Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2326: 339-359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34097281

RESUMO

In response to apparent damaging effects of plastics, especially microplastics, exposure to life, scientists have begun the arduous task of standardizing methods for the sample collection, separation, detection, and identification of microplastic particles. The ability to detect plastics depends upon the type of sample, procedure, instrument, expertise of the examiner, and the exact research question. The wide variability of sample processing and analyses does not lend itself well for cross-comparison of studies. However, with a multitude of procedures, techniques may be used in combination to successfully identify microplastic particles. Our goal in this chapter is not to provide a complete guide on plastic analyses, but to present an overview of the different sample collection, pretreatment, detection, and identification methodologies used for microplastic samples located in environmental and biological samples and to review advantages and limitations of each strategy.


Assuntos
Monitoramento Ambiental/métodos , Microplásticos/isolamento & purificação , Animais , Dissecação/métodos , Exposição Ambiental/análise , Humanos , Microplásticos/análise , Microscopia/métodos , Manejo de Espécimes/métodos
2.
Chemosphere ; 261: 128179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113649

RESUMO

Understanding how wastewater treatment plants (WWTPs) process microplastics (MPs) will help informing management practices to reduce MP emissions to the environment. We show that composite 24 h samples taken at three replications from the outflow of the grit chamber, primary settling tank and clarifier of the WWTP of Sari City, on the southern coast of the Caspian Sea, contained 12667 ± 668, 3514 ± 543 and 423 ± 44.9 MP/m3, respectively. Fibers accounted for 94.9%, 89.9% and 77.5% of the total number of MPs, respectively. The MP removal efficiency was 96.7%. MP shape (fiber, particle), size and structure were the most important factors determining their removal in different steps of the wastewater treatment process. The structure of microfibers (polyester, acrylic and nylon) and the consequent higher density than water explained their high removal (72.3%) in the primary settling tank. However, size was more important in microparticle removal with particles ≥500 µm being removed in the primary settling tank and <500 µm in the clarifier unit. The smallest particles (37-300 µm) showed the lowest removal efficiency. The predominant types of fibers and particles were polyester and polyethylene, respectively, which are likely to originate from the washing of synthetic textiles and from microbeads in toothpaste and cosmetics. Despite the efficiency of the Sari WWTP in removing MPs, it remains a major emission source of MPs to the Caspian Sea due to its high daily discharge load.


Assuntos
Microplásticos/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Mar Cáspio , Cidades , Irã (Geográfico) , Microplásticos/química , Nylons/química , Nylons/isolamento & purificação , Poliésteres/química , Poliésteres/isolamento & purificação , Polietileno/química , Polietileno/isolamento & purificação , Têxteis , Águas Residuárias/química , Poluentes Químicos da Água/química
3.
Appl Spectrosc ; 74(9): 1049-1065, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32893667

RESUMO

Researchers have been identifying microplastics in environmental samples dating back to the 1970s. Today, microplastics are a recognized environmental pollutant attracting a large amount of public and government attention, and in the last few years the number of scientific publications has grown exponentially. An underlying theme within this research field is to achieve a consensus for adopting a set of appropriate procedures to accurately identify and quantify microplastics within diverse matrices. These methods should then be harmonized to produce quantifiable data that is reproducible and comparable around the world. In addition, clear and concise guidelines for standard analytical protocols should be made available to researchers. In keeping with the theme of this special issue, the goals of this focal point review are to provide researchers with an overview of approaches to isolate and extract microplastics from different matrices, highlight associated methodological constraints and the necessary steps for conducting procedural controls and quality assurance. Simple samples, including water and sediments with low organic content, can be filtered and sieved. Stepwise procedures require density separation or digestion before filtration. Finally, complex matrices require more extensive steps with both digestion and density adjustments to assist plastic isolation. Implementing appropriate methods with a harmonized approach from sample collection to data analysis will allow comparisons across the research community.


Assuntos
Sedimentos Geológicos/química , Microplásticos , Poluentes Químicos da Água , Poluição Química da Água/análise , Qualidade da Água , Água/química , Filtração/métodos , Microplásticos/análise , Microplásticos/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação
4.
Appl Spectrosc ; 74(9): 1099-1125, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32643389

RESUMO

Plastic pollution is a defining environmental contaminant and is considered to be one of the greatest environmental threats of the Anthropocene, with its presence documented across aquatic and terrestrial ecosystems. The majority of this plastic debris falls into the micro (1 µm-5 mm) or nano (1-1000 nm) size range and comes from primary and secondary sources. Its small size makes it cumbersome to isolate and analyze reproducibly, and its ubiquitous distribution creates numerous challenges when controlling for background contamination across matrices (e.g., sediment, tissue, water, air). Although research on microplastics represents a relatively nascent subfield, burgeoning interest in questions surrounding the fate and effects of these debris items creates a pressing need for harmonized sampling protocols and quality control approaches. For results across laboratories to be reproducible and comparable, it is imperative that guidelines based on vetted protocols be readily available to research groups, many of which are either new to plastics research or, as with any new subfield, have arrived at current approaches through a process of trial-and-error rather than in consultation with the greater scientific community. The goals of this manuscript are to (i) outline the steps necessary to conduct general as well as matrix-specific quality assurance and quality control based on sample type and associated constraints, (ii) briefly review current findings across matrices, and (iii) provide guidance for the design of sampling regimes. Specific attention is paid to the source of microplastic pollution as well as the pathway by which contamination occurs, with details provided regarding each step in the process from generating appropriate questions to sampling design and collection.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais , Microplásticos , Controle de Qualidade , Manejo de Espécimes/métodos , Poluentes Ambientais/análise , Poluentes Ambientais/isolamento & purificação , Guias como Assunto , Microplásticos/análise , Microplásticos/isolamento & purificação
5.
PLoS One ; 15(5): e0228896, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32365121

RESUMO

Microplastics are an environmental contaminant of growing concern, but there is a lack of information about microplastic distribution, persistence, availability, and biological uptake in freshwater systems. This is especially true for large river systems like the Colorado River that spans multiple states through mostly rural and agricultural land use. This study characterized the quantity and morphology of microplastics in different environmental compartments in two large reservoirs along the Colorado River: Lakes Mead and Mohave, within Lake Mead National Recreation Area. To assess microplastic occurrence, surface water and surficial sediment were sampled at a total of nine locations. Sampling locations targeted different sub-basins with varying levels of anthropogenic impact. Las Vegas Wash, a tributary which delivers treated wastewater to Lake Mead, was also sampled. A sediment core (33 cm long, representing approximately 19 years) was extracted from Las Vegas Bay to assess changes in microplastic deposition over time. Striped bass (Morone saxatilis), common carp (Cyprinus carpio), quagga mussels (Dreissena bugensis), and Asian clams (Corbicula fluminea) were sampled at a subset of locations to assess biological uptake of microplastics. Microplastic concentrations were 0.44-9.7 particles/cubic meter at the water surface and 87.5-1,010 particles/kilogram dry weight (kg dw) at the sediment surface. Sediment core concentrations were 220-2,040 particles/kg dw, with no clear increasing or decreasing trend over time. Shellfish microplastic concentrations ranged from 2.7-105 particles/organism, and fish concentrations ranged from 0-19 particles/organism. Fibers were the most abundant particle type found in all sample types. Although sample numbers are small, microplastic concentrations appear to be higher in areas of greater anthropogenic impact. Results from this study improve our understanding of the occurrence and biological uptake of microplastics in Lake Mead National Recreation Area, and help fill existing knowledge gaps on microplastics in freshwater environments in the southwestern U.S.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Microplásticos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Animais , Água Doce/química , Humanos , Lagos/química , Microplásticos/toxicidade , Águas Residuárias/química , Poluentes Químicos da Água/química
6.
PLoS One ; 15(2): e0228209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32012181

RESUMO

Degraded plastic debris has been found in nearly all waters within and nearby urban developments as well as in the open oceans. Natural removal of suspended microplastics (MPs) by deposition is often limited by their excess buoyancy relative to water, but this can change with the attachment of biological matter. The extent to which the attached biological ballast affects MP dynamics is still not well characterised. Here, we experimentally demonstrate using a novel OMCEC (Optical Measurement of CEll colonisation) system that the biological fraction of MP aggregates has substantial control over their size, shape and, most importantly, their settling velocity. Polyurethane MP aggregates made of 80% biological ballast had an average size almost twice of those containing 5% biological ballast, and sank about two times slower. Based on our experiments, we introduce a settling velocity equation that accounts for different biological content as well as the irregular fractal structure of MP aggregates. This equation can capture the settling velocity of both virgin MPs and microbial-associated MP aggregates in our experiment with 7% error and can be used as a preliminary tool to estimate the vertical transport of MP aggregates made of different polymers and types of microbial ballast.


Assuntos
Microplásticos/metabolismo , Microbiologia da Água , Água/química , Algoritmos , Biodegradação Ambiental , Microplásticos/química , Microplásticos/isolamento & purificação , Modelos Teóricos
7.
J Hazard Mater ; 384: 121489, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31704116

RESUMO

Concerns have been raised regarding the ingestion of microplastics (MPs) by numerous organisms including humans. However, no efficient and standardized methods are available for extracting MPs from feces. In this study, we introduce a novel approach with high digestion efficiency that involves using Fenton's reagent and nitric acid to remove feces solids. Firstly, Fenton's reagent was used to degrade small solids and decompose large solids into small pieces. Secondly, nitric acid was used to digest the remaining solids and filters. Furthermore, absolute ethyl alcohol was used to remove the mineral residues wrapped on the plastic surfaces and disperse MPs. By using this method, 97.78 % MPs can be recovered from human and chicken feces, and no significant changes were observed in the physical and Raman spectral properties of different polymer types of MPs. This method has also been verified by extracting MPs from field feces. Overall, the proposed method can efficiently digest feces solids and extract MPs with higher recovery rate, less intermediate steps and less damage, which can serve as an economical and feasible method for the detection of MPs in the feces of different species.


Assuntos
Fezes , Microplásticos/isolamento & purificação , Animais , Galinhas , Humanos , Peixe-Zebra
8.
Sci Rep ; 9(1): 14191, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578393

RESUMO

There is growing evidence that microplastic pollution (<5 mm in size) is now present in virtually all marine ecosystems, even in remote areas, such as the Arctic and the Antarctic. Microplastics have been found in water and sediments of the Antarctic but little is known of their ingestion by higher predators and mechanisms of their entry into Antarctic marine food webs. The goal of this study was to assess the occurrence of microplastics in a top predator, the gentoo penguin Pygoscelis papua from the Antarctic region (Bird Island, South Georgia and Signy Island, South Orkney Islands) and hence assess the potential for microplastic transfer through Antarctic marine food webs. To achieve this, the presence of microplastics in scats (as a proof of ingestion) was investigated to assess the viability of a non-invasive approach for microplastic analyses in Antarctic penguins. A total of 80 penguin scats were collected and any microplastics they contained were extracted. A total of 20% of penguin scats from both islands contained microplastics, consisting mainly of fibers and fragments with different sizes and polymer composition (mean abundance of microplastics: 0.23 ± 0.53 items individual-1 scat, comprising seven different polymers), which were lower values than those found for seabirds in other regions worldwide. No significant differences in microplastic numbers in penguin scats between the two regions were detected. These data highlight the need for further assessment of the levels of microplastics in this sensitive region of the planet, specifically studies on temporal trends and potential effects on penguins and other organisms in the Antarctic marine food web.


Assuntos
Ecossistema , Microplásticos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Animais , Regiões Antárticas , Monitoramento Ambiental , Humanos , Microplásticos/toxicidade , Spheniscidae , Poluentes Químicos da Água/toxicidade
9.
Mar Pollut Bull ; 149: 110579, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31551196

RESUMO

Microplastics in wastewater treatment plant (WWTP) effluent have been identified and quantified, but few studies have examined the microplastics in advanced treatment systems. A new method for isolating, quantifying, and determining the polymer type of microplastics was developed that included chemical digestion coupled with Raman microspectroscopy to investigate microplastics in the effluent of reverse osmosis nanofiltration and activated carbon filtration systems. This method allows for the removal of organics and the quantification and identification of all microplastics present in the sample. A large number of microplastics, the majority of which were smaller than 10 µm, were identified in the effluent of the advanced filtration systems with polyethylene the most common polymer identified. This study not only reports a new method for microplastic identification and quantification but also shows the importance of measuring the smallest fraction of microplastics, those smaller than 20 µm, which have previously been understudied.


Assuntos
Microplásticos/análise , Análise Espectral Raman/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Carvão Vegetal , Monitoramento Ambiental/métodos , Filtração/métodos , Limite de Detecção , Microplásticos/química , Microplásticos/isolamento & purificação , Polietileno/análise , Polietileno/química , Polietileno/isolamento & purificação , Virginia , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
10.
Acc Chem Res ; 52(4): 858-866, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30925038

RESUMO

The vast amount of plastic waste emitted into the environment and the increasing concern of potential harm to wildlife has made microplastic and nanoplastic pollution a growing environmental concern. Plastic pollution has the potential to cause both physical and chemical harm to wildlife directly or via sorption, concentration, and transfer of other environmental contaminants to the wildlife that ingest plastic. Small particles of plastic pollution, termed microplastics (>100 nm and <5 mm) or nanoplastics (<100 nm), can form through fragmentation of larger pieces of plastic. These small particles are especially concerning because of their high specific surface area for sorption of contaminants as well as their potential to translocate in the bodies of organisms. These same small particles are challenging to separate and identify in environmental samples because their size makes handling and observation difficult. As a result, our understanding of the environmental prevalence of nanoplastics and microplastics is limited. Generally, the smaller the size of the plastic particle, the more difficult it is to separate from environmental samples. Currently employed passive density and size separation techniques to isolate plastics from environmental samples are not well suited to separate microplastics and nanoplastics. Passive flotation is hindered by the low buoyancy of small particles as well as the difficulty of handling small particles on the surface of flotation media. Here we suggest exploring alternative techniques borrowed from other fields of research to improve separation of the smallest plastic particles. These techniques include adapting active density separation (centrifugation) from cell biology and taking advantage of surface-interaction-based separations from analytical chemistry. Furthermore, plastic pollution is often challenging to quantify in complex matrices such as biological tissues and wastewater. Biological and wastewater samples are important matrices that represent key points in the fate and sources of plastic pollution, respectively. In both kinds of samples, protocols need to be optimized to increase throughput, reduce contamination potential, and avoid destruction of plastics during sample processing. To this end, we recommend adapting digestion protocols to match the expected composition of the nonplastic material as well as taking measures to reduce and account for contamination. Once separated, plastics in an environmental sample should ideally be characterized both visually and chemically. With existing techniques, microplastics and nanoplastics are difficult to characterize or even detect. Their low mass and small size provide limited signal for visual, vibrational spectroscopic, and mass spectrometric analyses. Each of these techniques involves trade-offs in throughput, spatial resolution, and sensitivity. To accurately identify and completely quantify microplastics and nanoplastics in environmental samples, multiple analytical techniques applied in tandem are likely to be required.


Assuntos
Nanoestruturas/química , Plásticos/análise , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Campos Magnéticos , Espectrometria de Massas , Microplásticos/análise , Microplásticos/isolamento & purificação , Microplásticos/metabolismo , Tamanho da Partícula , Plásticos/isolamento & purificação , Plásticos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...