Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 10(10): e1004611, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275498

RESUMO

The genetic architecture of many phenotypic traits is such that genes often contribute to multiple traits, and mutations in these genes can therefore affect multiple phenotypes. These pleiotropic interactions often manifest as tradeoffs between traits where improvement in one property entails a cost in another. The life cycles of many pathogens include periods of growth within a host punctuated with transmission events, such as passage through a digestive tract or a passive stage of exposure in the environment. Populations exposed to such fluctuating selective pressures are expected to acquire mutations showing tradeoffs between reproduction within and survival outside of a host. We selected for individual mutations under fluctuating selective pressures for a ssDNA microvirid bacteriophage by alternating selection for increased growth rate with selection on biophysical properties of the phage capsid in high-temperature or low-pH conditions. Surprisingly, none of the seven unique mutations identified showed a pleiotropic cost; they all improved both growth rate and pH or temperature stability, suggesting that single mutations even in a simple genetic system can simultaneously improve two distinct traits. Selection on growth rate alone revealed tradeoffs, but some mutations still benefited both traits. Tradeoffs were therefore prevalent when selection acted on a single trait, but payoffs resulted when multiple traits were selected for simultaneously. We employed a molecular-dynamics simulation method to determine the mechanisms underlying beneficial effects for three heat-shock mutations. All three mutations significantly enhanced the affinities of protein-protein interfacial bindings, thereby improving capsid stability. The ancestral residues at the mutation sites did not contribute to protein-protein interfacial binding, indicating that these sites acquired a new function. Computational models, such as those used here, may be used in future work not only as predictive tools for mutational effects on protein stability but, ultimately, for evolution.


Assuntos
Adaptação Fisiológica/genética , Microvirus/fisiologia , Seleção Genética , Capsídeo/metabolismo , Aptidão Genética , Resposta ao Choque Térmico/genética , Concentração de Íons de Hidrogênio , Microvirus/química , Microvirus/genética , Microvirus/crescimento & desenvolvimento , Mutação , Temperatura , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Mol Biol Evol ; 31(6): 1421-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24600050

RESUMO

Single-stranded DNA(ssDNA) viral life cycles must balance double-stranded DNA (dsDNA) and ssDNA biosynthesis. Previously published in vitro results suggest that microvirus C and host cell SSB proteins play antagonistic roles to achieve this balance. To investigate this in vivo, microvirus DNA replication was characterized in cells expressing cloned C or ssb genes, which would presumably alter the C:SSB protein ratios. Representatives of each microvirus clade (φX174, G4, and α3) were used in these studies. α3 DNA replication was significantly more complex. Results suggested that the recognized α3 C gene (C(S): small) is one of two C genes. A larger 5' extended gene could be translated from an upstream GTG start codon (C(B): big). Wild-type α3 acquired resistance to elevated SSB levels by mutations that exclusively frameshifted the C(B) reading frame, whereas mutations in the origin of replication conferred resistance to elevated C protein levels. Expression of either the cloned C(B) or C(S) gene complemented am(C) mutants, demonstrating functional redundancy. When the C(S) start codon was eliminated, strains were only viable if an additional amber mutation was placed in gene C and propagated in an informational suppressing host. Thus, C(B) protein likely reaches toxic levels in the absence of C(S) translation. This phenomenon may have driven the evolution of the C(S) gene within the larger C(B) gene and could constitute a unique mechanism of regulation. Furthermore, cross-complementation data suggested that interactions between the α3 C and other viral proteins have evolved enough specificity to biochemically isolate its DNA replication from G4 and φX174.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Microvirus/crescimento & desenvolvimento , Microvirus/genética , Proteínas Virais/metabolismo , Replicação do DNA , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Escherichia coli/virologia , Evolução Molecular , Genes Virais , Microvirus/classificação , Mutação , Filogenia , Proteínas Virais/genética
3.
Am Nat ; 173(4): 419-30, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19232002

RESUMO

Hotter is better is a hypothesis of thermal adaptation that posits that the rate-depressing effects of low temperature on biochemical reactions cannot be overcome by physiological plasticity or genetic adaptation. If so, then genotypes or populations adapted to warmer temperatures will have higher maximum growth rates than those adapted to low temperatures. Here we test hotter is better by measuring thermal reaction norms for intrinsic rate of population growth among an intraspecific collection of bacteriophages recently isolated from nature. Consistent with hotter is better, we find that phage genotypes with higher optimal temperatures have higher maximum growth rates. Unexpectedly, we also found that hotter is broader, meaning that the phages with the highest optimal temperatures also have the greatest temperature ranges. We found that the temperature sensitivity of fitness for phages is similar to that for insects.


Assuntos
Adaptação Biológica/fisiologia , Temperatura Alta , Microvirus/crescimento & desenvolvimento , Modelos Biológicos , Teorema de Bayes , Genótipo , Microvirus/genética , Modelos Genéticos , Filogenia
4.
J Virol ; 81(16): 8587-92, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17553892

RESUMO

Microviruses (canonical members are bacteriophages phiX174, G4, and alpha3) are T=1 icosahedral virions with an assembly pathway mediated by two scaffolding proteins. The external scaffolding protein D plays a major role during morphogenesis, particularly in icosahedral shell formation. The results of previous studies, conducted with a cloned chimeric external scaffolding gene, suggest that the first alpha-helix acts as a substrate specificity domain, perhaps mediating the initial coat-external scaffolding protein interaction. However, the expression of a cloned gene could lead to protein concentrations higher than those found in typical infections. Moreover, its induction before infection could alter the timing of the protein's accumulation. Both of these factors could drive or facilitate reactions that may not occur under physiological conditions or before programmed cell lysis. In order to elucidate a more detailed mechanistic model, a chimeric external scaffolding gene was placed directly in the phiX174 genome under wild-type transcriptional and translational control, and the chimeric virus, which was not viable on the level of plaque formation, was characterized. The results of the genetic and biochemical analyses indicate that alpha-helix 1 most likely mediates the nucleation reaction for the formation of the first assembly intermediate containing the external scaffolding protein. Mutants that can more efficiently use the chimeric scaffolding protein were isolated. These second-site mutations appear to act on a kinetic level, shortening the lag phase before virion production, perhaps lowering the critical concentration of the chimeric protein required for a nucleation reaction.


Assuntos
Bacteriófago phi X 174/crescimento & desenvolvimento , Microvirus/crescimento & desenvolvimento , Proteínas Estruturais Virais/metabolismo , Sequência de Aminoácidos , Bacteriófago phi X 174/química , Bacteriófago phi X 174/genética , Genes Virais , Genoma Viral , Cinética , Microvirus/química , Microvirus/genética , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Vírion/química , Vírion/genética , Vírion/metabolismo
5.
PLoS Biol ; 4(7): e201, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16732695

RESUMO

Two major goals of laboratory evolution experiments are to integrate from genotype to phenotype to fitness, and to understand the genetic basis of adaptation in natural populations. Here we demonstrate that both goals are possible by re-examining the outcome of a previous laboratory evolution experiment in which the bacteriophage G4 was adapted to high temperatures. We quantified the evolutionary changes in the thermal reaction norms--the curves that describe the effect of temperature on the growth rate of the phages--and decomposed the changes into modes of biological interest. Our analysis indicated that changes in optimal temperature accounted for almost half of the evolutionary changes in thermal reaction norm shape, and made the largest contribution toward adaptation at high temperatures. Genome sequencing allowed us to associate reaction norm shape changes with particular nucleotide mutations, and several of the identified mutations were found to be polymorphic in natural populations. Growth rate measures of natural phage that differed at a site that contributed substantially to adaptation in the lab indicated that this mutation also underlies thermal reaction norm shape variation in nature. In combination, our results suggest that laboratory evolution experiments may successfully predict the genetic bases of evolutionary responses to temperature in nature. The implications of this work for viral evolution arise from the fact that shifts in the thermal optimum are characterized by tradeoffs in performance between high and low temperatures. Optimum shifts, if characteristic of viral adaptation to novel temperatures, would ensure the success of vaccine development strategies that adapt viruses to low temperatures in an attempt to reduce virulence at higher (body) temperatures.


Assuntos
Evolução Biológica , Microvirus/genética , Sequência de Bases , Escherichia coli/virologia , Variação Genética , Genoma Viral , Microvirus/classificação , Microvirus/crescimento & desenvolvimento , Filogenia , Temperatura , Cultura de Vírus/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...