Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4397-4412, 2023 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-38013174

RESUMO

Monoacylglycerol lipase (MGL) is a serine hydrolase that plays a major role in the degradation of endogenous cannabinoid 2-arachidonoylglycerol. The role of MGL in some cancer cells has been confirmed, where inhibition of the MGL activity shows inhibition on cell proliferation. This makes MGL a promising drug target for the treatment of cancer. Recently, the development of covalent inhibitors of MGL has developed rapidly. These drugs have strong covalent binding ability, high affinity, long duration, low dose and low risk of drug resistance, so they have received increasing attention. This article introduces the structure and function of MGL, the characteristics, mechanisms and progress of covalent MGL inhibitors, providing reference for the development of novel covalent small molecule inhibitors of MGL.


Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Endocanabinoides/metabolismo
2.
Angew Chem Int Ed Engl ; 61(44): e202211774, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36083191

RESUMO

Obesity is a chronic health condition characterized by the accumulation of excessive body fat which can lead to and exacerbate cardiovascular disease, type-II diabetes, high blood pressure, and cancer through systemic inflammation. Unfortunately, visualizing key mediators of the inflammatory response, such as monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH), in a selective manner is a profound challenge owing to an overlapping substrate scope that involves arachidonic acid (AA). Specifically, these enzymes work in concert to generate AA, which in the context of obesity, has been implicated to control appetite and energy metabolism. In this study, we developed the first selective activity-based sensing probes to detect MGL (PA-HD-MGL) and FAAH (PA-HD-FAAH) activity via photoacoustic imaging. Activation of PA-HD-MGL and PA-HD-FAAH by their target enzymes resulted in 1.74-fold and 1.59-fold signal enhancements, respectively. Due to their exceptional selectivity profiles and deep-tissue photoacoustic imaging capabilities, these probes were employed to measure MGL and FAAH activity in a murine model of obesity. Contrary to conflicting reports suggesting levels of MGL can be attenuated or elevated, our results support the latter. Indeed, we discovered a marked increase of both targets in the gastrointestinal tract. These key findings set the stage to uncover the role of the endocannabinoid pathway in obesity-mediated inflammation.


Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Animais , Camundongos , Humanos , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Ácido Araquidônico , Modelos Animais de Doenças , Amidoidrolases/metabolismo , Obesidade/diagnóstico por imagem , Inflamação
3.
Biosci Biotechnol Biochem ; 86(10): 1333-1342, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35918181

RESUMO

Natural products containing the highly unusual phosphotriester ring are known to be potent serine hydrolase inhibitors. The long-chain bicyclic enol-phosphotriester salinipostins (SPTs) from the marine actinomycete Salinispora have been identified as selective antimalarial agents. A potential regulatory function has been suggested for phosphotriesters based on their structural relationship with actinomycete signaling molecules and the prevalence of spt-like biosynthetic gene clusters across actinomycetes. In this study, we established a mass spectrometry-guided screening method for phosphotriesters focusing on their characteristic fragment ions. Applying this screening method to the SPT producer Salinispora tropica CNB-440, new SPT analogs (4-6) were discovered and their structures were elucidated by spectroscopic analyses. Previously known and herein-identified SPT analogs inhibited the activity of human monoacylglycerol lipase (MAGL), a key serine hydrolase in the endocannabinoid system, in the nanomolar range. Our method could be applied to the screening of phosphotriesters, potential serine hydrolase inhibitors and signaling molecules.


Assuntos
Actinobacteria , Antimaláricos , Produtos Biológicos , Endocanabinoides , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Espectrometria de Massas , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/genética , Serina
4.
J Chem Inf Model ; 62(11): 2771-2787, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35580195

RESUMO

Inhibition of monoglyceride lipase (MGL), also known as monoacylglycerol lipase (MAGL), has emerged as a promising approach for treating neurological diseases. To gain useful insights in the design of agents with balanced potency and reactivity, we investigated the mechanism of MGL carbamoylation by the reference triazole urea SAR629 (IC50 = 0.2 nM) and two recently described inhibitors featuring a pyrazole (IC50 = 1800 nM) or a 4-cyanopyrazole (IC50 = 8 nM) leaving group (LG), using a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. Opposite to what was found for substrate 2-arachidonoyl-sn-glycerol (2-AG), covalent modification of MGL by azole ureas is controlled by LG expulsion. Simulations indicated that changes in the electronic structure of the LG greatly affect reaction energetics with triazole and 4-cyanopyrazole inhibitors following a more accessible carbamoylation path compared to the unsubstituted pyrazole derivative. The computational protocol provided reaction barriers able to discriminate between MGL inhibitors with different potencies. These results highlight how QM/MM simulations can contribute to elucidating structure-activity relationships and provide insights for the design of covalent inhibitors.


Assuntos
Inibidores Enzimáticos , Monoacilglicerol Lipases , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Pirazóis , Relação Estrutura-Atividade , Triazóis , Ureia
5.
Nucl Med Biol ; 108-109: 24-32, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35248850

RESUMO

Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays an important role in the endocannabinoid degradation in the brain. It has recently emerged as a promising therapeutic target in the treatment of neuroinflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Development of MAGL-specific radioligands for non-invasive imaging by positron-emission tomography (PET) would deepen our knowledge on the relevant pathological changes in diseased states and accelerate drug discovery. In this study, we report the selection and synthesis of two morpholine-3-one derivatives as potential reversible MAGL PET tracer candidates based on their multiparameter optimization scores. Both compounds ([11C]1, [11C]2) were radiolabeled by direct [11C]CO2 fixation and the in vitro autoradiographic studies demonstrated their specificity and selectivity towards MAGL. Dynamic PET imaging using MAGL knockout and wild-type mice confirmed the in vivo specificity of [11C]2. Our preliminary results indicate that morpholine-3-one derivative [11C]2 ([11C]RO7279991) binds to MAGL in vivo, and this molecular scaffold could serve as an alternative lead structure to image MAGL in the central nervous system.


Assuntos
Monoacilglicerol Lipases , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Endocanabinoides/metabolismo , Inibidores Enzimáticos/metabolismo , Camundongos , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Morfolinas/metabolismo , Tomografia por Emissão de Pósitrons/métodos
6.
J Med Chem ; 65(3): 2191-2207, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35089028

RESUMO

Monoacylglycerol lipase (MAGL) is one of the key enzymes in the endocannabinoid system. Inhibition of MAGL has been proposed as an attractive approach for the treatment of various diseases. In this study, we designed and successfully synthesized two series of piperazinyl pyrrolidin-2-one derivatives as novel reversible MAGL inhibitors. (R)-[18F]13 was identified through the preliminary evaluation of two carbon-11-labeled racemic structures [11C]11 and [11C]16. In dynamic positron-emission tomography (PET) scans, (R)-[18F]13 showed a heterogeneous distribution and matched the MAGL expression pattern in the mouse brain. High brain uptake and brain-to-blood ratio were achieved by (R)-[18F]13 in comparison with previously reported reversible MAGL PET radiotracers. Target occupancy studies with a therapeutic MAGL inhibitor revealed a dose-dependent reduction of (R)-[18F]13 accumulation in the mouse brain. These findings indicate that (R)-[18F]13 ([18F]YH149) is a highly promising PET probe for visualizing MAGL non-invasively in vivo and holds great potential to support drug development.


Assuntos
Encéfalo/diagnóstico por imagem , Inibidores Enzimáticos/química , Monoacilglicerol Lipases/metabolismo , Neuroimagem/métodos , Compostos Radiofarmacêuticos/química , Animais , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Cristalografia por Raios X , Estabilidade de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Camundongos , Conformação Molecular , Monoacilglicerol Lipases/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Distribuição Tecidual
7.
J Chem Inf Model ; 62(9): 2248-2256, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34873908

RESUMO

Traditionally, it is believed that the substrate and products of a monoacylglycerol lipase (MGL) share the same path to enter and exit the catalytic site. Glycerol (a product of MGL), however, was recently hypothesized to be released through a different path. In order to improve the catalytic efficacy and thermo-stability of MGL, it is important to articulate the pathways of a MGL products releasing. In this study, with structure biological approaches, biochemical experiments, and in silico methods, we prove that glycerol is released from a different path in the catalytic site indeed. The fatty acid (another product of MGL) does share the same binding path with the substrate. This discovery paves a new road to design MGL inhibitors or optimize MGL catalytic efficacy.


Assuntos
Glicerol , Monoacilglicerol Lipases , Catálise , Domínio Catalítico , Lipase/metabolismo , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo
8.
Biomolecules ; 11(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34572512

RESUMO

Tuberculosis continues to be a major threat to the human population. Global efforts to eradicate the disease are ongoing but are hampered by the increasing occurrence of multidrug-resistant strains of Mycobacterium tuberculosis. Therefore, the development of new treatment, and the exploration of new druggable targets and treatment strategies, are of high importance. Rv0183/mtbMGL, is a monoacylglycerol lipase of M. tuberculosis and it is involved in providing fatty acids and glycerol as building blocks and as an energy source. Since the lipase is expressed during the dormant and active phase of an infection, Rv0183/mtbMGL is an interesting target for inhibition. In this work, we determined the crystal structures of a surface-entropy reduced variant K74A Rv0183/mtbMGL in its free form and in complex with a substrate mimicking inhibitor. The two structures reveal conformational changes in the cap region that forms a major part of the substrate/inhibitor binding region. We present a completely closed conformation in the free form and semi-closed conformation in the ligand-bound form. These conformations differ from the previously published, completely open conformation of Rv0183/mtbMGL. Thus, this work demonstrates the high conformational plasticity of the cap from open to closed conformations and provides useful insights into changes in the substrate-binding pocket, the target of potential small-molecule inhibitors.


Assuntos
Monoacilglicerol Lipases/química , Mycobacterium tuberculosis/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Entropia , Modelos Moleculares , Monoacilglicerol Lipases/genética , Mutação/genética , Especificidade por Substrato , Propriedades de Superfície
9.
Molecules ; 26(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070869

RESUMO

Monoacylglycerol lipase (MAGL) is a key enzyme in the human endocannabinoid system. It is also the main enzyme responsible for the conversion of 2-arachidonoyl glycerol (2-AG) to arachidonic acid (AA), a precursor of prostaglandin synthesis. The inhibition of MAGL activity would be beneficial for the treatment of a wide range of diseases, such as inflammation, neurodegeneration, metabolic disorders and cancer. Here, the author reports the pharmacological evaluation of new disulfiram derivatives as potent inhibitors of MAGL. These analogues displayed high inhibition selectivity over fatty acid amide hydrolase (FAAH), another endocannabinoid-hydrolyzing enzyme. In particular, compound 2i inhibited MAGL in the low micromolar range. However, it did not show any inhibitory activity against FAAH.


Assuntos
Dissulfiram/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/química , Amidoidrolases/química , Ácidos Araquidônicos/química , Carbamatos/farmacologia , Dissulfiram/análogos & derivados , Endocanabinoides/química , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Glicerídeos/química , Humanos , Hidrólise , Monoglicerídeos/química , Relação Estrutura-Atividade
10.
Molecules ; 26(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924091

RESUMO

Ten benzoxazole clubbed 2-pyrrolidinones (11-20) as human monoacylglycerol lipase inhibitors were designed on the criteria fulfilling the structural requirements and on the basis of previously reported inhibitors. The designed, synthesized, and characterized compounds (11-20) were screened against monoacylglycerol lipase (MAGL) in order to find potential inhibitors. Compounds 19 (4-NO2 derivative) and 20 (4-SO2NH2 derivative), with an IC50 value of 8.4 and 7.6 nM, were found most active, respectively. Both of them showed micromolar potency (IC50 value above 50 µM) against a close analogue, fatty acid amide hydrolase (FAAH), therefore considered as selective inhibitors of MAGL. Molecular docking studies of compounds 19 and 20 revealed that carbonyl of 2-pyrrolidinone moiety sited at the oxyanion hole of catalytic site of the enzyme stabilized with three hydrogen bonds (~2 Å) with Ala51, Met123, and Ser122, the amino acid residues responsible for the catalytic function of the enzyme. Remarkably, the physiochemical and pharmacokinetic properties of compounds 19 and 20, computed by QikProp, were found to be in the qualifying range as per the proposed guideline for good orally bioactive CNS drugs. In formalin-induced nociception test, compound 20 reduced the pain response in acute and late stages in a dose-dependent manner. They significantly demonstrated the reduction in pain response, having better potency than the positive control gabapentin (GBP), at 30 mg/kg dose. Compounds 19 and 20 were submitted to NCI, USA, for anticancer activity screening. Compounds 19 (NSC: 778839) and 20 (NSC: 778842) were found to have good anticancer activity on SNB-75 cell line of CNS cancer, exhibiting 35.49 and 31.88% growth inhibition (% GI), respectively.


Assuntos
Antineoplásicos/química , Benzoxazóis/química , Monoacilglicerol Lipases/antagonistas & inibidores , Pirrolidinonas/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pirrolidinonas/química , Relação Estrutura-Atividade
11.
Biomolecules ; 11(4)2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916727

RESUMO

The crystallographic analysis of a lipase from Palaeococcus ferrophilus (PFL) previously annotated as a lysophospholipase revealed high structural conservation with other monoglyceride lipases, in particular in the lid domain and substrate binding pockets. In agreement with this observation, PFL was shown to be active on various monoacylglycerols. Molecular Dynamics (MD) studies performed in the absence and in the presence of ligands further allowed characterization of the dynamics of this system and led to a systematic closure of the lid compared to the crystal structure. However, the presence of ligands in the acyl-binding pocket stabilizes intermediate conformations compared to the crystal and totally closed structures. Several lid-stabilizing or closure elements were highlighted, i.e., hydrogen bonds between Ser117 and Ile204 or Asn142 and its facing amino acid lid residues, as well as Phe123. Thus, based on this complementary crystallographic and MD approach, we suggest that the crystal structure reported herein represents an open conformation, at least partially, of the PFL, which is likely stabilized by the ligand, and it brings to light several key structural features prone to participate in the closure of the lid.


Assuntos
Archaea/enzimologia , Proteínas Arqueais/química , Monoacilglicerol Lipases/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Glicerol/química , Glicerol/metabolismo , Humanos , Simulação de Dinâmica Molecular , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
12.
Molecules ; 26(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375358

RESUMO

Monoacylglycerol lipase (MAGL) is an important enzyme of the endocannabinoid system that catalyzes the degradation of the major endocannabinoid 2-arachidonoylglycerol (2-AG). MAGL is associated with pathological conditions such as pain, inflammation and neurodegenerative diseases like Parkinson's and Alzheimer's disease. Furthermore, elevated levels of MAGL have been found in aggressive breast, ovarian and melanoma cancer cells. Due to its different potential therapeutic implications, MAGL is considered as a promising target for drug design and the discovery of novel small-molecule MAGL inhibitors is of great interest in the medicinal chemistry field. In this context, we developed a pharmacophore-based virtual screening protocol combined with molecular docking and molecular dynamics simulations, which showed a final hit rate of 50% validating the reliability of the in silico workflow and led to the identification of two promising and structurally different reversible MAGL inhibitors, VS1 and VS2. These ligands represent a valuable starting point for structure-based hit-optimization studies aimed at identifying new potent MAGL inhibitors.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Interface Usuário-Computador , Sítios de Ligação , Inibidores Enzimáticos/química , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo
13.
Eur J Med Chem ; 198: 112353, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32371333

RESUMO

α/ß-Hydrolase domain 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes monoacylglycerol (MAG) lipids, particularly the endogenous cannabinoid 2-arachidonoylglycerol (2-AG), in both central and peripheral tissues. ABHD6 and its substrates have been shown to be involved in the modulation of various (patho)physiological processes, including neurotransmission, inflammation, insulin secretion, adipose browning, food intake, autoimmune disorders, as well as neurological and metabolic diseases, making this enzyme a promising therapeutic target to treat several diseases. This review will focus on the molecular mechanism, biological functions and pathological roles of ABHD6, as well as recent efforts to develop ABHD6 inhibitors, providing a strong basis for the development of small molecules by targeting ABHD6 to treat diverse diseases.


Assuntos
Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Doenças Autoimunes/metabolismo , Ingestão de Alimentos/fisiologia , Humanos , Hidrólise , Inflamação/metabolismo , Secreção de Insulina/fisiologia , Doenças Metabólicas/metabolismo , Monoacilglicerol Lipases/genética , Doenças do Sistema Nervoso/metabolismo , RNA Mensageiro/metabolismo , Transmissão Sináptica/fisiologia
14.
Comp Biochem Physiol B Biochem Mol Biol ; 243-244: 110433, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32205202

RESUMO

Endocannabinoids are a class of lipid neuromodulators found throughout the animal kingdom. Among the endocannabinoids, 2-arachydonoyl glycerol (2-AG) is the most prevalent endocannabinoid and monoacylglycerol lipase (MAGL) is a serine hydrolase primarily responsible for metabolizing 2-AG in mammals. In the medicinal leech, Hirudo verbana, 2-AG has been found to be an important and multi-functional modulator of synaptic transmission and behavior. However, very little is known about the molecular components of its synthesis and degradation. In this study we have identified cDNA in Hirudo that encodes a putative MAGL (HirMAGL). The encoded protein exhibits considerable sequence and structural conservation with mammalian forms of MAGL, especially in the catalytic triad that mediates 2-AG metabolism. Additionally, HirMAGL transcripts are detected in the Hirudo central nervous system. When expressed in HEK 293 cells HirMAGL segregates to the plasma membrane as expected. It also exhibits serine hydrolase activity that is blocked when a critical active site residue is mutated. HirMAGL also demonstrates the capacity to metabolize 2-AG and this capacity is also prevented when the active site is mutated. Finally, HirMAGL activity is inhibited by JZL184 and MJN110, specific inhibitors of mammalian MAGL. To our knowledge these findings represent the first characterization of an invertebrate form of MAGL and show that HirMAGL exhibits many of the same properties as mammalian MAGL's that are responsible for 2-AG metabolism.


Assuntos
Endocanabinoides/metabolismo , Sanguessugas/enzimologia , Monoacilglicerol Lipases/metabolismo , Animais , Benzodioxóis/farmacologia , Carbamatos/farmacologia , Membrana Celular/metabolismo , Clonagem Molecular , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Sanguessugas/química , Sanguessugas/genética , Sanguessugas/metabolismo , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/genética , Filogenia , Piperidinas/farmacologia , Succinimidas/farmacologia
15.
J Med Chem ; 62(18): 8532-8543, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31483137

RESUMO

Monoacylglycerol lipase (MAGL), a serine hydrolase extensively expressed throughout the brain, serves as a key gatekeeper regulating the tone of endocannabinoid signaling. Preclinically, inhibition of MAGL is known to provide therapeutic benefits for a number of neurological disorders. The availability of a MAGL-specific positron emission tomography (PET) ligand would considerably facilitate the development and clinical characterization of MAGL inhibitors via noninvasive and quantitative PET imaging. Herein, we report the identification of the potent and selective irreversible MAGL inhibitor 7 (PF-06809247) as a suitable radioligand lead, which upon radiolabeling was found to exhibit a high level of MAGL specificity; this enabled cross-species measurement of MAGL brain expression (Bmax), assessment of in vivo binding in the rat, and nonhuman primate PET imaging.


Assuntos
Encéfalo/diagnóstico por imagem , Monoacilglicerol Lipases/química , Tomografia por Emissão de Pósitrons , Animais , Sítios de Ligação , Encéfalo/enzimologia , Carbamatos/farmacologia , Cães , Desenho de Fármacos , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligantes , Células Madin Darby de Rim Canino , Imageamento por Ressonância Magnética , Ratos , Ratos Sprague-Dawley , Solventes
16.
Molecules ; 24(12)2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208066

RESUMO

Monoacylglycerol lipase (MAGL) is a serine hydrolase that has a key regulatory role in controlling the levels of 2-arachidonoylglycerol (2-AG), the main signaling molecule in the endocannabinoid system. Identification of selective modulators of MAGL enables both to provide new tools for investigating pathophysiological roles of 2-AG, and to discover new lead compounds for drug design. The development of sensitive and reliable methods is crucial to evaluate this modulatory activity. In the current study, we report readily synthesized long-wavelength putative fluorogenic substrates with different acylic side chains to find a new probe for MAGL activity. 7-Hydroxyresorufinyl octanoate proved to be the best substrate thanks to the highest rate of hydrolysis and the best Km and Vmax values. In addition, in silico evaluation of substrates interaction with the active site of MAGL confirms octanoate resorufine derivative as the molecule of choice. The well-known MAGL inhibitors URB602 and methyl arachidonylfluorophosphonate (MAFP) were used for the assay validation. The assay was highly reproducible with an overall average Z' value of 0.86. The fast, sensitive and accurate method described in this study is suitable for low-cost high-throughput screening (HTS) of MAGL modulators and is a powerful new tool for studying MAGL activity.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes , Ensaios de Triagem em Larga Escala , Monoacilglicerol Lipases/antagonistas & inibidores , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala/métodos , Humanos , Hidrólise , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monoacilglicerol Lipases/química , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
17.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 270-277, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950828

RESUMO

The human membrane-bound α/ß-hydrolase domain 6 (ABHD6) protein modulates endocannabinoid signaling, which controls appetite, pain and learning, as well as being linked to Alzheimer's and Parkinson's diseases, through the degradation of the key lipid messenger 2-arachidonylglycerol (2-AG). This makes ABHD6 an attractive therapeutic target that lacks structural information. In order to better understand the molecular mechanism of 2-AG-hydrolyzing enzymes, the PA2949 protein from Pseudomonas aeruginosa, which has 49% sequence similarity to the ABHD6 protein, was cloned, overexpressed, purified and crystallized. Overexpression of PA2949 in the homologous host yielded the membrane-bound enzyme, which was purified in milligram amounts. Besides their sequence similarity, the enzymes both show specificity for the hydrolysis of 2-AG and esters of medium-length fatty acids. PA2949 in the presence of n-octyl ß-D-glucoside showed a higher activity and stability at room temperature than those previously reported for PA2949 overexpressed and purified from Escherichia coli. A suitable expression host and stabilizing detergent were crucial for obtaining crystals, which belonged to the tetragonal space group I4122 and diffracted to a resolution of 2.54 Å. This study provides hints on the functional similarity of ABHD6-like proteins in prokaryotes and eukaryotes, and might guide the structural study of these difficult-to-crystallize proteins.


Assuntos
Esterases/química , Esterases/isolamento & purificação , Monoacilglicerol Lipases/química , Pseudomonas aeruginosa/enzimologia , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Cristalização , Estabilidade Enzimática , Humanos , Cinética , Especificidade por Substrato , Temperatura
18.
Sci Rep ; 9(1): 890, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696836

RESUMO

Human alpha/beta hydrolase domain 6 (hABHD6) is an enzyme that hydrolyzes 2-arachidonoylglycerol (2-AG), a potent agonist at both cannabinoid CB1 and CB2 receptors. In vivo modulation of ABHD6 expression has been shown to have potential therapeutic applications, making the enzyme a promising drug target. However, the lack of structural information on hABHD6 limits the discovery and design of selective inhibitors. We have performed E. coli expression, purification and activity profiling screening of different hABHD6 constructs and identified a truncated variant without N-terminal transmembrane (TM) domain, hΔ29-3-ABHD6, as the most promising protein for further characterization. The elimination of the TM domain did not affect 2-AG or fluorogenic arachidonoyl, 7-hydroxy-6-methoxy-4-methylcoumarin ester (AHMMCE) substrates hydrolysis, suggesting that the TM is not essential for enzyme catalytic activity. The hΔ29-3-ABHD6 variant was purified in a single step using Immobilized Metal Affinity Chromatography (IMAC), in-solution trypsin digested, and proteomically characterized by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). The N-terminal peptide without methionine was identified indicating on a post-translational modification of the recombinant protein. The mechanism of inhibition of hABHD6 with AM6701 and WWL70 covalent probes was elucidated based on MS analysis of trypsin digested hABHD6 following the Ligand Assisted Protein Structure (LAPS) approach. We identified the carbamylated peptides containing catalytic serine (Ser148) suggesting a selective carbamylation of the enzyme by AM6701 or WWL70 and confirming an essential role of this residue in catalysis. The ability to produce substantial quantities of functional, pure hABHD6 will aid in the downstream structural characterization, and development of potent, selective inhibitors.


Assuntos
Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Proteínas Recombinantes , Sequência de Aminoácidos , Cromatografia de Afinidade , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/isolamento & purificação , Proteínas Recombinantes de Fusão , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
19.
Mini Rev Med Chem ; 19(5): 410-423, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29962341

RESUMO

INTRODUCTION: The signalling function of 2-arachidonoylglycerol (2-AG) in endocannabinoid system is delineated by Monoacylglycerol lipase (MAGL). MAGL readdresses the lipid stores in the direction of pro-tumorigenic signalling lipids in cancer cells. Selective as well as potent MAGL inhibitors are limited in number hence their continuous development may lead to a breakthrough invention in the field of MAGL inhibitors. In succession of the above, we have synthesised 2-amino-4- methylthiazole-5-carboxylate derivatives and characterised them by collective use of IR, 1H-NMR, 13C-NMR, Mass spectral data and elemental analysis. METHODOLOGY: Thirteen compounds (3c-g, 4c, 4e, 4f and 6b-f) inhibited MAGL with IC50 value 0.037- 9.60 µM. Two compounds (3g and 4c) were found to be most potent with IC50 values 0.037 and 0.063µM, respectively. Thirty synthesised compounds were sent to NCI for anticancer screening, out of which nine compounds were selected for one dose anticancer assay. Compounds 3g (NSC:788170) and 4c (NSC:788176)were found to be the most potent during one dose anticancer screening and fulfilled the specified threshold for growth inhibition criteria of NCI and were further selected for full panel five dose assay at 10-fold dilutions of five different concentrations. CONCLUSION: Compound 3g displayed GI50 value 0.865 µM against EKVX (Non-Small Cell Lung Cancer cell line), and 1.20 µM against MDA-MB-468 (Breast Cancer cell Line), while (4c) showed GI50 value 0.34 and 0.96 µM against HOP-92 and EKVX (Non-Small Cell Lung Cancer cell line) and 1.08 µM against MDA-MB-231/ATCC(Breast Cancer cell Line). In addition, molecular docking studies of the said MAGL inhibitors have also been presented in this article.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Tiazóis/química , Tiazóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Ácidos Araquidônicos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Endocanabinoides/metabolismo , Feminino , Glicerídeos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Neoplasias/enzimologia , Neoplasias/metabolismo , Relação Estrutura-Atividade
20.
Bioorg Med Chem ; 27(1): 55-64, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446439

RESUMO

Monoacylglycerol lipase (MGL) inhibition provides a potential treatment approach to glaucoma through the regulation of ocular 2-arachidonoylglycerol (2-AG) levels and the activation of CB1 receptors. Herein, we report the discovery of new series of carbamates as highly potent and selective MGL inhibitors. The new inhibitors showed potent nanomolar inhibitory activity against recombinant human and purified rat MGL, were selective (>1000-fold) against serine hydrolases FAAH and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Protein-based 1H NMR experiments indicated that inhibitor 2 rapidly formed a covalent adduct with MGL with a residence time of about 6 h. This interconversion process "intrinsic reversibility" was exploited by modifications of the ligand's size (length and bulkiness) to generate analogs with "tunable' adduct residence time (τ). Inhibitor 2 was evaluated in a normotensive murine model for assessing intraocular pressure (IOP), which could lead to glaucoma, a major cause of blindness. Inhibitor 2 was found to decrease ocular pressure by ∼4.5 mmHg in a sustained manner for at least 12 h after a single ocular application, underscoring the potential for topically-administered MGL inhibitors as a novel therapeutic target for the treatment of glaucoma.


Assuntos
Carbamatos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Glaucoma/tratamento farmacológico , Monoacilglicerol Lipases/antagonistas & inibidores , Animais , Carbamatos/síntese química , Carbamatos/química , Carbamatos/farmacocinética , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoacilglicerol Lipases/química , Piperazinas/síntese química , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/uso terapêutico , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...