Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 418, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760720

RESUMO

BACKGROUND: Blueberry fruit exhibit atypical climacteric ripening with a non-auto-catalytic increase in ethylene coincident with initiation of ripening. Further, application of ethephon, an ethylene-releasing plant growth regulator, accelerates ripening by increasing the proportion of ripe (blue) fruit as compared to the control treatment. To investigate the mechanistic role of ethylene in regulating blueberry ripening, we performed transcriptome analysis on fruit treated with ethephon, an ethylene-releasing plant growth regulator. RESULTS: RNA-Sequencing was performed on two sets of rabbiteye blueberry ('Powderblue') fruit: (1) fruit from divergent developmental stages; and (2) fruit treated with ethephon, an ethylene-releasing compound. Differentially expressed genes (DEGs) from divergent developmental stages clustered into nine groups, among which cluster 1 displayed reduction in expression during ripening initiation and was enriched with photosynthesis related genes, while cluster 7 displayed increased expression during ripening and was enriched with aromatic-amino acid family catabolism genes, suggesting stimulation of anthocyanin biosynthesis. More DEGs were apparent at 1 day after ethephon treatment suggesting its early influence during ripening initiation. Overall, a higher number of genes were downregulated in response to ethylene. Many of these overlapped with cluster 1 genes, indicating that ethylene-mediated downregulation of photosynthesis is an important developmental event during the ripening transition. Analyses of DEGs in response to ethylene also indicated interplay among phytohormones. Ethylene positively regulated abscisic acid (ABA), negatively regulated jasmonates (JAs), and influenced auxin (IAA) metabolism and signaling genes. Phytohormone quantification supported these effects of ethylene, indicating coordination of blueberry fruit ripening by ethylene. CONCLUSION: This study provides insights into the role of ethylene in blueberry fruit ripening. Ethylene initiates blueberry ripening by downregulating photosynthesis-related genes. Also, ethylene regulates phytohormone-metabolism and signaling related genes, increases ABA, and decreases JA concentrations. Together, these results indicate that interplay among multiple phytohormones regulates the progression of ripening, and that ethylene is an important coordinator of such interactions during blueberry fruit ripening.


Assuntos
Ácido Abscísico , Mirtilos Azuis (Planta) , Ciclopentanos , Etilenos , Frutas , Regulação da Expressão Gênica de Plantas , Oxilipinas , Fotossíntese , Reguladores de Crescimento de Plantas , Etilenos/metabolismo , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Mirtilos Azuis (Planta)/metabolismo , Mirtilos Azuis (Planta)/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/efeitos dos fármacos , Oxilipinas/metabolismo , Regulação para Baixo , Compostos Organofosforados/farmacologia , Perfilação da Expressão Gênica
2.
PLoS One ; 17(7): e0271383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35857812

RESUMO

The aim of the research was to evaluate fertilization technologies for the indicators of the quality and quantity of highbush blueberry yield. In the experiment, a similar level of mineral fertilization was used in all treatments. The experiment was to show the differences between fertilization with biostimulation and without biostimulation. The research was carried out in two seasons (2019-2020) on ´Bluecrop` shrubs growing in the Blueberry Experimental Field in central Poland (51° 55'42.7 "N 20° 59'28.7" E). Shrubs grow at a distance of 1 x 3 m. Plants are rejuvenated every year in spring and irrigated by drip. The experiment was carried out in a random block design (4 fertilizer treatments x 5 replications x 6 bushes). The experiment assessed the effect of fertilization on yield, berry mass, fruit setting, leaf surface and physicochemical parameters of fruit. Based on the conducted research, it was proved that the applied fertilization technologies had a significant impact on the size and quality of the yield of "Bluecrop" highbush blueberry. Particularly noteworthy is the fertilization technology with biostimulation (treatment T4), which has a positive effect on the yield, fruit mass, percentage of setting and firmness of the berries. Analysis of the issue in the light of the results of the conducted research shows that the use of biostimulated products has an important impact on the intensification of production while maintaining good quality of fruits. Through research, the positive effect of fertilization programs with biostimulation (treatment T4) on the most important production parameters of blueberry fruit from the producer's point of view has been proven.


Assuntos
Mirtilos Azuis (Planta) , Mirtilos Azuis (Planta)/fisiologia , Fertilização , Fertilizantes , Frutas , Polônia
3.
Plant Sci ; 315: 111135, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35067305

RESUMO

Dark septate endophytes (DSEs) have attracted much attention due to their positive roles in plant growth as well as resistance to various abiotic stresses. However, there are no reports on the molecular mechanisms of DSE fungi to improve salt tolerance in plants. In this study, the blueberry seedlings inoculated with T010, a beneficial DSE fungus reported previously, grew more vigorously than the non-inoculated control under salt stress. Physiological indicators showed that T010 inoculation increased antioxidant activities of blueberry roots. To explore its molecular mechanism, we focused on the bZIP TFs VabZIP12, who was highly up-regulated with T010 inoculation under salt stress. Further studies showed that VabZIP12, as a transcription activator, could combine both G-Box 1 and G-Box 2 motifs. Moreover, overexpression of VabZIP12 enhanced salt stress tolerance through increasing the activities of the enzymatic antioxidants in the transgenic Arabidopsis with up-regulation the related genes. These results indicated that the induction of VabZIP12 contribute to improving the tolerance of blueberry to salt stress by T010 inoculation.


Assuntos
Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Mirtilos Azuis (Planta)/genética , Plantas Geneticamente Modificadas/fisiologia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Arabidopsis/fisiologia , Mirtilos Azuis (Planta)/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas
4.
PLoS One ; 16(8): e0256942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34464415

RESUMO

Under inadequate chilling conditions, hydrogen cyanamide (HC) is often used to promote budbreak and improve earliness of Southern highbush blueberry (Vaccinium corymbosum L. interspecific hybrids). However, HC is strictly regulated or even banned in some countries because of its high hazardous properties. Development of safer and effective alternatives to HC is critical to sustainable subtropical blueberry production. In this study, we examined the efficacy of HC and defoliants as bud dormancy-breaking agents for 'Emerald' blueberry. First, we compared water control, 1.0% HC (9.35 L ha-1), and three defoliants [potassium thiosulfate (KTS), urea, and zinc sulfate (ZS)] applied at 6.0% (28 kg ha-1). Model fitting analysis revealed that only HC and ZS advanced both defoliation and budbreak compared with the water control. HC-induced budbreak showed an exponential plateau function with a rapid phase occurring from 0 to 22 days after treatment (DAT), whereas ZS-induced budbreak showed a sigmoidal function with a rapid phase occurring from 15 to 44 DAT. The final budbreak percentage was similar in all treatments (71.7%-83.7%). Compared with the water control, HC and ZS increased yield by up to 171% and 41%, respectively, but the yield increase was statistically significant only for HC. Phytohormone profiling was performed for water-, HC- and ZS-treated flower buds. Both chemicals did not increase gibberellin 4 and indole-3-acetic acid production, but they caused a steady increase in jasmonic acid (JA) during budbreak. Compared with ZS, HC increased JA production to a greater extent and was the only chemical that reduced abscisic acid (ABA) concentrations during budbreak. A follow-up experiment tested ZS at six different rates (0-187 kg ha-1) but detected no significant dose-response on budbreak. These results collectively suggest that defoliants are not effective alternatives to HC, and that HC and ZS have different modes of action in budbreak induction. The high efficacy of HC as a dormancy-breaking agent could be due to its ability to reduce ABA concentrations in buds. Our results also suggest that JA accumulation is involved in budbreak induction in blueberry.


Assuntos
Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Cianamida/farmacologia , Desfolhantes Químicos/farmacologia , Flores/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/fisiologia , Mirtilos Azuis (Planta)/efeitos dos fármacos , Mirtilos Azuis (Planta)/fisiologia , Flores/fisiologia , Frutas/crescimento & desenvolvimento , Dormência de Plantas/efeitos dos fármacos , Dormência de Plantas/fisiologia
5.
Sci Rep ; 11(1): 16857, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413379

RESUMO

Bees are critical for crop pollination, but there is limited information on levels and sources of pesticide exposure in commercial agriculture. We collected pollen from foraging honey bees and bumble bees returning to colonies placed in blooming blueberry fields with different management approaches (conventional, organic, unmanaged) and located across different landscape settings to determine how these factors affect pesticide exposure. We also identified the pollen and analyzed whether pesticide exposure was correlated with corbicular load composition. Across 188 samples collected in 2 years, we detected 80 of the 259 pesticide active ingredients (AIs) screened for using a modified QuEChERS method. Detections included 28 fungicides, 26 insecticides, and 21 herbicides. All samples contained pesticides (mean = 22 AIs per pollen sample), with pollen collected from bees on conventional fields having significantly higher average concentrations (2019 mean = 882.0 ppb) than those on unmanaged fields (2019 mean = 279.6 ppb). Pollen collected by honey bees had more AIs than pollen collected by bumble bees (mean = 35 vs. 19 AIs detected at each farm, respectively), whereas samples from bumble bees had higher average concentrations, likely reflecting differences in foraging behavior. Blueberry pollen was more common in pollen samples collected by bumble bees (25.9% per sample) than honey bees (1.8%), though pesticide concentrations were only correlated with blueberry pollen for honey bees. Pollen collected at farms with more blueberry in the surrounding landscape had higher pesticide concentrations, mostly AIs applied for control of blueberry pathogens and pests during bloom. However, for honey bees, the majority of AIs detected at each farm are not registered for use on blueberry at any time (55.2% of AIs detected), including several highly toxic insecticides. These AIs therefore came from outside the fields and farms they are expected to pollinate. For bumble bees, the majority of AIs detected in their pollen are registered for use on blueberry during bloom (56.9% of AIs detected), though far fewer AIs were sprayed at the focal farm (16.7%). Our results highlight the need for integrated farm and landscape-scale stewardship of pesticides to reduce exposure to pollinators during crop pollination.


Assuntos
Abelhas/fisiologia , Mirtilos Azuis (Planta)/fisiologia , Praguicidas/toxicidade , Pólen/fisiologia , Animais , Mirtilos Azuis (Planta)/efeitos dos fármacos , Pólen/química , Pólen/efeitos dos fármacos , Polinização
6.
BMC Plant Biol ; 21(1): 389, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416857

RESUMO

Blueberry (Vaccinium ssp.) is a perennial shrub belonging to the family Ericaceae, which is highly tolerant of acid soils and heavy metal pollution. In the present study, blueberry was subjected to cadmium (Cd) stress in simulated pot culture. The transcriptomics and rhizosphere fungal diversity of blueberry were analyzed, and the iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and cadmium (Cd) content of blueberry tissues, soil and DGT was determined. A correlation analysis was also performed. A total of 84 374 annotated genes were identified in the root, stem, leaf and fruit tissue of blueberry, of which 3370 were DEGs, and in stem tissue, of which 2521 were DEGs. The annotation data showed that these DEGs were mainly concentrated in a series of metabolic pathways related to signal transduction, defense and the plant-pathogen response. Blueberry transferred excess Cd from the root to the stem for storage, and the highest levels of Cd were found in stem tissue, consistent with the results of transcriptome analysis, while the lowest Cd concentration occurred in the fruit, Cd also inhibited the absorption of other metal elements by blueberry. A series of genes related to Cd regulation were screened by analyzing the correlation between heavy metal content and transcriptome results. The roots of blueberry rely on mycorrhiza to absorb nutrients from the soil. The presence of Cd has a significant effect on the microbial community composition of the blueberry rhizosphere. The fungal family Coniochaetaceae, which is extremely extremelytolerant, has gradually become the dominant population. The results of this study increase our understanding of the plant regulation mechanism for heavy metals, and suggest potential methods of soil remediation using blueberry.


Assuntos
Mirtilos Azuis (Planta)/química , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/microbiologia , Cádmio/efeitos adversos , Micorrizas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Adaptação Fisiológica/genética , Biodiversidade , Mirtilos Azuis (Planta)/fisiologia , Cádmio/análise , Cobre/análise , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Produtos Agrícolas/fisiologia , Perfilação da Expressão Gênica , Ferro/análise , Magnésio/análise , Micorrizas/fisiologia , Rizosfera , Transcriptoma , Zinco/análise
7.
PLoS One ; 16(7): e0254013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228763

RESUMO

Understanding the impact of irrigation and fertilizer on rabbiteye blueberry (Vaccinium virgatum) physiology is necessary for its precision planting. Here, we applied varied irrigation and fertilizer under completely randomized experimental design to see its impact on the physiological characteristics and bush growth of rabbiteye blueberries. A comprehensive evaluation of the membership function was used to establish the best water-fertilizer coupling regimes. Rabbiteye blueberry enhanced the net photosynthetic rate, stomatal conductance and transpiration rate of leaf and improved its photosynthetic capacity at maximum level of irrigation water and fertilizer application (F3W4). The high fertilizer-medium water treatment (F3W3) increased leaf-soluble protein contents. The medium fertilizer-medium water treatment (F2W3, F2W2) increased leaf- soluble sugar, superoxide dismutase, and chlorophyll contents; decreased the malondialdehyde content; and enhanced leaf resistance and metabolism. It also promoted the growth of flower buds and new shoots. Combined membership function and cluster analyses revealed that the optimal water and fertilizer conditions for promoting rabbiteye blueberry plant growth were the medium fertilizer-medium water [(NH4)2SO4:Ca(H2PO4)2:K2SO4 at 59:10:20 g plant-1; 2.5 L water plant-1], medium fertilizer-medium-high water [(NH4)2SO4:Ca(H2PO4)2:K2SO4 at 59:10:20 g plant-1; 3.75 L water plant-1], and high fertilizer-medium-high water [(NH4)2SO4:Ca(H2PO4)2:K2SO4 at 118:20:40 g plant-1; 3.75 L water plant-1] treatments. The findings of this study could be used in improving the precision and efficacy of rabbiteye blueberry planting in Guizhou, China. Such an approach can increase the productivity and profitability for local fruit farmers.


Assuntos
Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Mirtilos Azuis (Planta)/fisiologia , Fertilizantes , Água , Análise por Conglomerados , Fotossíntese , Folhas de Planta/fisiologia
8.
Sci Rep ; 11(1): 8187, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854164

RESUMO

Despite Apis mellifera being the most widely managed pollinator to enhance crop production, they are not the most suitable species for highbush blueberries, which possess restrictive floral morphology and require buzz-pollination. Thus, the South American bumblebee Bombus pauloensis is increasingly managed as an alternative species in this crop alongside honeybees. Herein, we evaluated the foraging patterns of the two species, concerning the potential pollen transfer between two blueberry co-blooming cultivars grown under open high tunnels during two seasons considering different colony densities. Both managed pollinators showed different foraging patterns, influenced by the cultivar identity which varied in their floral morphology and nectar production. Our results demonstrate that both species are efficient foragers on highbush blueberry and further suggest that they contribute positively to its pollination in complementary ways: while bumblebees were more effective at the individual level (visited more flowers and carried more pollen), the greater densities of honeybee foragers overcame the difficulties imposed by the flower morphology, irrespective of the stocking rate. This study supports the addition of managed native bumblebees alongside honeybees to enhance pollination services and emphasizes the importance of examining behavioural aspects to optimize management practices in pollinator-dependent crops.


Assuntos
Abelhas/fisiologia , Mirtilos Azuis (Planta)/fisiologia , Animais , Mirtilos Azuis (Planta)/parasitologia , Produtos Agrícolas/parasitologia , Produtos Agrícolas/fisiologia , Polinização , Densidade Demográfica , América do Sul
9.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804571

RESUMO

Blueberries (Vaccinium spp.) are highly vulnerable to changing climatic conditions, especially increasing temperatures. To gain insight into mechanisms underpinning the response to heat stress, two blueberry species were subjected to heat stress for 6 and 9 h at 45 °C, and leaf samples were used to study the morpho-physiological and transcriptomic changes. As compared with Vaccinium corymbosum, Vaccinium darrowii exhibited thermal stress adaptation features such as small leaf size, parallel leaf orientation, waxy leaf coating, increased stomatal surface area, and stomatal closure. RNAseq analysis yielded ~135 million reads and identified 8305 differentially expressed genes (DEGs) during heat stress against the control samples. In V. corymbosum, 2861 and 4565 genes were differentially expressed at 6 and 9 h of heat stress, whereas in V. darrowii, 2516 and 3072 DEGs were differentially expressed at 6 and 9 h, respectively. Among the pathways, the protein processing in the endoplasmic reticulum (ER) was the highly enriched pathway in both the species: however, certain metabolic, fatty acid, photosynthesis-related, peroxisomal, and circadian rhythm pathways were enriched differently among the species. KEGG enrichment analysis of the DEGs revealed important biosynthesis and metabolic pathways crucial in response to heat stress. The GO terms enriched in both the species under heat stress were similar, but more DEGs were enriched for GO terms in V. darrowii than the V. corymbosum. Together, these results elucidate the differential response of morpho-physiological and molecular mechanisms used by both the blueberry species under heat stress, and help in understanding the complex mechanisms involved in heat stress tolerance.


Assuntos
Mirtilos Azuis (Planta)/anatomia & histologia , Mirtilos Azuis (Planta)/fisiologia , Resposta ao Choque Térmico , Proteínas de Plantas/metabolismo , Termotolerância/genética , Transcriptoma , Mirtilos Azuis (Planta)/classificação , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
10.
J Insect Sci ; 21(2)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33693806

RESUMO

Background odors produced by plants in the environment can interfere with the response of insects to a point-releasing attractant, especially when their compositions overlap. In this study, a series of binary choice tests was conducted in a wind tunnel to investigate whether background odors emitted from cherry, blueberry, blackberry, or raspberry fruits would affect the level of Drosophila suzukii (Matsumura) attraction to its symbiotic yeast, Hanseniaspora uvarum (Niehaus) (Saccharomycetales: Saccharomycetaceae). Whether an increase in the intensity of background odors would affect the attractiveness of H. uvarum to D. suzukii was also investigated, either by increasing the number of cherry or raspberry fruit per cup or by increasing the number of fruit cups surrounding the cup baited with the yeast. In wind tunnel assays, background fruit odors interfering with D. suzukii attraction to the yeast varied among fruit types. Raspberry odor inhibited the attractiveness of H. uvarum to the fly the most, followed by blackberry odor, whereas cherry and blueberry odors had no significant impact on the attraction. An increase in the intensity of odors by adding more cherry or raspberry fruit per cup did not increase the impact of fruit odor on the attraction; however, adding more raspberry cups around H. uvarum linearly decreased its attractiveness, suggesting that background host fruit abundance and likely increase in host odor may influence D. suzukii attraction to yeast odor depending on host species.


Assuntos
Drosophila , Frutas/fisiologia , Hanseniaspora , Odorantes , Animais , Bioensaio/métodos , Mirtilos Azuis (Planta)/fisiologia , Drosophila/microbiologia , Drosophila/fisiologia , Prunus avium/fisiologia , Rubus/fisiologia , Saccharomycetales , Simbiose
11.
Plant Physiol Biochem ; 158: 454-465, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33250324

RESUMO

In acid soils, manganese (Mn) concentration increases, becoming toxic to plants. Mn toxicity differentially affects physiological processes in highbush blueberry (Vaccinium corymbosum L.) cultivars. However, the mechanisms involved in Mn toxicity of the new and traditionally established cultivars are unknown. To understand Mn toxicity mechanisms, four traditionally established (Legacy, Brigitta, Duke, and Star) cultivars and two recently introduced to Chile (Camellia and Cargo) were grown under hydroponic conditions subjected to control Mn (2 µM) and Mn toxicity (1000 µM). Physiological, biochemical, and molecular parameters were evaluated at 0, 7, 14, and 21 days. We found that the relative growth rate was reduced in almost all blueberry cultivars under Mn toxicity, except Camellia, with Star being the most affected. The photosynthetic parameters were reduced only in Star by Mn treatment. Leaf Mn concentrations increased in all cultivars, exhibiting the lowest levels in Camellia and Cargo. Brigitta and Duke exhibited higher ß-carotene levels, while Cargo exhibited a reduction under toxic Mn. In Legacy, lutein levels increased under Mn toxicity. Traditionally established cultivars exhibited higher antioxidant activity than the new cultivars under Mn toxicity. The Legacy and Duke cultivars increased VcMTP4 expression with Mn exposure time. A multivariate analysis separated Legacy and Duke from Camellia; Star and Cargo; and Brigitta. Our study demonstrated that Mn toxicity differentially affects physiological, biochemical, and molecular features in the new and traditionally established cultivars, with Legacy, Duke, Camellia, and Cargo as the Mn-resistant cultivars differing in their Mn-resistance mechanisms and Star as the Mn-sensitive cultivar.


Assuntos
Mirtilos Azuis (Planta)/efeitos dos fármacos , Manganês/toxicidade , Mirtilos Azuis (Planta)/classificação , Mirtilos Azuis (Planta)/fisiologia , Chile , Regulação da Expressão Gênica de Plantas , Folhas de Planta
12.
Sci Rep ; 10(1): 16696, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028946

RESUMO

The aim of this study was to compare the nutritional and use value of berries grown in organic and conventional systems. The polyphenol content, fruit colour and firmness, and yeast, mould, and mycotoxin contents were assessed in blueberry fruit freshly harvested and stored for 8 weeks in controlled conditions (CA: CO2-12%; O2-1.5%, temperature 1.5 °C). The Shannon-Wiener diversity index was comparable in both systems and was lower for mould in organic fruit than in conventional fruit. Mycotoxins (deoxynivalenol, zearalenone) were found only in organic fruits. The optimal mineral content and pH of the soil allowed the cultivation of blueberry in accordance with organic standards. The storage of highbush blueberry fruit in CA cold storage for 8 weeks resulted in a slight deterioration in fruit quality and polyphenol content. The lower nutritional value of these fruits is compensated by the lack of pesticides and artificial fertilizers residues. The use of fungicides in conventional cultivation reduces the population of sensitive fungi and therefore reduces the contamination of fruits with mycotoxins.


Assuntos
Mirtilos Azuis (Planta)/microbiologia , Frutas/microbiologia , Fungos/isolamento & purificação , Doenças das Plantas/microbiologia , Mirtilos Azuis (Planta)/fisiologia , Conservação de Alimentos/métodos
13.
Food Chem ; 309: 125617, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31718833

RESUMO

In blueberry, sugars and organic acids determine fruit organoleptic quality and drastically change during fruit maturation. This study examined enzymes involved in the metabolism of sugars and organic acids during the three maturation phases (green, pink and blue). During maturation, an increase in sugar (mainly fructose and glucose) was associated with up-regulation of VcSPP (CUFF.32787.1), VcSPS (CUFF.14989.1), and VcINV (gene.g3367.t1.1, CUFF.8077.1 and CUFF.47310.2). A decrease in citrate was associated with VcACLY (CUFF.27347.1 and CUFF.28772.1) in the acetyl-CoA pathway and with VcGAD (CUFF.15663.1 and CUFF.13757.1) and VcGLT (CUFF.6416.1) in the GABA shunt. A decrease in malate was associated with VcMDH (CUFF.30072.1, CUFF.18332.1 and CUFF.24878.1) involved in malate biosynthesis, and with VcADH (gene.g1507.t1.1, CUFF.3210.1 and gene.g30667.t1.1) as well as VcPDC (CUFF.47532.1) involved in fermentation. Multi-isoforms of enzymes were divergent and differentially regulated, suggesting that they have specialized functions in these pathways. The information will contribute to the understanding of blueberry organoleptic quality.


Assuntos
Mirtilos Azuis (Planta)/fisiologia , Enzimas/metabolismo , Frutas/fisiologia , Proteínas de Plantas/metabolismo , Açúcares/metabolismo , Mirtilos Azuis (Planta)/metabolismo , Frutas/metabolismo , Malatos/metabolismo , Filogenia
14.
Sci Rep ; 9(1): 11275, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375763

RESUMO

Aluminum (Al) toxicity is one of the major factors that limit the growth and production of crops in acid soils. Highbush blueberry (Vaccinium corymbosum L.) cultivars differing in resistance to Al toxicity regarding root growth and photosynthetic performance were used. In this study, we compared the physiological and metabolic strategies to cope with Al toxicity among the highbush blueberry cultivars [two new ones (Camellia and Cargo) and three established ones (Brigitta (Al-resistant), Star and Duke)]. Aluminum concentration in roots and leaves increased in all cultivars after 24 and 48 h of exposure to Al, but less so in roots of cultivar Camellia and leaves of cultivar Cargo. These two cultivars displayed minor effects of Al exposure in terms of photosynthetic activity in comparison with the established cultivars. Furthermore, Cargo did not vary fluorescence parameters, whereas Camellia exhibited a decrease in effective quantum yield (ΦPSII) and electron transport rate (ETR) and a change in non-photochemical quenching (NPQ) and maximum quantum yield (Fv/Fm) under Al after 48 h. The Al treatment increased total phenols in leaves of Brigitta, Cargo, and Camellia, whereas antioxidant activity increased in Star and Cargo after 48 h. Aluminum exposure decreased malate concentration in roots of all cultivars, but no change was noted in fumarate concentration. The antioxidant activity correlated with photosynthetic performance and the total phenol concentration in the leaves of new cultivars exposed to Al, suggesting enhanced resistance in the short-term experiment. The principal component analysis separated the new from the established cultivars. In conclusion, the new cultivars appear to be more Al-resistant than the established ones, with Star being most Al-sensitive. Regarding the Al-resistance mechanisms of the new cultivars, it is suggested that Camellia could have a root Al-exclusion mechanism under Al toxicity. This mechanism could be explained by low Al concentration in roots, suggesting that this cultivar could exude organic acid, allowing to chelate Al in the rhizosphere. Nonetheless, further researches are needed to confirm this assumption.


Assuntos
Adaptação Fisiológica , Alumínio/toxicidade , Mirtilos Azuis (Planta)/fisiologia , Solo/química , Estresse Fisiológico , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
15.
Plant Sci ; 276: 22-31, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348321

RESUMO

MADS-box genes play a significant role for plant flowering. Keratin-like (K) domains are involved in protein-to-protein interactions in the formation of the MIKC-type MADS-box domain proteins. In this study, the potential of utilizing the K domain of a Vaccinium corymbosum SOC1-like gene (VcSOC1K) was investigated to modulate expression of other blueberry MADS-box genes for increasing blueberry productivity. Chilled transgenic blueberry plants overexpressing the VcSOC1K showed a significant increase in the number of canes, floral buds, and flower and fruit clusters compared to chilled non-transgenic plants. Additionally, nonchilled transgenic plants flowered whereas nonchilled non-transgenic plants did not. Transgenic plants showed an increase in tolerance to high soil pH. Comparative transcriptome analysis of transgenic and non-transgenic leaves showed differential expression of 17% of the MADS-box genes identified in blueberry. These differentially expressed (DE) MADS-box genes were associated with genes related to plant flowering, phytohormones, and response to various biotic and abiotic stimuli. The phenotypic changes and the DE MADS-box genes caused by the overexpression of VcSOC1K not only reveal that the MADS-box genes are involved in chilling/vernalization-mediated flowering in blueberry but also demonstrated that the overexpression of the K domain can effectively modulate plant reproductive processes.


Assuntos
Mirtilos Azuis (Planta)/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Transcriptoma , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Mirtilos Azuis (Planta)/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Domínio MADS/genética , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Reprodução
16.
J Econ Entomol ; 111(5): 2011-2016, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30010801

RESUMO

Highbush blueberry (Vaccinium corymbosum L.; Ericales: Ericaceae) is an important crop grown throughout the eastern United States and Canada. Cross-pollination by insects greatly enhances pollination and fruit set in highbush blueberry. In Florida, low-chill cultivars that flower during the winter when most bees are dormant are used, thus, making it difficult to utilize and depend on unmanaged bees. We investigated flower visitation rates by managed and wild bees and the subsequent berry formation, berry weight, and number of seeds/berry in highbush blueberry fields in north-central Florida. Additionally, we tested three pollinator treatments: 1) pollinator-excluded flowers, 2) open-pollinated treatments that were available to managed and wild bees, and 3) flowers that were hand pollinated. Overall, we found seven native bee species that contribute to highbush blueberry pollination in Florida, but managed honey bees and bumble bees were the main flower visitors. Additionally, 14.5 times more blueberries formed in the open treatments than in the pollinator exclusion treatments, thus illustrating the economic impact bees have on blueberry pollination. Most of the wild bees observed visiting blueberry flowers were ground-nesting species that need uncultivated areas for nesting sites. Therefore, leaving field edges uncultivated and some undisturbed habitat may increase native bee numbers within blueberry farms over time.


Assuntos
Abelhas , Biodiversidade , Mirtilos Azuis (Planta)/fisiologia , Polinização , Animais , Florida , Frutas/crescimento & desenvolvimento
17.
Int J Mol Sci ; 19(6)2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29882876

RESUMO

Expression of blueberry cold-regulated genes (VcCORs) could play a role in the variable cold hardiness of blueberry tissues. In this study, transcriptome comparisons were conducted to reveal expression of VcCORs in non-acclimated leaves, flower buds, and flowers of both non-transgenic and transgenic blueberries containing an overexpressed blueberry DWARF AND DELAYED FLOWERING gene (VcDDF1) as well as in fully chilled flower buds of non-transgenic blueberry. In non-transgenic blueberries, 57.5% of VcCOR genes showed differential expression in at least one of the three pairwise comparisons between non-acclimated leaves, flower buds, and flowers, and six out of nine dehydration-responsive element-binding factors showed differential expression. In addition, expression of VcDDF1 was not cold-inducible in non-transgenic blueberries and had higher expression in flowers than in leaves or non-acclimated flower buds. In transgenic blueberries, overexpression of VcDDF1 resulted in higher VcDDF1 expression in leaves than in flower buds and flowers. VcDDF1 overexpression enhanced expression of blueberry CBF1 and CBF3 in leaves and repressed expression of CBF3 in both flower buds and flowers. Overall, the results revealed tissue-specific expression patterns of VcCORs. The responses of VcCORs to overexpression of VcDDF1 suggest that it is possible to increase plant cold hardiness through overexpression of a non-cold-inducible gene.


Assuntos
Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Arabidopsis/metabolismo , Congelamento , Perfilação da Expressão Gênica , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Transcriptoma/genética
18.
Am J Bot ; 105(6): 986-995, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29957884

RESUMO

PREMISE OF THE STUDY: Climate-driven changes in phenology are substantially affecting ecological relationships and ecosystem processes. The role of variation among species has received particular attention; for example, variation among species' phenological responses to climate can disrupt trophic interactions and can influence plant performance. Variation within species in phenological responses to climate, however, has received much less attention, despite its potential role in ecological interactions and local adaptation to climate change. METHODS: We constructed three common gardens across an elevation gradient on Cadillac Mountain in Acadia National Park, Maine, to test population-level responses in leaf-out phenology in a reciprocal transplant experiment. The experiment included three native species: low bush blueberry (Vaccinium angustifolium), sheep's laurel (Kalmia angustifolia), and three-toothed cinquefoil (Sibbaldiopsis tridentata). KEY RESULTS: Evidence for local adaptation of phenological response to temperature varied among the species, but was weak for all three. Rather, variation in phenological response to temperature appeared to be driven by local microclimate at each garden site and year-to-year variation in temperature. CONCLUSIONS: Population-level adaptations in leaf-out phenology appear to be relatively unimportant for these species in Acadia National Park, perhaps a reflection of strong genetic mixing across elevations, or weak differences in selection on phenological response to spring temperatures at different elevations. These results concur with other observational data in Acadia and highlight the utility of experimental approaches to understand the importance of annual and local site variation in affecting phenology both among and within plant species.


Assuntos
Mirtilos Azuis (Planta)/fisiologia , Clima , Características de História de Vida , Folhas de Planta/crescimento & desenvolvimento , Rosaceae/fisiologia , Adaptação Biológica , Altitude , Maine
19.
BMC Plant Biol ; 18(1): 98, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855262

RESUMO

BACKGROUND: Blueberry cultivars require a fixed quantity of chilling hours during winter endo-dormancy for vernalization. In this study, transcriptome analysis using RNA sequencing data from nonchilled, chilled, and late pink buds of southern highbush blueberry 'Legacy' was performed to reveal genes associated with chilling accumulation and bud break. RESULTS: Fully chilled 'Legacy' plants flowered normally whereas nonchilled plants could not flower. Compared to nonchilled flower buds, chilled flower buds showed differential expression of 89% of flowering pathway genes, 86% of MADS-box genes, and 84% of cold-regulated genes. Blueberry orthologues of FLOWERING LOCUS T (FT) did not show a differential expression in chilled flower buds (compared to nonchilled flower bud) but were up-regulated in late-pink buds (compared to chilled flower bud). Orthologoues of major MADS-box genes were significantly up-regulated in chilled flower buds and down-regulated in late-pink buds. Functional orthologues of FLOWERING LOCUS C (FLC) were not found in blueberry. Orthologues of Protein FD (FD), TERMINAL FLOWER 1 (TFL1), and LEAFY (LFY) were down-regulated in chilled flower buds and in late-pink buds compared to nonchilled flower bud. CONCLUSIONS: The changes from nonchilled to chilled and chilled to late-pink buds are associated with transcriptional changes in a large number of differentially expressed (DE) phytohormone-related genes and DE flowering pathway genes. The profile of DE genes suggests that orthologues of FT, FD, TFL1, LFY, and MADS-box genes are the major genes involved in chilling-mediated blueberry bud-break. The results contribute to the comprehensive investigation of the vernalization-mediated flowering mechanism in woody plants.


Assuntos
Mirtilos Azuis (Planta)/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Transcriptoma , Mirtilos Azuis (Planta)/fisiologia , Temperatura Baixa , Flores/fisiologia , Congelamento , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Análise de Sequência de RNA , Regulação para Cima
20.
Food Chem ; 251: 18-24, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426419

RESUMO

The aim of this work was to evaluate the efficacy of an innovative edible coating, based on chitosan from mushrooms enriched with procyanidins extracted from grape seeds, on fresh blueberry quality maintenance, (weight loss, pH, dry matter, colour, firmness and antioxidant activity) and microbial growth, during 14 days of storage at 4 °C. For weight loss, pH and dry matter no relevant differences were detected among the control and the differently coated samples at each considered storage time. Chitosan and chitosan + procyanidins coatings promoted a slight decrease of luminosity and an increase of blue hue colour of blueberry samples during the whole storage period. The use of coating promoted an increase in the antiradical activity that was the highest in blueberries coated with chitosan + procyanidins. Microbiological analysis results indicated that the chitosan-based coated samples had a significantly higher yeast and mould growth inhibition compared to the uncoated sample.


Assuntos
Mirtilos Azuis (Planta)/fisiologia , Quitosana/farmacologia , Armazenamento de Alimentos/métodos , Proantocianidinas/farmacologia , Antioxidantes/metabolismo , Mirtilos Azuis (Planta)/efeitos dos fármacos , Mirtilos Azuis (Planta)/microbiologia , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Qualidade dos Alimentos , Extrato de Sementes de Uva/química , Concentração de Íons de Hidrogênio , Leveduras/efeitos dos fármacos , Leveduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...