Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 742
Filtrar
1.
Cell ; 186(1): 112-130.e20, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36580912

RESUMO

How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.


Assuntos
COVID-19 , Sistema Respiratório , SARS-CoV-2 , Humanos , Cílios/fisiologia , Cílios/virologia , COVID-19/virologia , Sistema Respiratório/citologia , Sistema Respiratório/virologia , SARS-CoV-2/fisiologia , Microvilosidades/fisiologia , Microvilosidades/virologia , Internalização do Vírus , Células Epiteliais/fisiologia , Células Epiteliais/virologia
2.
PLoS Biol ; 19(12): e3001463, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871294

RESUMO

Enterocytes are specialized epithelial cells lining the luminal surface of the small intestine that build densely packed arrays of microvilli known as brush borders. These microvilli drive nutrient absorption and are arranged in a hexagonal pattern maintained by intermicrovillar links formed by 2 nonclassical members of the cadherin superfamily of calcium-dependent cell adhesion proteins: protocadherin-24 (PCDH24, also known as CDHR2) and the mucin-like protocadherin (CDHR5). The extracellular domains of these proteins are involved in heterophilic and homophilic interactions important for intermicrovillar function, yet the structural determinants of these interactions remain unresolved. Here, we present X-ray crystal structures of the PCDH24 and CDHR5 extracellular tips and analyze their species-specific features relevant for adhesive interactions. In parallel, we use binding assays to identify the PCDH24 and CDHR5 domains involved in both heterophilic and homophilic adhesion for human and mouse proteins. Our results suggest that homophilic and heterophilic interactions involving PCDH24 and CDHR5 are species dependent with unique and distinct minimal adhesive units.


Assuntos
Proteínas Relacionadas a Caderinas/ultraestrutura , Microvilosidades/patologia , Animais , Células CACO-2 , Proteínas Relacionadas a Caderinas/metabolismo , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Comunicação Celular , Linhagem Celular , Enterócitos/metabolismo , Enterócitos/fisiologia , Células Epiteliais/metabolismo , Humanos , Intestino Delgado/patologia , Intestino Delgado/fisiologia , Camundongos , Microvilosidades/fisiologia , Especificidade da Espécie
3.
Nutrients ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34579124

RESUMO

This efficacy trial evaluated the effects of two polyphenolic stilbenes, resveratrol and pterostilbene, mostly found in grapes, on the brush border membrane functionality, morphology and gut microbiome. This study applied the validated Gallus gallus intra-amniotic approach to investigate the effects of stilbene administration versus the controls. Three treatment groups (5% resveratrol; 5% pterostilbene; and synergistic: 4.75% resveratrol and 0.25% pterostilbene) and three controls (18 MΩ H2O; no injection; 5% inulin) were employed. We observed beneficial morphological changes, specifically an increase in the villus length, diameter, depth of crypts and goblet cell diameter in the pterostilbene and synergistic groups, with concomitant increases in the serum iron and zinc concentrations. Further, the alterations in gene expression of the mineral metabolism proteins and pro-inflammatory cytokines indicate a potential improvement in gut health and mineral bioavailability. The cecal microbiota was analyzed using 16S rRNA sequencing. A lower α-diversity was observed in the synergistic group compared with the other treatment groups. However, beneficial compositional and functional alterations in the gut microbiome were detected. Several key microbial metabolic pathways were differentially enriched in the pterostilbene treatment group. These observations demonstrate a significant bacterial-host interaction that contributed to enhancements in intestinal functionality, morphology and physiological status. Our data demonstrate a novel understanding of the nutritional benefits of dietary stilbenes and their effects on intestinal functionality, morphology and gut microbiota in vivo.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/embriologia , Resveratrol/administração & dosagem , Estilbenos/administração & dosagem , Vitis/química , Âmnio/efeitos dos fármacos , Animais , Embrião de Galinha/efeitos dos fármacos , Galinhas , Citocinas/genética , Sinergismo Farmacológico , Frutas/química , Expressão Gênica/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/fisiologia , Microvilosidades/fisiologia , Minerais/metabolismo
4.
PLoS Comput Biol ; 16(11): e1008427, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33196643

RESUMO

Phototransduction reactions in the rhabdomeric photoreceptor are profoundly stochastic due to the small number of participating molecules and small reaction space. The resulting quantum bumps (QBs) vary in their timing (latency), amplitudes and durations, and these variabilities within each cell are not correlated. Using modeling and electrophysiological recordings, we investigated how the QB properties depend on the cascade speed and how they influence signal transfer. Parametric analysis in the model supported by experimental data revealed that faster cascades elicit larger and narrower QBs with faster onsets and smaller variabilities than slower cascades. Latency dispersion was stronger affected by modification of upstream than downstream activation parameters. The variability caused by downstream modifications closely matched the experimental variability. Frequency response modeling showed that corner frequency is a reciprocal function of the characteristic duration of the multiphoton response, which, in turn, is a non-linear function of QB duration and latency dispersion. All QB variabilities contributed noise but only latency dispersion slowed and spread multiphoton responses, lowering the corner frequency. Using the discovered QB correlations, we evaluated transduction noise for dissimilar species and two extreme adaptation states, and compared it to photon noise. The noise emitted by the cascade was non-additive and depended non-linearly on the interaction between the QB duration and the three QB variabilities. Increased QB duration strongly suppressed both noise and corner frequency. This trade-off might be acceptable for nocturnal but not diurnal species because corner frequency is the principal determinant of information capacity. To offset the increase in noise accompanying the QB narrowing during light adaptation and the response-expanding effect of latency dispersion, the cascade accelerates. This explains the widespread evolutionary tendency of diurnal fliers to have fast phototransduction, especially after light adaptation, which thus appears to be a common adaptation to contain stochasticity, improve SNR and expand the bandwidth.


Assuntos
Insetos/fisiologia , Transdução de Sinal Luminoso/fisiologia , Modelos Biológicos , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Evolução Biológica , Biologia Computacional , Simulação por Computador , Fenômenos Eletrofisiológicos , Cinética , Microvilosidades/fisiologia , Dinâmica não Linear , Periplaneta/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Teoria Quântica , Razão Sinal-Ruído , Processos Estocásticos
5.
Sci Rep ; 10(1): 11156, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636403

RESUMO

Brush borders of intestinal epithelial cells are mandatory for nutrient uptake. Yet, which actin nucleators are crucial for forming the F-actin bundles supporting microvilli and the actin filaments of the terminal web, in which microvilli are rooted, is unknown. We show that mice lacking the actin nucleator Cobl surprisingly did not display reduced microvilli densities or changes in microvillar F-actin bundles or microvilli diameter but particularly in the duodenum displayed increased microvillar length. Interestingly, Cobl-deficient mice furthermore showed a significant widening of the terminal web. Quantitative analyses of high-resolution cryo-scanning electron microscopy (EM) of deep-etched duodenum samples revealed that Cobl is specifically important for the formation of fine filaments in the central terminal web that connect the apical structure of the terminal web underlying the plasma membrane, the microvilli rootlets and the basal structure of the terminal web with each other. Thus, the actin nucleator Cobl is critically involved in generating one of the cellular structures of the brush border-decorated apical cortex of enterocytes representing the absorptive intestinal surface.


Assuntos
Enterócitos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Actinas/metabolismo , Animais , Western Blotting , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica/métodos , Enterócitos/ultraestrutura , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Varredura/métodos , Microvilosidades/fisiologia , Microvilosidades/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real
6.
Cancer Med ; 9(15): 5535-5545, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32488986

RESUMO

Pancreatic cancer (PC) is a highly lethal tumor with controversial high glucose uptake and hypomicrovascularity, and the hypomicrovasculature, which is considered to have poor perfusion, blocks the delivery of drugs to tumors. The preferential existence of a novel endothelial projection with trafficking vesicles in PCs, referring to basal microvilli, was described previously. However, the perfusion and nutrients delivering status of the basal microvilli microvessels are unknown. Here, we used the perfusion of fluorescently labeled CD31 antibody, lectin, and 2-NBDG to autochthonous PC-bearing mice, immunostaining, probe-based confocal laser endoscopy and three-dimensional (3D) reconstruction to study the nutrient trafficking, and perfusion status of the basal microvilli microvasculature in PC. Our data showed that the coperfusion of lectin and CD31 is an efficient way to show the microcirculation in most healthy organs. However, coperfusion with lectin and CD31 is inefficient for showing the microcirculation in PCs compared with that in healthy organs and immunostaining. This method does not reflect the nutrient trafficking status in the microvessels, especially in basal microvilli microvessels of PCs. In basal microvilli microvessels that were poorly labeled by lectin, we observed large vesicle-like structures with 2-NBDG preferentially located at the base of the basal microvilli or in basal microvilli, and there were long filopodia on the luminal surface of the human PC microvasculature. Our observations suggest that the PC microvasculature, especially basal microvilli microvessels, is well perfused and might be highly efficient in the trafficking of glucose or other nutrients, indicating that macropinocytosis might participate in the nutrient trafficking.


Assuntos
Microvasos/patologia , Microvilosidades/fisiologia , Neoplasias Pancreáticas/fisiopatologia , Animais , Humanos , Masculino , Camundongos
7.
PLoS One ; 15(4): e0231423, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32302323

RESUMO

Recent advances in canine intestinal organoids have expanded the option for building a better in vitro model to investigate translational science of intestinal physiology and pathology between humans and animals. However, the three-dimensional geometry and the enclosed lumen of canine intestinal organoids considerably hinder the access to the apical side of epithelium for investigating the nutrient and drug absorption, host-microbiome crosstalk, and pharmaceutical toxicity testing. Thus, the creation of a polarized epithelial interface accessible from apical or basolateral side is critical. Here, we demonstrated the generation of an intestinal epithelial monolayer using canine biopsy-derived colonic organoids (colonoids). We optimized the culture condition to form an intact monolayer of the canine colonic epithelium on a nanoporous membrane insert using the canine colonoids over 14 days. Transmission and scanning electron microscopy revealed a physiological brush border interface covered by the microvilli with glycocalyx, as well as the presence of mucin granules, tight junctions, and desmosomes. The population of stem cells as well as differentiated lineage-dependent epithelial cells were verified by immunofluorescence staining and RNA in situ hybridization. The polarized expression of P-glycoprotein efflux pump was confirmed at the apical membrane. Also, the epithelial monolayer formed tight- and adherence-junctional barrier within 4 days, where the transepithelial electrical resistance and apparent permeability were inversely correlated. Hence, we verified the stable creation, maintenance, differentiation, and physiological function of a canine intestinal epithelial barrier, which can be useful for pharmaceutical and biomedical researches.


Assuntos
Colo/citologia , Células Epiteliais/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Desmossomos/metabolismo , Cães , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Membranas Artificiais , Microvilosidades/fisiologia , Mucinas/metabolismo , Nanoporos , Células-Tronco/citologia , Células-Tronco/metabolismo , Junções Íntimas/metabolismo
8.
Biomech Model Mechanobiol ; 19(2): 471-479, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31494791

RESUMO

During morphogenesis in development, multicellular tissues deform by mechanical forces induced by spatiotemporally regulated cellular activities, such as cell proliferation and constriction. Various morphologies are formed because of various spatiotemporal combinations and sequences of multicellular activities. Despite its potential to variations, morphogenesis is a surprisingly robust process, in which qualitatively similar morphologies are reproducibly formed even under spatiotemporal fluctuation of multicellular activities. To understand these essential characteristics of tissue morphogenesis, which involves the coexistence of various morphologies and robustness of the morphogenetic process, in this study, we propose a novel approach to capture the overall view of morphogenesis from mechanical viewpoints. This approach will enable visualization of the energy landscape, which includes morphogenetic processes induced by admissible histories of cellular activities. This approach was applied to investigate the morphogenesis of a sheet-like tissue with curvature, where it deformed to a concave or convex morphology depending on the history of growth and constriction. Qualitatively different morphologies were produced by bifurcation of the valley in the energy landscape. The depth and steepness of the valley near the stable states represented the degree of robustness to fluctuations of multicellular activities. Furthermore, as a realistic example, we showed an application of this approach to luminal folding observed in the initial stage of intestinal villus formation. This approach will be helpful to understand the mechanism of how various morphologies are formed and how tissues reproducibly achieve specific morphologies.


Assuntos
Morfogênese , Especificidade de Órgãos , Microvilosidades/fisiologia , Modelos Biológicos , Termodinâmica
9.
Am J Physiol Gastrointest Liver Physiol ; 318(1): G53-G65, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682159

RESUMO

Detection of nutritional and noxious food components in the gut is a crucial component of gastrointestinal function. Contents in the gut lumen interact with enteroendocrine cells dispersed throughout the gut epithelium. Enteroendocrine cells release many different hormones, neuropeptides, and neurotransmitters that communicate either directly or indirectly with the central nervous system and the enteric nervous system, a network of neurons and glia located within the gut wall. Several populations of enteric neurons extend processes that innervate the gastrointestinal lamina propria; however, how these processes develop and begin to transmit information from the mucosa is not fully understood. In this study, we found that Tuj1-immunoreactive neurites begin to project out of the myenteric plexus at embryonic day (E)13.5 in the mouse small intestine, even before the formation of villi. Using live calcium imaging, we discovered that neurites were capable of transmitting electrical information from stimulated villi to the plexus by E15.5. In unpeeled gut preparations where all layers were left intact, we also mimicked the basolateral release of 5-HT from enteroendocrine cells, which triggered responses in myenteric cell bodies at postnatal day (P)0. Altogether, our results show that enteric neurons extend neurites out of the myenteric plexus early during mouse enteric nervous system development, innervating the gastrointestinal mucosa, even before villus formation in mice of either sex. Neurites are already able to conduct electrical information at E15.5, and responses to 5-HT develop postnatally.NEW & NOTEWORTHY How enteric neurons project into the gut mucosa and begin to communicate with the epithelium during development is not known. Our study shows that enteric neurites project into the lamina propria as early as E13.5 in the mouse, before development of the submucous plexus and before formation of intestinal villi. These neurites are capable of transmitting electrical signals back to their cell bodies by E15.5 and respond to serotonin applied to neurite terminals by birth.


Assuntos
Mucosa Intestinal/inervação , Intestino Delgado/inervação , Microvilosidades/fisiologia , Plexo Mientérico/crescimento & desenvolvimento , Neuritos/fisiologia , Neurogênese , Animais , Células Enteroendócrinas/metabolismo , Células Enteroendócrinas/fisiologia , Potenciais Evocados , Feminino , Idade Gestacional , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plexo Mientérico/efeitos dos fármacos , Plexo Mientérico/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Serotonina/farmacologia , Tubulina (Proteína)/metabolismo
10.
Science ; 366(6463): 326-334, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31624206

RESUMO

Collective cell contractions that generate global tissue deformations are a signature feature of animal movement and morphogenesis. However, the origin of collective contractility in animals remains unclear. While surveying the Caribbean island of Curaçao for choanoflagellates, the closest living relatives of animals, we isolated a previously undescribed species (here named Choanoeca flexa sp. nov.) that forms multicellular cup-shaped colonies. The colonies rapidly invert their curvature in response to changing light levels, which they detect through a rhodopsin-cyclic guanosine monophosphate pathway. Inversion requires actomyosin-mediated apical contractility and allows alternation between feeding and swimming behavior. C. flexa thus rapidly converts sensory inputs directly into multicellular contractions. These findings may inform reconstructions of hypothesized animal ancestors that existed before the evolution of specialized sensory and contractile cells.


Assuntos
Coanoflagelados/fisiologia , Luz , Actomiosina/metabolismo , Animais , Evolução Biológica , Coanoflagelados/citologia , GMP Cíclico/metabolismo , Microvilosidades/fisiologia , Movimento , Diester Fosfórico Hidrolases/metabolismo , Proteínas de Protozoários/metabolismo , Rodopsinas Sensoriais/metabolismo
11.
Sci Rep ; 9(1): 13010, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506583

RESUMO

Microvilli are tiny projections on the apical end of enterocytes, aiding in the digestion and absorption of nutrients. One of their key features is uniform length, but how this is regulated is poorly understood. Glucagon-like peptide-2 (GLP-2) has been shown to increase microvillus length but, the requirement of its downstream mediator, the intestinal epithelial insulin-like growth factor-1 receptor (IE-IGF-1R), and the microvillus proteins acted upon by GLP-2, remain unknown. Using IE-IGF-1R knockout (KO) mice, treated with either long-acting human (h) (GLY2)GLP-2 or vehicle for 11d, it was found that the h(GLY2)GLP-2-induced increase in microvillus length required the IE-IGF-1R. Furthermore, IE-IGF-1R KO alone resulted in a significant decrease in microvillus length. Examination of the brush border membrane proteome as well as of whole jejunal mucosa demonstrated that villin was increased with h(GLY2)GLP-2 treatment in an IE-IGF-1R-dependent manner. Under both basal conditions and with h(GLY2)GLP-2 treatment of the IE-IGF-1R KO mice, changes in villin, IRTKS-1, harmonin, ß-actin, and myosin-1a did not explain the decrease in microvillus length, in either the brush border or jejunal mucosa of KO animals. Collectively, these studies define a new role for the IE-IGF-1R within the microvillus, in both the signaling cascade induced by GLP-2, as well as endogenously.


Assuntos
Peptídeo 2 Semelhante ao Glucagon/metabolismo , Mucosa Intestinal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/fisiologia , Receptor IGF Tipo 1/fisiologia , Animais , Feminino , Peptídeo 2 Semelhante ao Glucagon/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética
12.
Sci Total Environ ; 696: 134035, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31470328

RESUMO

Ammonia (NH3), an inhaled harmful gas, is not only an important volatile in fertilizer production and ranching, but also the main basic component of haze. However, the effect and mechanism of NH3 on the intestines are still unclear. To investigate the intestinal toxicity of NH3 inhalation, morphological changes, transcriptome profiles and oxidative stress indicators of jejunum in broiler chicken exposed to NH3 for 42 days were examined. Results of morphological observation showed that NH3 exposure caused deficiency of jejunal microvilli and neutrophil infiltration. Transcriptomics sequencing identified 677 differential expressed genes (DEGs) including 358 up-regulated genes and 319 down-regulated genes. Enrichment analysis of obtained DEGs by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) found that biological functions and pathways affected by NH3 included antioxidant function, inflammation, microtubule and nutrition transport. Relative genes validation and chemical detection confirmed that NH3-induced oxidative stress by activating CYPs and inhibiting antioxidant enzymes promoted inflammatory response and decreased microtubule activity, thus destroying the balance of nutritional transporters. Our study perfects the injurious mechanism of NH3 exposure and provides a new insight and method for environmental risk assessment.


Assuntos
Poluentes Atmosféricos/toxicidade , Amônia/toxicidade , Microtúbulos/fisiologia , Microvilosidades/fisiologia , Estresse Oxidativo/fisiologia , Transcriptoma , Animais , Antioxidantes , Galinhas , Regulação para Baixo , Perfilação da Expressão Gênica , Inflamação , Transdução de Sinais , Regulação para Cima
13.
Development ; 146(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31371377

RESUMO

Drosophila photoreceptors develop from polarized epithelial cells that have apical and basolateral membranes. During morphogenesis, the apical membranes subdivide into a united bundle of photosensory microvilli (rhabdomeres) and a surrounding supporting membrane (stalk). By EMS-induced mutagenesis screening, we found that the F-Bin/Amphiphysin/Rvs (F-BAR) protein syndapin is essential for apical membrane segregation. The analysis of the super-resolution microscopy, STORM and the electron microscopy suggest that syndapin localizes to the neck of the microvilli at the base of the rhabdomere. Syndapin and moesin are required to constrict the neck of the microvilli to organize the membrane architecture at the base of the rhabdomere, to exclude the stalk membrane. Simultaneous loss of syndapin along with the microvilli adhesion molecule chaoptin significantly enhanced the disruption of stalk-rhabdomere segregation. However, loss of the factors involving endocytosis do not interfere. These results indicated syndapin is most likely functioning through its membrane curvature properties, and not through endocytic processes for stalk-rhabdomere segregation. Elucidation of the mechanism of this unconventional domain formation will provide novel insights into the field of cell biology.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Microvilosidades/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Proteínas de Transporte/genética , Drosophila/genética , Drosophila/ultraestrutura , Proteínas de Drosophila/genética , Feminino , Masculino , Proteínas de Membrana/fisiologia , Microvilosidades/ultraestrutura , Morfogênese , Mutação , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/ultraestrutura
14.
J Biomed Sci ; 26(1): 59, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434568

RESUMO

Increasing evidences have shown strong associations between gut microbiota and many human diseases, and understanding the dynamic crosstalks of host-microbe interaction in the gut has become necessary for the detection, prevention, or therapy of diseases. Many reports have showed that diet, nutrient, pharmacologic factors and many other stimuli play dominant roles in the modulation of gut microbial compositions. However, it is inappropriate to neglect the impact of host factors on shaping the gut microbiota. In this review, we highlighted the current findings of the host factors that could modulate the gut microbiota. Particularly the epithelium-associated factors, including the innate immune sensors, anti-microbial peptides, mucus barrier, secretory IgAs, epithelial microvilli, epithelial tight junctions, epithelium metabolism, oxygen barrier, and even the microRNAs are discussed in the context of the microbiota shaping. With these shaping factors, the gut epithelial cells could select the residing microbes and affect the microbial composition. This knowledge not only could provide the opportunities to better control many diseases, but may also be used for predicting the success of fecal microbiota transplantation clinically.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Epitélio/fisiologia , Microbioma Gastrointestinal/fisiologia , Imunidade Inata , Imunoglobulina A Secretora/fisiologia , Muco/fisiologia , Humanos , MicroRNAs/fisiologia , Microvilosidades/fisiologia , Junções Íntimas/fisiologia
15.
Biochim Biophys Acta Biomembr ; 1861(10): 182985, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082355

RESUMO

In small intestine, sodium-glucose cotransporter SGLT1 provides the main mechanism for sugar uptake. We investigated the effect of membrane phospholipids (PL) on this transport in rabbit ileal brush border membrane vesicles (BBMV). For this, PL of different charge, length, and saturation were incorporated into BBMV. Transport was measured related to (i) membrane surface charge (membrane-bound MC540 fluorescence), (ii) membrane thickness (PL incorporation of different acyl chain length), and (iii) membrane fluidity (r12AS, fluorescence anisotropy of 12-AS). Compared to phosphatidylcholine (PC) carrying a neutral head group, inhibition of SGLT1 increased considerably with the acidic phosphatidic acid (PA) and phosphatidylinositol (PI) that increase membrane negative surface charge. The order of PL potency was PI>PA > PE = PS > PC. Inhibition by acidic PA-oleate was 5-times more effective than with neutral PE (phosphatidylethanolamine)-oleate. Lineweaver-Burk plot indicated uncompetitive inhibition of SGLT1 by PA. When membrane thickness was increased by neutral PC of varying acyl chain length, transport was increasingly inhibited by 16:1 PC to 22:1 PC. Even more pronounced inhibition was observed with mono-unsaturated instead of saturated acyl chains which increased membrane fluidity (indicated by decreased r12AS). In conclusion, sodium-dependent glucose transport of rabbit ileal BBMV is modulated by (i) altered membrane surface charge, (ii) length of acyl chains via membrane thickness, and (iii) saturation of PL acyl chains altering membrane fluidity. Transport was attenuated by charged PL with longer and unsaturated acyl residues. Alterations of PL may provide a principle for attenuating dietary glucose uptake.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Transporte Biológico , Ácidos Graxos/metabolismo , Polarização de Fluorescência/métodos , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/fisiologia , Íleo/metabolismo , Intestino Delgado/metabolismo , Masculino , Microvilosidades/metabolismo , Microvilosidades/fisiologia , Ácidos Fosfatídicos/química , Fosfatidilcolinas/química , Fosfatidilinositóis/química , Fosfolipídeos/metabolismo , Fosfolipídeos/fisiologia , Coelhos , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/fisiologia , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/fisiologia
16.
PLoS Biol ; 17(4): e3000235, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31002663

RESUMO

Multiple types of microvilliated sensory cells exhibit an apical extension thought to be instrumental in the detection of sensory cues. The investigation of the mechanisms underlying morphogenesis of sensory apparatus is critical to understand the biology of sensation. Most of what we currently know comes from the study of the hair bundle of the inner ear sensory cells, but morphogenesis and function of other sensory microvilliated apical extensions remain poorly understood. We focused on spinal sensory neurons that contact the cerebrospinal fluid (CSF) through the projection of a microvilliated apical process in the central canal, referred to as cerebrospinal fluid-contacting neurons (CSF-cNs). CSF-cNs respond to pH and osmolarity changes as well as mechanical stimuli associated with changes of flow and tail bending. In vivo time-lapse imaging in zebrafish embryos revealed that CSF-cNs are atypical neurons that do not lose their apical attachment and form a ring of actin at the apical junctional complexes (AJCs) that they retain during differentiation. We show that the actin-based protrusions constituting the microvilliated apical extension arise and elongate from this ring of actin, and we identify candidate molecular factors underlying every step of CSF-cN morphogenesis. We demonstrate that Crumbs 1 (Crb1), Myosin 3b (Myo3b), and Espin orchestrate the morphogenesis of CSF-cN apical extension. Using calcium imaging in crb1 and espin mutants, we further show that the size of the apical extension modulates the amplitude of CSF-cN sensory response to bending of the spinal cord. Based on our results, we propose that the apical actin ring could be a common site of initiation of actin-based protrusions in microvilliated sensory cells. Furthermore, our work provides a set of actors underlying actin-based protrusion elongation shared by different sensory cell types and highlights the critical role of the apical extension shape in sensory detection.


Assuntos
Mecanotransdução Celular/fisiologia , Microvilosidades/fisiologia , Células Receptoras Sensoriais/fisiologia , Actinas/metabolismo , Animais , Diferenciação Celular , Extensões da Superfície Celular/fisiologia , Líquido Cefalorraquidiano/fisiologia , Morfogênese/fisiologia , Neurônios/fisiologia , Medula Espinal/metabolismo , Peixe-Zebra/metabolismo
17.
Nutrients ; 11(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717222

RESUMO

Cholesterol homeostasis is maintained through a balance of de novo synthesis, intestinal absorption, and excretion from the gut. The small intestine contributes to cholesterol homeostasis by absorbing and excreting it, the latter of which is referred to as trans-intestinal cholesterol efflux (TICE). Because the excretion efficiency of endogenous cholesterol is inversely associated with the development of atherosclerosis, TICE provides an attractive therapeutic target. Thus, elucidation of the mechanism is warranted. We have shown that intestinal cholesterol absorption and TICE are inversely correlated in intestinal perfusion experiments in mice. In this review, we summarized 28 paired data sets for absorption efficiency and fecal neutral sterol excretion, a surrogate marker of TICE, obtained from 13 available publications in a figure, demonstrating the inverse correlation were nearly consistent with the assumption. We then offer a bidirectional flux model that accommodates absorption and TICE occurring in the same segment. In this model, the brush border membrane (BBM) of intestinal epithelial cells stands as the dividing ridge for cholesterol fluxes, making the opposite fluxes competitive and being coordinated by shared BBM-localized transporters, ATP-binding cassette G5/G8 and Niemann-Pick C1-like 1. Furthermore, the idea is applied to address how excess plant sterol/stanol (PS) intake reduces circulating cholesterol level, because the mechanism is still unclear. We propose that unabsorbable PS repeatedly shuttles between the BBM and lumen and promotes concomitant cholesterol efflux. Additionally, PSs, which are chemically analogous to cholesterol, may disturb the trafficking machineries that transport cholesterol to the cell interior.


Assuntos
Colesterol , Absorção Intestinal , Modelos Biológicos , Fitosteróis , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Colesterol/sangue , Colesterol/metabolismo , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Camundongos , Microvilosidades/efeitos dos fármacos , Microvilosidades/fisiologia , Fitosteróis/metabolismo , Fitosteróis/farmacologia
18.
Mol Biol Cell ; 30(1): 108-118, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403560

RESUMO

Transporting epithelial cells optimize their morphology for solute uptake by building an apical specialization: a dense array of microvilli that serves to increase membrane surface area. In the intestinal tract, individual cells build thousands of microvilli, which pack tightly to form the brush border. Recent studies implicate adhesion molecule CDHR2 in the regulation of microvillar packing via the formation of adhesion complexes between the tips of adjacent protrusions. To gain insight on how CDHR2 contributes to brush border morphogenesis and enterocyte function under native in vivo conditions, we generated mice lacking CDHR2 expression in the intestinal tract. Although CDHR2 knockout (KO) mice are viable, body weight trends lower and careful examination of tissue, cell, and brush border morphology revealed several perturbations that likely contribute to reduced functional capacity of KO intestine. In the absence of CDHR2, microvilli are significantly shorter, and exhibit disordered packing and a 30% decrease in packing density. These structural perturbations are linked to decreased levels of key solute processing and transporting factors in the brush border. Thus, CDHR2 functions to elongate microvilli and maximize their numbers on the apical surface, which together serve to increase the functional capacity of enterocyte.


Assuntos
Caderinas/metabolismo , Microvilosidades/fisiologia , Animais , Biomarcadores/metabolismo , Peso Corporal , Caderinas/genética , Caderinas/fisiologia , Enterócitos/citologia , Enterócitos/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Camundongos Knockout , Microvilosidades/ultraestrutura
19.
Nat Commun ; 9(1): 3630, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194420

RESUMO

Microvilli on T cells have been proposed to survey surfaces of antigen-presenting cells (APC) or facilitate adhesion under flow; however, whether they serve essential functions during T cell activation remains unclear. Here we show that antigen-specific T cells deposit membrane particles derived from microvilli onto the surface of cognate antigen-bearing APCs. Microvilli carry T cell receptors (TCR) at all stages of T cell activation and are released as large TCR-enriched, T cell microvilli particles (TMP) in a process of trogocytosis. These microvilli exclusively contain protein arrestin-domain-containing protein 1, which is directly involved in membrane budding and, in combination with vacuolar protein-sorting-associated protein 4, transforms large TMPs into smaller, exosome-sized TMPs. Notably, TMPs from CD4+ T cells are enriched with LFA-2/CD2 and various cytokines involved in activating dendritic cells. Collectively, these results demonstrate that T cell microvilli constitute "immunological synaptosomes" that carry T cell messages to APCs.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Microvilosidades/fisiologia , Animais , Células Apresentadoras de Antígenos , Linfócitos T CD4-Positivos/ultraestrutura , Micropartículas Derivadas de Células/fisiologia , Células Dendríticas/fisiologia , Células HEK293 , Humanos , Células Jurkat , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Sinaptossomos
20.
Int J Parasitol Drugs Drug Resist ; 8(2): 341-349, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29957332

RESUMO

Lymphatic filariasis and onchocerciasis are neglected parasitic diseases which pose a threat to public health in tropical and sub-tropical regions. Strategies for control and elimination of these diseases by mass drug administration (MDA) campaigns are designed to reduce symptoms of onchocerciasis and transmission of both parasites to eventually eliminate the burden on public health. Drugs used for MDA are predominantly microfilaricidal, and prolonged rounds of treatment are required for eradication. Understanding parasite biology is crucial to unravelling the complex processes involved in host-parasite interactions, disease transmission, parasite immune evasion, and the emergence of drug resistance. In nematode biology, large gaps still exist in our understanding of iron metabolism, iron-dependent processes and their regulation. The acquisition of iron from the host is a crucial determinant of the success of a parasitic infection. Here we identify a filarial ortholog of Divalent Metal Transporter 1 (DMT1), a member of a highly conserved family of NRAMP proteins that play an essential role in the transport of ferrous iron in many species. We cloned and expressed the B. malayi NRAMP ortholog in the iron-deficient fet3fet4 strain of Saccharomyces cerevisiae, performed qPCR to estimate stage-specific expression, and localized expression of this gene by immunohistochemistry. Results from functional iron uptake assays showed that expression of this gene in the iron transport-deficient yeast strain significantly rescued growth in low-iron medium. DMT1 was highly expressed in adult female and male B. malayi and Onchocerca volvulus. Immunolocalization revealed that DMT1 is expressed in the intestinal brush border, lateral chords, and reproductive tissues of males and females, areas also inhabited by Wolbachia. We hypothesize based on our results that DMT1 in B. malayi functions as an iron transporter. The presence of this transporter in the intestine supports the hypothesis that iron acquisition by adult females requires oral ingestion and suggests that the intestine plays a functional role in at least some aspects of nutrient uptake.


Assuntos
Brugia Malayi/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Interações Hospedeiro-Parasita , Ferro/metabolismo , Animais , Transporte Biológico , Brugia Malayi/genética , Brugia Malayi/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/genética , Intestinos/citologia , Intestinos/fisiologia , Deficiências de Ferro , Camundongos , Microvilosidades/fisiologia , Onchocerca volvulus/genética , Onchocerca volvulus/crescimento & desenvolvimento , Onchocerca volvulus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Wolbachia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...