Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
PLoS Negl Trop Dis ; 17(12): e0011806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064503

RESUMO

Microsporidia are fungal obligate intracellular pathogens, which infect most animals and cause microsporidiosis. Despite the serious threat that microsporidia pose to humans and agricultural animals, few drugs are available for the treatment and control of microsporidia. To identify novel inhibitors, we took advantage of the model organism Caenorhabditis elegans infected with its natural microsporidian Nematocida parisii. We used this system to screen the Pandemic Response Box, a collection of 400 diverse compounds with known antimicrobial activity. After testing these compounds in a 96-well format at high (100 µM) and low (40 µM) concentrations, we identified four inhibitors that restored the ability of C. elegans to produce progeny in the presence of N. parisii. All four compounds reduced the pathogen load of both N. parisii and Pancytospora epiphaga, a C. elegans-infecting microsporidia related to human-infecting species. One of these compounds, a known inhibitor of a viral protease, MMV1006203, inhibited invasion and prevented the firing of spores. A bis-indole derivative, MMV1593539, decreased spore viability. An albendazole analog, MMV1782387, inhibited proliferation of N. parisii. We tested albendazole as well as 5 other analogs and observed that MMV1782387 was amongst the strongest inhibitors of N. parisii and displayed the least host toxicity. Our study further demonstrates the effectiveness of the C. elegans-N. parisii system for discovering microsporidia inhibitors and the compounds we identified provide potential scaffolds for anti-microsporidia drug development.


Assuntos
Microsporídios , Microsporidiose , Animais , Humanos , Caenorhabditis elegans , Albendazol/farmacologia , Pandemias , Microsporídios/fisiologia
2.
Comp Med ; 73(5): 335-345, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-38087410

RESUMO

Pseudoloma neurophilia ( Pn ), the causative agent of the most commonly reported disease of zebrafish, is a microsporidian parasite that confounds research by inducing behavioral and physiologic changes in zebrafish. Although a treatment for P. neurophilia has not been documented in zebrafish, albendazole (ALB) and fumagillin (FUM) have been used to treat microsporidian infections of other fish species. To investigate the efficacy of oral ALB and FUM in the treatment of Pn, we performed a pilot study that demonstrated the safety and palatability of novel gel-based diets containing FUM or ALB in adult AB zebrafish. In a subsequent study, approximately 250 adult AB zebrafish (previously infected with Pn ) were treated with these medicated diets for 4 wk. At 4 different time points (weeks 0, 5, 10, and 16 of the study), fish were euthanized and whole-body qPCR was performed to assess Pn prevalence across treatment and control groups. There was no statistically significant association between treatment group and Pn prevalence at any time point, although potential biologically relevant reductions in Pn prevalence occurred in the combination therapy group at weeks 5 and 16 and in the ALB group at week 5. Based on high-performance liquid chromatography analyses, the medicated diets contained less ALB and more FUM than expected, highlighting the importance of validating medicated feed concentrations to ensure safety, efficacy, and consistency. While Pn remains challenging to eradicate and control, results of this study warrant further investigation into the utility of ALB and FUM as potential treatments for this pathogen.


Assuntos
Microsporídios , Peixe-Zebra , Animais , Albendazol/uso terapêutico , Projetos Piloto , Microsporídios/fisiologia
3.
Arch Insect Biochem Physiol ; 114(4): e22055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37786392

RESUMO

Paranosema locustae is an entomopathogenic microsporidia with promising potential for controlling agricultural pests, including Locusta migratoria manilensis. However, it has the disadvantage of having a slow insecticidal rate, and how P. locustae infection impacts the host immune response is currently unknown. The present study investigated the effect of P. locustae on the natural immune response of L. migratoria and the activities of enzymes that protect against oxidative stress. Infection with P. locustae increased the hemocytes and nodulation number of L. migratoria at the initial stage of infection. The hemocyte-mediated modulation of immune response was also affected by a decrease in the number of hemocytes 12 days postinfection. Superoxide dismutase activity in locusts increased in the early stages of infection but decreased in the later stages, whereas the activities of peroxidase (POD) and catalase (CAT) showed opposite trends may be due to their different mechanisms of action. Furthermore, the transcription levels of mRNA of antimicrobial peptide-related genes and phenoloxidase activity in hemolymph in L. migratoria were suppressed within 15 days of P. locustae infection. Overall, our data suggest that P. locustae create a conducive environment for its own proliferation in the host by disrupting the immune defense against it. These findings provide useful information for the potential application of P. locustae as a biocontrol agent.


Assuntos
Locusta migratoria , Microsporídios , Animais , Locusta migratoria/genética , Microsporídios/fisiologia , Peroxidase
4.
Int J Parasitol ; 53(5-6): 305-316, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004736

RESUMO

Dispersal of alien species is a global problem threatening native biodiversity. Co-introduction of non-native parasites and pathogens adds to the severity of this threat, but this indirect impact has received less attention. To shed light on the key factors determining the richness of microorganisms in native and invasive host species, we compared symbiotic (parasitic and epibiotic) communities of gammarids across different habitats and localities along the Baltic coast of Poland. Seven gammarid species, two native and five invasive, were sampled from 16 freshwater and brackish localities. Sixty symbiotic species of microorganisms of nine phyla were identified. This taxonomically diverse species assemblage of symbionts allowed us to assess the effect of host translocation and regional ecological determinants driving assembly richness in the gammarid hosts. Our results revealed that (i) the current assemblages of symbionts of gammarid hosts in the Baltic region are formed by native and co-introduced species; (ii) species richness of the symbiotic community was higher in the native Gammarus pulex than in the invasive hosts, probably reflecting a process of species loss by invasive gammarids in the new area and the distinct habitat conditions occupied by G. pulex and invasive hosts; (iii) both host species and locality were key drivers shaping assembly composition of symbionts, whereas habitat condition (freshwater versus brackish) was a stronger determinant of communities than geographic distance; (iv) the dispersion patterns of the individual species richness of symbiotic communities were best described by Poisson distributions; in the case of an invasive host, the dispersion of the rich species diversity may switch to a right-skewed negative binomial distribution, suggesting a host-mediated regulation process. We believe this is the first analysis of the symbiotic species richness in native and invasive gammarid hosts in European waters based on original field data and a broad range of taxonomic groups including Microsporidia, Choanozoa, Ciliophora, Apicomplexa, Platyhelminthes, Nematoda, Nematomorha, Acanthocephala and Rotifera, to document the patterns of species composition and distribution.


Assuntos
Anfípodes , Microsporídios , Parasitos , Platelmintos , Animais , Anfípodes/parasitologia , Microsporídios/fisiologia , Ecossistema , Espécies Introduzidas , Interações Hospedeiro-Parasita , Crustáceos
5.
Microb Ecol ; 85(4): 1630-1633, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35552794

RESUMO

Microsporidia are a large group of obligate intracellular eukaryotic parasites. Recent studies suggest that their diversity can be huge in freshwater lake ecosystems especially in the < 150-µm size fraction. However, little is known about their hosts and therefore their impact on the trophic food web functioning. In this study, single cell analysis and fluorescence microscopy were used to detect new host-parasite association within rotifer communities in lake Aydat (France). Our analysis showed the existence of a potential new species belonging to the Crispospora genus able of infecting the rotifer Kellicottia with a high prevalence (42.5%) suggesting that Microsporidia could have a great impact on the rotifer populations' regulation in lakes.


Assuntos
Microsporídios , Microsporídios/fisiologia , Lagos/parasitologia , Ecossistema , Cadeia Alimentar , Análise de Célula Única
6.
J Invertebr Pathol ; 195: 107848, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36343669

RESUMO

The squash bee Eucera (Peponapis) pruinosa is emerging as a model species to study how stressors impact solitary wild bees in North America. Here, we describe the prevalence of trypanosomes, microsporidians and mollicute bacteria in E. pruinosa and two other species, Bombus impatiens and Apis mellifera, that together comprise over 97% of the pollinator visitors of Cucurbita agroecosystems in Pennsylvania (United States). Our results indicate that all three parasite groups are commonly detected in these bee species, but E. pruinosa often exhibit higher prevalences. We further describe novel trypanosome parasites detected in E. pruinosa, however it is unknown how these parasites impact these bees. We suggest future work investigates parasite replication and infection outcomes.


Assuntos
Abelhas , Parasitos , Animais , Abelhas/microbiologia , Abelhas/parasitologia , Cucurbita , New England , Polinização , Prevalência , Estados Unidos , Trypanosoma/fisiologia , Microsporídios/fisiologia , Tenericutes/fisiologia
7.
Parasit Vectors ; 15(1): 26, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033159

RESUMO

BACKGROUND: Microsporidia is a large group of eukaryotic obligate intracellular spore-forming parasites, of which 17 species can cause microsporidiosis in humans. Most human-infecting microsporidians belong to the genera Enterocytozoon and Encephalitozoon. To date, only five microsporidian species, including Encephalitozoon-like, have been found in hard ticks (Ixodidae) using microscopic methods, but no sequence data are available for them. Furthermore, no widespread screening for microsporidian-infected ticks based on DNA analysis has been carried out to date. Thus, in this study, we applied a recently developed DNA metabarcoding method for efficient microsporidian DNA identification to assess the role of ticks as potential vectors of microsporidian species causing diseases in humans. METHODS: In total, 1070 (493 juvenile and 577 adult) unfed host-seeking Ixodes ricinus ticks collected at urban parks in the city of Poznan, Poland, and 94 engorged tick females fed on dogs and cats were screened for microsporidian DNA. Microsporidians were detected by PCR amplification and sequencing of the hypervariable V5 region of 18S rRNA gene (18S profiling) using the microsporidian-specific primer set. Tick species were identified morphologically and confirmed by amplification and sequencing of the shortened fragment of cytochrome c oxidase subunit I gene (mini-COI). RESULTS: All collected ticks were unambiguously assigned to I. ricinus. Potentially zoonotic Encephalitozoon intestinalis was identified in three fed ticks (3.2%) collected from three different dogs. In eight unfed host-seeking ticks (0.8%), including three males (1.1%), two females (0.7%) and three nymphs (0.7%), the new microsporidian sequence representing a species belonging to the genus Endoreticulatus was identified. CONCLUSIONS: The lack of zoonotic microsporidians in host-seeking ticks suggests that I. ricinus is not involved in transmission of human-infecting microsporidians. Moreover, a very low occurrence of the other microsporidian species in both fed and host-seeking ticks implies that mechanisms exist to defend ticks against infection with these parasites.


Assuntos
Vetores Aracnídeos/microbiologia , Ixodes/microbiologia , Microsporídios/fisiologia , Animais , Sequência de Bases , Doenças do Gato/parasitologia , Gatos , Código de Barras de DNA Taxonômico , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , DNA Ribossômico/química , Doenças do Cão/parasitologia , Cães , Complexo IV da Cadeia de Transporte de Elétrons/química , Feminino , Masculino , Microsporídios/classificação , Parques Recreativos , Filogenia , Polônia , Prevalência , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária
8.
Elife ; 112022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34994689

RESUMO

Microsporidia are ubiquitous obligate intracellular pathogens of animals. These parasites often infect hosts through an oral route, but little is known about the function of host intestinal proteins that facilitate microsporidia invasion. To identify such factors necessary for infection by Nematocida parisii, a natural microsporidian pathogen of Caenorhabditis elegans, we performed a forward genetic screen to identify mutant animals that have a Fitness Advantage with Nematocida (Fawn). We isolated four fawn mutants that are resistant to Nematocida infection and contain mutations in T14E8.4, which we renamed aaim-1 (Antibacterial and Aids invasion by Microsporidia). Expression of AAIM-1 in the intestine of aaim-1 animals restores N. parisii infectivity and this rescue of infectivity is dependent upon AAIM-1 secretion. N. parisii spores in aaim-1 animals are improperly oriented in the intestinal lumen, leading to reduced levels of parasite invasion. Conversely, aaim-1 mutants display both increased colonization and susceptibility to the bacterial pathogen Pseudomonas aeruginosa and overexpression ofaaim-1 reduces P. aeruginosa colonization. Competitive fitness assays show that aaim-1 mutants are favored in the presence of N. parisii but disadvantaged on P. aeruginosa compared to wild-type animals. Together, this work demonstrates how microsporidia exploits a secreted protein to promote host invasion. Our results also suggest evolutionary trade-offs may exist to optimizing host defense against multiple classes of pathogens.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/parasitologia , Interações Hospedeiro-Patógeno , Microsporídios/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Intestinos/fisiologia
9.
PLoS Negl Trop Dis ; 15(12): e0009942, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928947

RESUMO

BACKGROUND: Secondary symbionts of insects include a range of bacteria and fungi that perform various functional roles on their hosts, such as fitness, tolerance to heat stress, susceptibility to insecticides and effects on reproduction. These endosymbionts could have the potential to shape microbial communites and high potential to develop strategies for mosquito-borne disease control. METHODOLOGY/PRINCIPAL FINDINGS: The relative frequency and molecular phylogeny of Wolbachia, Microsporidia and Cardinium were determined of phlebotomine sand flies and mosquitoes in two regions from Colombia. Illumina Miseq using the 16S rRNA gene as a biomarker was conducted to examine the microbiota. Different percentages of natural infection by Wolbachia, Cardinium, and Microsporidia in phlebotomines and mosquitoes were detected. Phylogenetic analysis of Wolbachia shows putative new strains of Lutzomyia gomezi (wLgom), Brumptomyia hamata (wBrham), and a putative new group associated with Culex nigripalpus (Cnig) from the Andean region, located in Supergroup A and Supergroup B, respectively. The sequences of Microsporidia were obtained of Pi. pia and Cx. nigripalpus, which are located on phylogeny in the IV clade (terrestrial origin). The Cardinium of Tr. triramula and Ps. shannoni were located in group C next to Culicoides sequences while Cardinium of Mi. cayennensis formed two putative new subgroups of Cardinium in group A. In total were obtained 550 bacterial amplicon sequence variants (ASVs) and 189 taxa to the genus level. The microbiota profiles of Sand flies and mosquitoes showed mainly at the phylum level to Proteobacteria (67.6%), Firmicutes (17.9%) and Actinobacteria (7.4%). High percentages of relative abundance for Wolbachia (30%-83%) in Lu. gomezi, Ev. dubitans, Mi. micropyga, Br. hamata, and Cx. nigripalpus were found. ASVs assigned as Microsporidia were found in greater abundance in Pi. pia (23%) and Cx. nigripalpus (11%). An important finding is the detection of Rickettsia in Pi. pia (58,8%) and Bartonella sp. in Cx. nigripalpus. CONCLUSIONS/SIGNIFICANCE: We found that Wolbachia infection significantly decreased the alpha diversity and negatively impacts the number of taxa on sand flies and Culex nigripalpus. The Principal Coordinate Analysis (PCoA) is consistent, which showed statistically significant differences (PERMANOVA, F = 2.4744; R2 = 0.18363; p-value = 0.007) between the microbiota of sand flies and mosquitoes depending on its origin, host and possibly for the abundance of some endosymbionts (Wolbachia, Rickettsia).


Assuntos
Bacteroidetes/isolamento & purificação , Culex/microbiologia , Microbiota , Microsporídios/isolamento & purificação , Filogenia , Psychodidae/microbiologia , Wolbachia/isolamento & purificação , Animais , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/fisiologia , Biodiversidade , Colômbia , Culex/fisiologia , Microsporídios/classificação , Microsporídios/genética , Microsporídios/fisiologia , Psychodidae/fisiologia , Simbiose , Wolbachia/classificação , Wolbachia/genética , Wolbachia/fisiologia
10.
Parasitology ; 148(9): 1099-1106, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34024289

RESUMO

Biological interactions can greatly influence the abundance of species. This is also true for parasitic species that share the same host. Microsporidia and Rickettsia are widespread intracellular parasites in populations of Paracalliope fluviatilis, the most common freshwater amphipods in New Zealand. Although both parasites coexist in many populations, it is unclear whether they interact with each other. Here, we investigated spatial−temporal dynamics and co-occurrence of the two parasites, Microsporidia and Rickettsia in P. fluviatilis hosts, across one annual cycle and in three different locations. Prevalence of both Microsporidia and Rickettsia changed over time. However, while the prevalence of Rickettsia varied significantly between sampling times, that of Microsporidia did not change significantly and remained relatively low. The two parasites therefore followed different temporal patterns. Also, the prevalence of both parasites differed among locations, though the two species reached their highest prevalence in different locations. Lastly, there was no evidence for positive or negative associations between the two parasite species; the presence of one parasite in an individual host does not appear to influence the probability of infection by the other parasite. Their respective prevalence may follow different patterns among populations on a larger spatial scale due to environmental heterogeneity across locations.


Assuntos
Anfípodes/parasitologia , Interações Hospedeiro-Parasita , Microsporídios/isolamento & purificação , Rickettsia/isolamento & purificação , Animais , Microsporídios/fisiologia , Nova Zelândia , Rickettsia/fisiologia , Análise Espaço-Temporal
12.
Parasitology ; 148(7): 779-786, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33843504

RESUMO

Metchnikovellids are a deep-branching group of microsporidia, parasites of gregarines inhabiting the alimentary tract of polychaetes and some other invertebrates. The diversity and phylogeny of these hyperparasites remain poorly studied. Modern descriptions and molecular data are still lacking for many species. The results of a light microscopy study and molecular data for Metchnikovella spiralis Sokolova et al., 2014, a hyperparasite of the eugregarine Polyrhabdina sp., isolated from the polychaete Pygospio elegans, were obtained. The original description of M. spiralis was based primarily on the analysis of stained preparations and transmission electron microscopy images. Here, the species description was complemented with the results of in vivo observations and phylogenetic analysis based on the SSU rRNA gene. It was shown that in this species, free sporogony precedes sac-bound sporogony, as it occurs in the life cycle of most other metchnikovellids. Spore sacs are entwined with spirally wound cords, and possess only one polar plug. Phylogenetic analyses did not group M. spiralis with M. incurvata, another metchnikovellid from the same gregarine species, but placed it as a sister branch to Amphiacantha. The paraphyletic nature of the genus Metchnikovella was discussed. The taxonomic summary for M. spiralis was emended.


Assuntos
Apicomplexa/parasitologia , Interações Hospedeiro-Parasita , Microsporídios/classificação , Microsporídios/citologia , Poliquetos/parasitologia , Animais , Microsporídios/genética , Microsporídios/fisiologia , Filogenia , RNA de Protozoário/análise , RNA Ribossômico/análise
13.
Cell Mol Life Sci ; 78(9): 4305-4333, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33630111

RESUMO

Innate immunity is an evolutionary ancient defence strategy that serves to eliminate infectious agents while maintaining host health. It involves a complex network of sensors, signaling proteins and immune effectors that detect the danger, then relay and execute the immune programme. Post-translational modifications relying on conserved ubiquitin and ubiquitin-like proteins are an integral part of the system. Studies using invertebrate models of infection, such as the nematode Caenorhabditis elegans, have greatly contributed to our understanding of how ubiquitin-related processes act in immune sensing, regulate immune signaling pathways, and participate to host defence responses. This review highlights the interest of working with a genetically tractable model organism and illustrates how C. elegans has been used to identify ubiquitin-dependent immune mechanisms, discover novel ubiquitin-based resistance strategies that mediate pathogen clearance, and unravel the role of ubiquitin-related processes in tolerance, preserving host fitness during pathogen attack. Special emphasis is placed on processes that are conserved in mammals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Imunidade Inata , Ubiquitina/metabolismo , Animais , Caenorhabditis elegans/imunologia , Interações Hospedeiro-Patógeno , Microsporídios/fisiologia , Proteostase , Proteína SUMO-1/metabolismo , Transdução de Sinais/genética
14.
Insect Sci ; 28(2): 347-354, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32167220

RESUMO

Even though Paranosema locustae is widely used in China as a biological agent for controlling grasshoppers, the mortality rate is initially quite low. This study sought to determine whether the simultaneous use of P. locustae and Beauveria bassiana would be a more effective control strategy. Additionally, changes in the intestinal microbial communities of migratory locusts infected with the two pathogens were analyzed to investigate the roles of gut microbes in pathogen-host interactions. The mortality rate of locusts inoculated with B. bassiana and P. locustae simultaneously was not significantly higher than expected, but the mortality rates of locusts inoculated with B. bassiana 3, 6, and 9 days after inoculation with P. locustae were significantly higher than if their effects were additive, indicating synergism. A MiSeq analysis found that Weissella was the most common bacterium, representing 41.48% and 51.62% of the total bacteria in the mid- and hindguts, respectively, and the bacterial declines were greatest during dual infections with B. bassiana and P. locustae. The appropriately timed combined application of P. locustae and B. bassiana was more effective against locusts than either treatment alone. Moreover, the combined inoculation of the two pathogens changed the gut microflora of locusts, indicating the potential relevancy of their synergistic effects on locust control.


Assuntos
Beauveria/fisiologia , Microbioma Gastrointestinal , Locusta migratoria/microbiologia , Locusta migratoria/parasitologia , Microsporídios/fisiologia , Animais , China , Interações Hospedeiro-Patógeno , Locusta migratoria/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Ninfa/parasitologia
15.
J Invertebr Pathol ; 177: 107504, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33217422

RESUMO

En masse inoculations with Paranosema locustae, an intracellular parasite of adipose tissue of grasshoppers and locusts and the only microsporidium registered as a biocontrol agent, were conducted against crowded fourth-instar nymphs of the South American locust Schistocerca cancellata and the grasshoppers Dichroplus schulzi and Ronderosia bergii. Infection did not develop in the locust, but was highly prevalent in the two grasshopper species. We hypothesize that absolute absence of infection in S. cancellata may constitute a case of density-dependent prophylactic resistance, an elevation of the baseline immunity of an organism in order to cope with disease that is prevalent in species exhibiting phase polyphenism.


Assuntos
Agentes de Controle Biológico/farmacologia , Gafanhotos/microbiologia , Microsporídios/fisiologia , Controle Biológico de Vetores , Animais , Gafanhotos/crescimento & desenvolvimento , Controle de Insetos , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia
16.
Cell Microbiol ; 22(11): e13247, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32748538

RESUMO

Microsporidia are a large group of fungal-related obligate intracellular parasites. They are responsible for infections in humans as well as in agriculturally and environmentally important animals. Although microsporidia are abundant in nature, many of the molecular mechanisms employed during infection have remained enigmatic. In this review, we highlight recent work showing how microsporidia invade, proliferate and exit from host cells. During invasion, microsporidia use spore wall and polar tube proteins to interact with host receptors and adhere to the host cell surface. In turn, the host has multiple defence mechanisms to prevent and eliminate these infections. Microsporidia encode numerous transporters and steal host nutrients to facilitate proliferation within host cells. They also encode many secreted proteins which may modulate host metabolism and inhibit host cell defence mechanisms. Spores exit the host in a non-lytic manner that is dependent on host actin and endocytic recycling proteins. Together, this work provides a fuller picture of the mechanisms that these fascinating organisms use to infect their hosts.


Assuntos
Interações Hospedeiro-Patógeno , Microsporídios/fisiologia , Microsporídios/patogenicidade , Microsporidiose/microbiologia , Imunidade Adaptativa , Animais , Proliferação de Células , Proteínas Fúngicas/metabolismo , Humanos , Imunidade Inata , Microsporídios/metabolismo , Microsporidiose/imunologia , Esporos Fúngicos/fisiologia , Estresse Fisiológico
17.
J Invertebr Pathol ; 175: 107455, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32827556

RESUMO

The Japanese beetle (Popillia japonica) is one of the most destructive invasive pests in North America, causing significant economic impact to many fruit crops, turfgrass and the nursery industry. A microsporidian pathogen of Japanese beetle, Ovavesicula popilliae, discovered in 1985, proliferates in the Malpighian tubules of larvae and adults, disrupting waste-removal, mineral filtering, and fluid balance in heavily infected individuals. Most infected larvae do not survive from fall to spring, and egg production by infected females is reduced by 50%. Ovavesicula popilliae is promising as a classical biological control agent for Japanese beetle, but outside of surveys completed in Connecticut and Michigan little is known about its geographic distribution in North America. The objective of this research is to obtain a better understanding of the distribution of O. popilliae in North America. Japanese beetles were collected at 59 locations in a total of 19 different states in the USA for pathogen analysis. Overall, the proportion of Japanese beetle adults infected by O. popilliae was much greater in Michigan, Ohio, Tennessee and four states in the northeastern USA compared with sites located west of the Mississippi River (18.6 ± 13.3% and 0.6 ± 1.2%, respectively). Nucleotide sequences of the gene encoding a small subunit of nuclear ribosomal RNA (ssrDNA), obtained from GenBank for O. popilliae was used to develop a highly specific qPCR test for O. popilliae DNA. A subsample of 110 individual Japanese beetles were visually diagnosed first, then analyzed via qPCR. Visual diagnosis and qPCR detection agreed for 80.9% of the beetles tested. The qPCR assay is more sensitive than visual diagnosis (56 visually positive, 73 qPCR positive), is highly specific for O. popilliae, and will be useful for detecting the pathogen in large batches of beetles, or in beetle frass.


Assuntos
Besouros/microbiologia , Controle de Insetos , Microsporídios/fisiologia , Controle Biológico de Vetores , Animais
18.
J Invertebr Pathol ; 174: 107434, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32561402

RESUMO

Japanese beetle, Popillia japonica Newman, is an important invasive pest that causes significant damage to golf courses, blueberries, raspberries, hops and many other crops and ornamentals in the eastern United States. This study was conducted to determine the survival of Ovavesicula popilliae-infected larvae compared with uninfected larvae from October to May. Larvae were collected from two sites, one where O. popilliae was active and one where it had not yet been detected. Larvae were placed into plastic sleeve-pots containing 15 cm-diameter cores of turfgrass with roots and soil intact. Larvae collected from both locations were put into sleeve-pots at both locations to account for soil and site factors. Results of this experiment in both years confirm that Japanese beetle larvae infected with O. popilliae do not survive well from October to May. We estimate that at an epizootic location where the pathogen has been active for several years, at least 76.5% of the Japanese beetle larvae infected in October do not survive until May. When the observed amount of population reduction (27-29%) due to natural pathogen infection of larvae in our field plots is combined with a 50% reduction in eggs produced by infected females as previously reported, annual population declines due to O. popilliae would average 40% (assuming a typical adult female infection rate of 25%). This rate of population reduction is consistent with previous reports of Japanese beetle population decline over a period of several years at O. popilliae epizootic sites.


Assuntos
Besouros/fisiologia , Besouros/parasitologia , Microsporídios/fisiologia , Controle Biológico de Vetores , Animais , Besouros/crescimento & desenvolvimento , Controle de Insetos , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/fisiologia , Michigan
19.
J Fish Dis ; 43(8): 863-875, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32542843

RESUMO

Laboratory zebrafish are commonly infected with the intracellular, brain-infecting microsporidian parasite Pseudoloma neurophilia. Chronic P. neurophilia infections induce inflammation in meninges, brain and spinal cord, and have been suggested to affect neural functions since parasite clusters reside inside neurons. However, underlying neural and immunological mechanisms associated with infection have not been explored. Utilizing RNA-sequencing analysis, we found that P. neurophilia infection upregulated 175 and downregulated 45 genes in the zebrafish brain, compared to uninfected controls. Four biological pathways were enriched by the parasite, all of which were associated with immune function. In addition, 14 gene ontology (GO) terms were enriched, eight of which were associated with immune responses and five with circadian rhythm. Surprisingly, no differentially expressed genes or enriched pathways were specific for nervous system function. Upregulated immune-related genes indicate that the host generally show a pro-inflammatory immune response to infection. On the other hand, we found a general downregulation of immune response genes associated with anti-pathogen functions, suggesting an immune evasion strategy by the parasite. The results reported here provide important information on host-parasite interaction and highlight possible pathways for complex effects of parasite infections on zebrafish phenotypes.


Assuntos
Encéfalo/metabolismo , Doenças dos Peixes/parasitologia , Microsporídios/fisiologia , Microsporidiose/veterinária , Transcriptoma , Peixe-Zebra , Animais , Encéfalo/parasitologia , Feminino , Interações Hospedeiro-Parasita , Masculino , Microsporidiose/parasitologia
20.
J Eukaryot Microbiol ; 67(5): 583-592, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32498127

RESUMO

On their spore surfaces, Microsporidia often develop a canopy of filaments with characteristics of intermediate filaments (IF), as we demonstrated in previous studies on Thelohania sp., Ameson michaelis, and Spraguea lophii. Genomic studies indicate that among invertebrates, lamins that may localize in the cytoplasm or nucleus, are the only known IF type. These IFs can bind to the substrate containing cell adhesion molecules (CAMs) cadherins, associated with ß and γ catenins. The objects of this study were to determine whether microsporidia have CAMs with the attached IFs on their envelopes and to find out if these proteins are provided by the host. An examination was made for localization of lamins and CAMs on the spores of the mentioned above species and Anncaliia algerae, plus in the host animals. Then, we determined whether the spores of A. michaelis and A. algerae could bind vertebrate nuclear lamin onto the spore surface. We also tested transgenic Drosophila melanogaster stocks bearing cadherin-GFP to see whether developing A. algerae parasites in these hosts could acquire host CAMs. The tests were positive for all these experiments. We hypothesize that microsporidia are able to acquire host lamin IFs and cell adhesion catenin-cadherin complexes from the host.


Assuntos
Adesão Celular/fisiologia , Drosophila melanogaster/parasitologia , Interações Hospedeiro-Parasita , Filamentos Intermediários/química , Laminas/química , Microsporídios/fisiologia , Animais , Caderinas/química , Cateninas/química , Microscopia Eletrônica de Transmissão , Microsporídios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...