain, acts directly to restrict HIV expression. HIV silencing following activation by TNF-α, or a variety of toll-like receptor (TLR) agonists, in both immortalized human microglial cells (hµglia) and induced pluripotent stem cells (iPSC)-derived human microglial cells (iMG) was enhanced by Nurr1 agonists. Similarly, overexpression of Nurr1 led to viral suppression, while conversely, knock down (KD) of endogenous Nurr1 blocked HIV silencing. The effect of Nurr1 on HIV silencing is direct: Nurr1 binds directly to the specific consensus binding sites in the U3 region of the HIV LTR and mutation of the Nurr1 DNA binding domain blocked its ability to suppress HIV-1 transcription. Chromatin immunoprecipitation (ChIP) assays also showed that after Nurr1 binding to the LTR, the CoREST/HDAC1/G9a/EZH2 transcription repressor complex is recruited to the HIV provirus. Finally, transcriptomic studies demonstrated that in addition to repressing HIV transcription, Nurr1 also downregulated numerous cellular genes involved in inflammation, cell cycle, and metabolism, further promoting HIV latency and microglial homoeostasis. Nurr1 therefore plays a pivotal role in modulating the cycles of proviral reactivation by potentiating the subsequent proviral transcriptional shutdown. These data highlight the therapeutic potential of Nurr1 agonists for inducing HIV silencing and microglial homeostasis and ultimately for the amelioration of the neuroinflammation associated with HIV-associated neurocognitive disorders (HAND).


Assuntos
Infecções por HIV , HIV-1 , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Humanos , Inflamação/metabolismo , Microglia/metabolismo , Microglia/virologia , Fatores de Crescimento Neural/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Provírus
9.
Microbiol Spectr ; 10(3): e0109122, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35510852

RESUMO

Accumulating evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes various neurological symptoms in patients with coronavirus disease 2019 (COVID-19). The most dominant immune cells in the brain are microglia. Yet, the relationship between neurological manifestations, neuroinflammation, and host immune response of microglia to SARS-CoV-2 has not been well characterized. Here, we reported that SARS-CoV-2 can directly infect human microglia, eliciting M1-like proinflammatory responses, followed by cytopathic effects. Specifically, SARS-CoV-2 infected human microglial clone 3 (HMC3), leading to inflammatory activation and cell death. RNA sequencing (RNA-seq) analysis also revealed that endoplasmic reticulum (ER) stress and immune responses were induced in the early, and apoptotic processes in the late phases of viral infection. SARS-CoV-2-infected HMC3 showed the M1 phenotype and produced proinflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor α (TNF-α), but not the anti-inflammatory cytokine IL-10. After this proinflammatory activation, SARS-CoV-2 infection promoted both intrinsic and extrinsic death receptor-mediated apoptosis in HMC3. Using K18-hACE2 transgenic mice, murine microglia were also infected by intranasal inoculation of SARS-CoV-2. This infection induced the acute production of proinflammatory microglial IL-6 and TNF-α and provoked a chronic loss of microglia. Our findings suggest that microglia are potential mediators of SARS-CoV-2-induced neurological problems and, consequently, can be targets of therapeutic strategies against neurological diseases in patients with COVID-19. IMPORTANCE Recent studies reported neurological and cognitive sequelae in patients with COVID-19 months after the viral infection with several symptoms, including ageusia, anosmia, asthenia, headache, and brain fog. Our conclusions raise awareness of COVID-19-related microglia-mediated neurological disorders to develop treatment strategies for the affected patients. We also indicated that HMC3 was a novel human cell line susceptible to SARS-CoV-2 infection that exhibited cytopathic effects, which could be further used to investigate cellular and molecular mechanisms of neurological manifestations of patients with COVID-19.


Assuntos
Apoptose , COVID-19 , Microglia , Animais , Linhagem Celular , Citocinas/metabolismo , Humanos , Interleucina-6 , Camundongos , Camundongos Transgênicos , Microglia/virologia , SARS-CoV-2 , Fator de Necrose Tumoral alfa
10.
J Virol ; 96(6): e0131121, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35045263

RESUMO

Spread of herpes simplex virus 1 (HSV1) from the periphery to the central nervous system (CNS) can lead to extensive infection and pathological inflammation in the brain, causing herpes simplex encephalitis (HSE). It has been shown that microglia, the CNS-resident macrophages, are involved in early sensing of HSV1 and induction of antiviral responses. In addition, infiltration of peripheral immune cells may contribute to the control of viral infection. In this study, we tested the effect of microglia depletion in a mouse model of HSE. Increased viral titers and increased disease severity were observed in microglia-depleted mice. The effect of microglia depletion was more pronounced in wild-type than in cGas-/- mice, revealing that this immune sensor contributes to the antiviral activity of microglia. Importantly, microglia depletion led to reduced production of type I interferon (IFN), proinflammatory cytokines, and chemokines at early time points after viral entry into the CNS. In line with this, in vitro experiments on murine primary CNS cells demonstrated microglial presence to be essential for IFN RNA induction, and control of HSV1 replication. However, the effect of microglia depletion on the expression of IFNs, and inflammatory cytokines was restricted to the early time point of HSV1 entry into the CNS. There was no major alteration of infiltration of CD45-positive cells in microglia-depleted mice. Collectively, our data demonstrate a key role for microglia in controlling HSV1 replication early after viral entry into the CNS and highlight the importance of a prompt antiviral innate response to reduce the risk of HSE development. IMPORTANCE One of the most devastating and acute neurological conditions is encephalitis, i.e., inflammation of brain tissue. Herpes simplex virus 1 (HSV1) is a highly prevalent pathogen in humans, and the most frequent cause of viral sporadic encephalitis called herpes simplex encephalitis (HSE). HSV1 can infect peripheral neurons and reach the central nervous system (CNS) of humans, where it can be detected by brain resident cells and infiltrating immune cells, leading to protective and damaging immune responses. In this study, we investigated the effects of microglia depletion, the main brain-resident immune cell type. For this purpose, we used a mouse model of HSE. We found that viral levels increased, and disease symptoms worsened in microglia-depleted mice. In addition, mice lacking a major sensor of viral DNA, cGAS, manifested a more pronounced disease than wild-type mice, highlighting the importance of this immune sensor in the activity of microglia. Microglia depletion led to reduced production of many known antiviral factors, most notably type I interferon (IFN). The importance of microglia in the early control of HSV1 spread and the generation of antiviral responses is further demonstrated by experiments on murine mixed glial cell cultures. Interestingly, mice with microglia depletion exhibited an unaltered activation of antiviral responses and recruitment of immune cells from the periphery at later time points of infection, but this did not prevent the development of the disease. Overall, the data highlight the importance of rapid activation of the host defense, with microglia playing a critical role in controlling HSV1 infection, which eventually prevents damage to neurons and brain tissue.


Assuntos
Encefalite por Herpes Simples , Herpesvirus Humano 1 , Imunidade , Interferon Tipo I , Microglia , Internalização do Vírus , Animais , Encéfalo/imunologia , Encéfalo/virologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/fisiopatologia , Herpesvirus Humano 1/metabolismo , Imunidade/imunologia , Inflamação/patologia , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/virologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
12.
J Virol ; 96(4): e0196921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935438

RESUMO

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Viroses do Sistema Nervoso Central/imunologia , Microglia/imunologia , SARS-CoV-2/fisiologia , Replicação Viral/imunologia , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Viroses do Sistema Nervoso Central/genética , Viroses do Sistema Nervoso Central/virologia , Quimiocinas/genética , Quimiocinas/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Microglia/virologia , Neurônios/imunologia , Neurônios/virologia , Replicação Viral/genética
13.
mBio ; 12(6): e0278421, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903055

RESUMO

HIV infection persists in different tissue reservoirs among people with HIV (PWH) despite effective antiretroviral therapy (ART). In the brain, lentiviruses replicate principally in microglia and trafficking macrophages. The impact of ART on this viral reservoir is unknown. We investigated the activity of contemporary ART in various models of lentivirus brain infection. HIV-1 RNA and total and integrated DNA were detected in cerebral cortex from all PWH (n = 15), regardless of ART duration or concurrent plasma viral quantity and, interestingly, integrated proviral DNA levels in brain were significantly higher in the aviremic ART-treated group (P < 0.005). Most ART drugs tested (dolutegravir, ritonavir, raltegravir, and emtricitabine) displayed significantly lower 50% effective concentration (EC50) values in lymphocytes than in microglia, except tenofovir, which showed 1.5-fold greater activity in microglia (P < 0.05). In SIV-infected Chinese rhesus macaques, despite receiving suppressive (n = 7) or interrupted (n = 8) ART, brain tissues had similar SIV-encoded RNA and total and integrated DNA levels compared to brains from infected animals without ART (n = 3). SIV and HIV-1 capsid antigens were immunodetected in brain, principally in microglia/macrophages, regardless of ART duration and outcome. Antiviral immune responses were comparable in the brains of ART-treated and untreated HIV- and SIV-infected hosts. Both HIV-1 and SIV persist in brain tissues despite contemporary ART, with undetectable virus in blood. ART interruption exerted minimal effect on the SIV brain reservoir and did not alter the neuroimmune response profile. These studies underscore the importance of augmenting ART potency in different tissue compartments. IMPORTANCE Antiretroviral therapy (ART) suppresses HIV-1 in plasma and CSF to undetectable levels. However, the impact of contemporary ART on HIV-1 brain reservoirs remains uncertain. An active viral reservoir in the brain during ART could lead to rebound systemic infection after cessation of therapy, development of drug resistance mutations, and neurological disease. ART's impact, including its interruption, on brain proviral DNA remains unclear. The present studies show that in different experimental platforms, contemporary ART did not suppress viral burden in the brain, regardless of ART component regimen, the duration of therapy, and its interruption. Thus, new strategies for effective HIV-1 suppression in the brain are imperative to achieve sustained HIV suppression.


Assuntos
Fármacos Anti-HIV/farmacologia , Encéfalo/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Animais , Encéfalo/imunologia , Modelos Animais de Doenças , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Macaca mulatta , Macrófagos/imunologia , Macrófagos/virologia , Microglia/virologia , Mutação/efeitos dos fármacos , Provírus/efeitos dos fármacos , Provírus/genética , Provírus/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Latência Viral/efeitos dos fármacos
14.
Viruses ; 13(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34960633

RESUMO

The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.


Assuntos
Encefalite Viral/imunologia , Herpes Simples/imunologia , Imunidade Inata , Inflamação , Vírus da Raiva/imunologia , Raiva/imunologia , Simplexvirus/imunologia , Animais , Astrócitos/imunologia , Astrócitos/virologia , Barreira Hematoencefálica/virologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Encefalite Viral/virologia , Herpes Simples/virologia , Humanos , Microglia/imunologia , Microglia/virologia , Neuroglia/imunologia , Neuroglia/virologia , Raiva/virologia , Transdução de Sinais
15.
Int J Biol Macromol ; 193(Pt B): 2290-2296, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798192

RESUMO

Zika virus (ZIKV) is a positive-single strand RNA virus that belongs to the Flaviviridae family. ZIKV infection causes congenital ZIKV syndrome (CZS) in children and Guillain Barre Syndrome (GBS) in adults. ZIKV infected cells secrete non-structural protein 1 (sNS1), which plays an important role in viral replication and immune evasion. The microglial cells are the brain resident macrophages that mediate the immune responses in CNS. The miRNAs are small non-coding RNAs that regulate the expression of their target genes by binding to the 3'UTR region. The present study highlights the bystander effect of ZIKV-NS1 via miR-146a. The Real-Time PCR, Immunoblotting, overexpression, knockdown studies, and reactive oxygen species measurement have been done to study the immunomodulatory effects of ZIKV-NS1 in human microglial cells. ZIKV-NS1 induced the expression of miR-146a and suppressed the ROS activity in human microglial cells. The up-regulated miR-146a led to the decreased expression of TRAF6 and STAT-1. The reduced expression of TRAF6 in turn led to the suppression of pNF-κBp65 and TNF-α downstream. The miR-146a suppressed the pro-inflammatory and cellular antiviral responses in microglial cells. Our findings demonstrate the bystander role of ZIKV-NS1 in suppressing the pro-inflammatory and cellular antiviral responses through miR-146a in human microglial cells.


Assuntos
Imunidade Inata/imunologia , MicroRNAs/imunologia , Microglia/imunologia , Proteínas não Estruturais Virais/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Regiões 3' não Traduzidas/imunologia , Células Cultivadas , Citocinas/imunologia , Humanos , Microglia/virologia , RNA Mensageiro/imunologia , Transdução de Sinais/imunologia , Fator 6 Associado a Receptor de TNF/imunologia , Regulação para Cima/imunologia , Replicação Viral/imunologia , Infecção por Zika virus/virologia
16.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830340

RESUMO

Herpes simplex virus 1 (HSV-1) infects the majority of the human population and can induce encephalitis, which is the most common cause of sporadic, fatal encephalitis. An increase of microglia is detected in the brains of encephalitis patients. The issues regarding whether and how microglia protect the host and neurons from HSV-1 infection remain elusive. Using a murine infection model, we showed that HSV-1 infection on corneas increased the number of microglia to outnumber those of infiltrating leukocytes (macrophages, neutrophils, and T cells) and enhanced microglia activation in brains. HSV-1 antigens were detected in brain neurons, which were surrounded by microglia. Microglia depletion increased HSV-1 lethality of mice with elevated brain levels of viral loads, infected neurons, neuron loss, CD4 T cells, CD8 T cells, neutrophils, interferon (IFN)-ß, and IFN-γ. In vitro studies demonstrated that microglia from infected mice reduced virus infectivity. Moreover, microglia induced IFN-ß and the signaling pathway of signal transducer and activator of transcription (STAT) 1 to inhibit viral replication and damage of neurons. Our study reveals how microglia protect the host and neurons from HSV-1 infection.


Assuntos
Encéfalo/virologia , Córnea/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Microglia/virologia , Animais , Encéfalo/patologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Contagem de Células , Córnea/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Herpes Simples/metabolismo , Herpes Simples/mortalidade , Herpes Simples/patologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Neurônios/patologia , Neurônios/virologia , Neutrófilos/patologia , Neutrófilos/virologia , Compostos Orgânicos/toxicidade , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Análise de Sobrevida , Carga Viral
17.
J Neuroimmunol ; 361: 577728, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619427

RESUMO

We herein report, by using confocal immunofluorescence, the colocalization of the SARS-CoV-2 nucleocapsid within neurons, astrocytes, oligodendrocytes and microglia in three deceased COVID-19 cases, of between 78 and 85 years of age at death. The viral nucleocapsid was detected together with its ACE2 cell entry receptor, as well as the NLRP3 inflammasome in cerebral cortical tissues. It is noteworthy that NLRP3 was colocalized with CD68 + macrophages in the brain and lung of the deceased, suggesting the critical role of this type of inflammasome in SARS-CoV-2 lesions of the nervous system/lungs and supporting its potential role as a therapeutic target.


Assuntos
Encéfalo/virologia , COVID-19/virologia , Inflamassomos/imunologia , Microglia/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , SARS-CoV-2/patogenicidade , Idoso , Idoso de 80 Anos ou mais , Astrócitos/virologia , Autopsia , Encéfalo/imunologia , Encéfalo/patologia , COVID-19/imunologia , COVID-19/patologia , Feminino , Humanos , Masculino , Microglia/imunologia , Neurônios/virologia , Nucleocapsídeo , Oligodendroglia/virologia
18.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686593

RESUMO

Many viruses directly engage and require the dynein-dynactin motor-adaptor complex in order to transport along microtubules (MTs) to the nucleus and initiate infection. HIV type 1 (HIV-1) exploits dynein, the dynein adaptor BICD2, and core dynactin subunits but unlike several other viruses, does not require dynactin-1 (DCTN1). The underlying reason for HIV-1's variant dynein engagement strategy and independence from DCTN1 remains unknown. Here, we reveal that DCTN1 actually inhibits early HIV-1 infection by interfering with the ability of viral cores to interact with critical host cofactors. Specifically, DCTN1 competes for binding to HIV-1 particles with cytoplasmic linker protein 170 (CLIP170), one of several MT plus-end tracking proteins (+TIPs) that regulate the stability of viral cores after entry into the cell. Outside of its function as a dynactin subunit, DCTN1 also functions as a +TIP that we find sequesters CLIP170 from incoming particles. Deletion of the Zinc knuckle (Zn) domain in CLIP170 that mediates its interactions with several proteins, including DCTN1, increased CLIP170 binding to virus particles but failed to promote infection, further suggesting that DCTN1 blocks a critical proviral function of CLIP170 mediated by its Zn domain. Our findings suggest that the unique manner in which HIV-1 binds and exploits +TIPs to regulate particle stability leaves them vulnerable to the negative effects of DCTN1 on +TIP availability and function, which may in turn have driven HIV-1 to evolve away from DCTN1 in favor of BICD2-based engagement of dynein during early infection.


Assuntos
Complexo Dinactina/fisiologia , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Neoplasias/fisiologia , Ligação Competitiva , Linhagem Celular , Complexo Dinactina/antagonistas & inibidores , Complexo Dinactina/genética , Técnicas de Silenciamento de Genes , Células HEK293 , HIV-1/patogenicidade , Células HeLa , Humanos , Células Jurkat , Microglia/virologia , Proteínas Associadas aos Microtúbulos/química , Modelos Biológicos , Proteínas de Neoplasias/química , Domínios Proteicos , RNA Interferente Pequeno/genética
19.
Viruses ; 13(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696494

RESUMO

Viral encephalitis is a rare but serious syndrome. In addition to DNA-encoded herpes viruses, such as herpes simplex virus and varicella zoster virus, RNA-encoded viruses from the families of Flaviviridae, Rhabdoviridae and Paramyxoviridae are important neurotropic viruses. Whereas in the periphery, the role of Toll-like receptors (TLR) during immune stimulation is well understood, TLR functions within the CNS are less clear. On one hand, TLRs can affect the physiology of neurons during neuronal progenitor cell differentiation and neurite outgrowth, whereas under conditions of infection, the complex interplay between TLR stimulated neurons, astrocytes and microglia is just on the verge of being understood. In this review, we summarize the current knowledge about which TLRs are expressed by cell subsets of the CNS. Furthermore, we specifically highlight functional implications of TLR stimulation in neurons, astrocytes and microglia. After briefly illuminating some examples of viral evasion strategies from TLR signaling, we report on the current knowledge of primary immunodeficiencies in TLR signaling and their consequences for viral encephalitis. Finally, we provide an outlook with examples of TLR agonist mediated intervention strategies and potentiation of vaccine responses against neurotropic virus infections.


Assuntos
Encefalite Viral/imunologia , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Animais , Astrócitos/virologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Herpes Simples/imunologia , Interações entre Hospedeiro e Microrganismos , Humanos , Imunidade Inata , Microglia/virologia , Neurônios , Transdução de Sinais , Simplexvirus
20.
Mediators Inflamm ; 2021: 1267041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483726

RESUMO

HIV-1 can incite activation of chemokine receptors, inflammatory mediators, and glutamate receptor-mediated excitotoxicity. The mechanisms associated with such immune activation can disrupt neuronal and glial functions. HIV-associated neurocognitive disorder (HAND) is being observed since the beginning of the AIDS epidemic due to a change in the functional integrity of cells from the central nervous system (CNS). Even with the presence of antiretroviral therapy, there is a decline in the functioning of the brain especially movement skills, noticeable swings in mood, and routine performance activities. Under the umbrella of HAND, various symptomatic and asymptomatic conditions are categorized and are on a rise despite the use of newer antiretroviral agents. Due to the use of long-lasting antiretroviral agents, this deadly disease is becoming a manageable chronic condition with the occurrence of asymptomatic neurocognitive impairment (ANI), symptomatic mild neurocognitive disorder, or HIV-associated dementia. In-depth research in the pathogenesis of HIV has focused on various mechanisms involved in neuronal dysfunction and associated toxicities ultimately showcasing the involvement of various pathways. Increasing evidence-based studies have emphasized a need to focus and explore the specific pathways in inflammation-associated neurodegenerative disorders. In the current review, we have highlighted the association of various HIV proteins and neuronal cells with their involvement in various pathways responsible for the development of neurotoxicity.


Assuntos
Complexo AIDS Demência/imunologia , Complexo AIDS Demência/virologia , Sistema Nervoso Central/virologia , HIV-1/metabolismo , Proteínas Virais/metabolismo , Complexo AIDS Demência/fisiopatologia , Antirretrovirais/uso terapêutico , Astrócitos/virologia , Sistema Nervoso Central/fisiopatologia , Genoma , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Inflamação , Cinurenina/metabolismo , Macrófagos/virologia , Microglia/virologia , Neurônios/virologia , Oligodendroglia/virologia , Receptores de N-Metil-D-Aspartato/metabolismo , Carga Viral , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Viroporinas/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...