Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(8)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190011

RESUMO

Leishmaniasis is a parasitic disease caused by different species of Leishmania and transmitted through the bite of sand flies vector. Macrophages (MΦ), the target cells of Leishmania parasites, are phagocytes that play a crucial role in the innate immune microbial defense and are antigen-presenting cells driving the activation of the acquired immune response. Exploring parasite-host communication may be key in restraining parasite dissemination in the host. Extracellular vesicles (EVs) constitute a group of heterogenous cell-derived membranous structures, naturally produced by all cells and with immunomodulatory potential over target cells. This study examined the immunogenic potential of EVs shed by L. shawi and L. guyanensis in MΦ activation by analyzing the dynamics of major histocompatibility complex (MHC), innate immune receptors, and cytokine generation. L. shawi and L. guyanensis EVs were incorporated by MΦ and modulated innate immune receptors, indicating that EVs cargo can be recognized by MΦ sensors. Moreover, EVs induced MΦ to generate a mix of pro- and anti-inflammatory cytokines and favored the expression of MHCI molecules, suggesting that EVs antigens can be present to T cells, activating the acquired immune response of the host. Since nano-sized vesicles can be used as vehicles of immune mediators or immunomodulatory drugs, parasitic EVs can be exploited by bioengineering approaches for the development of efficient prophylactic or therapeutic tools for leishmaniasis.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Interações Hospedeiro-Patógeno , Imunomodulação , Leishmania guyanensis , Leishmania , Ativação de Macrófagos , Macrófagos , Leishmania guyanensis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Leishmania/imunologia , Animais , Camundongos , Linhagem Celular , Macrófagos/imunologia , Macrófagos/parasitologia , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/parasitologia , Exossomos/imunologia , Exossomos/parasitologia , Peptídeo Hidrolases/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Citocinas/metabolismo , Imunidade Inata
2.
Malar J ; 17(1): 192, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29747626

RESUMO

BACKGROUND: Cerebral malaria (CM) is a fatal complication of Plasmodium infection, mostly affecting children under the age of five in the sub-Saharan African region. CM pathogenesis remains incompletely understood, although sequestered infected red blood cells, inflammatory cells aggregating in the cerebral blood vessels, and the microvesicles (MV) that they release in the circulation, have been implicated. Plasma MV numbers increase in CM patients and in the murine model, where blocking their release, genetically or pharmacologically, protects against brain pathology, suggesting a role of MV in CM neuropathogenesis. In this work, the microRNA (miRNA) cargo of MV is defined for the first time during experimental CM with the overarching hypothesis that this characterization could help understand CM pathogenesis. RESULTS: The change in abundance of miRNA was studied following infection of CBA mice with Plasmodium berghei ANKA strain (causing experimental CM), and Plasmodium yoelii, which causes severe malaria without cerebral complications, termed non-CM (NCM). miRNA expression was analyzed using microarrays to compare MV from healthy (NI) and CM mice, yielding several miRNA of interest. The differential expression profiles of these selected miRNA (miR-146a, miR-150, miR-193b, miR-205, miR-215, miR-467a, and miR-486) were analyzed in mouse MV, MV-free plasma, and brain tissue by quantitative reverse transcription PCR (RT-qPCR). Two miRNA-miR-146a and miR-193b-were confirmed as differentially abundant in MV from CM mice, compared with NCM and NI mice. These miRNA have been shown to play various roles in inflammation, and their dysregulation during CM may be critical for triggering the neurological syndrome via regulation of their potential downstream targets. CONCLUSIONS: These data suggest that, in the mouse model at least, miRNA may have a regulatory role in the pathogenesis of severe malaria.


Assuntos
Encéfalo/parasitologia , Micropartículas Derivadas de Células/parasitologia , Malária Cerebral/patologia , Malária Cerebral/fisiopatologia , Plasmodium berghei/fisiologia , Plasmodium yoelii/fisiologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Malária/patologia , Malária/fisiopatologia , Camundongos , Camundongos Endogâmicos CBA , MicroRNAs/metabolismo
3.
Cell Microbiol ; 19(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27665486

RESUMO

Extracellular vesicles released from pathogens may alter host cell functions. We previously demonstrated the involvement of host cell-derived microvesicles (MVs) during early interaction between Trypanosoma cruzi metacyclic trypomastigote (META) stage and THP-1 cells. Here, we aim to understand the contribution of different parasite stages and their extracellular vesicles in the interaction with host cells. First, we observed that infective host cell-derived trypomastigote (tissue culture-derived trypomastigote [TCT]), META, and noninfective epimastigote (EPI) stages were able to induce different levels of MV release from THP-1 cells; however, only META and TCT could increase host cell invasion. Fluorescence resonance energy transfer microscopy revealed that THP-1-derived MVs can fuse with parasite-derived MVs. Furthermore, MVs derived from the TCT-THP-1 interaction showed a higher fusogenic capacity than those from META- or EPI-THP-1 interaction. However, a higher presence of proteins from META (25%) than TCT (12%) or EPI (5%) was observed in MVs from parasite-THP-1 interaction, as determined by proteomics. Finally, sera from patients with chronic Chagas disease at the indeterminate or cardiac phase differentially recognized antigens in THP-1-derived MVs resulting only from interaction with infective stages. The understanding of intracellular trafficking and the effect of MVs modulating the immune system may provide important clues about Chagas disease pathophysiology.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Doença de Chagas/parasitologia , Monócitos/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Antígenos de Protozoários/imunologia , Micropartículas Derivadas de Células/parasitologia , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Chlorocebus aethiops , Interações Hospedeiro-Parasita , Humanos , Fusão de Membrana , Camundongos Endogâmicos BALB C , Monócitos/metabolismo , Proteoma/metabolismo , Células Vero
4.
J Infect Dis ; 203(5): 700-6, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21282195

RESUMO

In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with disease severity. Using flow cytometry, we quantified red blood cell-derived microparticles (RMPs) in patients with malaria and identified the source and the factors associated with production. RMP concentrations were increased in patients with Plasmodium falciparum (n = 29; median, 457 RMPs/µL [range, 13-4,342 RMPs/µL]), Plasmodium vivax (n = 5; median, 409 RMPs/µL [range, 281-503/µL]), and Plasmodium malariae (n = 2; median, 163 RMPs/µL [range, 127-200 RMPs/µL]) compared with those in healthy subjects (n = 11; median, 8 RMPs/µL [range, 3-166 RMPs/µL]; P = .01). RMP concentrations were highest in patients with severe falciparum malaria (P = .01). Parasitized red cells produced >10 times more RMPs than did unparasitized cells, but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP production increased as the parasites matured. Hemin and parasite products induced RMP production in URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for the generation of RMPs.


Assuntos
Micropartículas Derivadas de Células/parasitologia , Malária/sangue , Malária/parasitologia , Antimaláricos/farmacologia , Estudos de Casos e Controles , Micropartículas Derivadas de Células/efeitos dos fármacos , Humanos , Malária/diagnóstico , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Plasmodium/isolamento & purificação , Tailândia
5.
PLoS Pathog ; 6(1): e1000744, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20126448

RESUMO

There is considerable debate as to the nature of the primary parasite-derived moieties that activate innate pro-inflammatory responses during malaria infection. Microparticles (MPs), which are produced by numerous cell types following vesiculation of the cellular membrane as a consequence of cell death or immune-activation, exert strong pro-inflammatory activity in other disease states. Here we demonstrate that MPs, derived from the plasma of malaria infected mice, but not naive mice, induce potent activation of macrophages in vitro as measured by CD40 up-regulation and TNF production. In vitro, these MPs induced significantly higher levels of macrophage activation than intact infected red blood cells. Immunofluorescence staining revealed that MPs contained significant amounts of parasite material indicating that they are derived primarily from infected red blood cells rather than platelets or endothelial cells. MP driven macrophage activation was completely abolished in the absence of MyD88 and TLR-4 signalling. Similar levels of immunogenic MPs were produced in WT and in TNF(-/-), IFN-gamma(-/-), IL-12(-/-) and RAG-1(-/-) malaria-infected mice, but were not produced in mice injected with LPS, showing that inflammation is not required for the production of MPs during malaria infection. This study therefore establishes parasitized red blood cell-derived MPs as a major inducer of systemic inflammation during malaria infection, raising important questions about their role in severe disease and in the generation of adaptive immune responses.


Assuntos
Micropartículas Derivadas de Células/imunologia , Eritrócitos/parasitologia , Inflamação/imunologia , Ativação de Macrófagos/imunologia , Malária/imunologia , Animais , Antígenos CD40/imunologia , Separação Celular , Micropartículas Derivadas de Células/parasitologia , Micropartículas Derivadas de Células/ultraestrutura , Ensaio de Imunoadsorção Enzimática , Eritrócitos/imunologia , Feminino , Citometria de Fluxo , Imunofluorescência , Interações Hospedeiro-Parasita/imunologia , Inflamação/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Varredura , Plasmodium berghei/imunologia , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...