Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254670

RESUMO

(1) Background: Central nervous system (CNS) development is characterized by dynamic changes in cell proliferation and differentiation. Key regulators of these transitions are the transcription factors such as SOX2 and SOX9. SOX2 is involved in the maintenance of progenitor cell state and neural stem cell multipotency, while SOX9, expressed in neurogenic niches, plays an important role in neuron/glia switch with predominant expression in astrocytes in the adult brain. (2) Methods: To validate SOX2 and SOX9 expression patterns in developing opossum (Monodelphis domestica) cortex, we used immunohistochemistry (IHC) and the isotropic fractionator method on fixed cortical tissue from comparable postnatal ages, as well as dissociated primary neuronal cultures. (3) Results: Neurons positive for both neuronal (TUJ1 or NeuN) and stem cell (SOX2) markers were identified, and their presence was confirmed with all methods and postnatal age groups (P4-6, P6-18, and P30) analyzed. SOX9 showed exclusive staining in non-neuronal cells, and it was coexpressed with SOX2. (4) Conclusions: The persistence of SOX2 expression in developing cortical neurons of M. domestica during the first postnatal month implies the functional role of SOX2 during neuronal differentiation and maturation, which was not previously reported in opossums.


Assuntos
Monodelphis , Células-Tronco Neurais , Fatores de Transcrição SOX , Animais , Monodelphis/genética , Neuroglia , Neurônios , Fatores de Transcrição SOX/genética , Córtex Cerebral/metabolismo
2.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293487

RESUMO

Marsupials have been a powerful comparative model to understand mammalian biology. However, because of the unique characteristics of their embryology, marsupial pluripotency architecture remains to be fully understood, and nobody has succeeded in developing embryonic stem cells (ESCs) from any marsupial species. We have developed an integration-free iPSC reprogramming method and established validated iPSCs from two inbred strains of a marsupial, Monodelphis domestica. The monoiPSCs showed a significant (6181 DE-genes) and highly uniform (r2 [95% CI] = 0.973 ± 0.007) resetting of the cellular transcriptome and were similar to eutherian ESCs and iPSCs in their overall transcriptomic profiles. However, monoiPSCs showed unique regulatory architecture of the core pluripotency transcription factors and were more like marsupial epiblasts. Our results suggest that POU5F1 and the splice-variant-specific expression of POU5F3 synergistically regulate the opossum pluripotency gene network. It is plausible that POU5F1, POU5F3 splice variant XM_016427856.1, and SOX2 form a self-regulatory network. NANOG expression, however, was specific to monoiPSCs and epiblasts. Furthermore, POU5F1 was highly expressed in trophectoderm cells, whereas all other pluripotency transcription factors were significantly downregulated, suggesting that the regulatory architecture of core pluripotency genes of marsupials may be distinct from that of eutherians.


Assuntos
Células-Tronco Pluripotentes Induzidas , Monodelphis , Animais , Monodelphis/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Embrionárias , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mamíferos , Reprogramação Celular/genética
3.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34751383

RESUMO

The gray short-tailed opossum (Monodelphis domestica) is an established laboratory-bred marsupial model for biomedical research. It is a critical species for comparative genomics research, providing the pivotal phylogenetic outgroup for studies of derived vs ancestral states of genomic/epigenomic characteristics for eutherian mammal lineages. To characterize the current genetic profile of this laboratory marsupial, we examined 79 individuals from eight established laboratory strains. Double digest restriction site-associated DNA sequencing and whole-genome resequencing experiments were performed to investigate the genetic architecture in these strains. A total of 66,640 high-quality single nucleotide polymorphisms (SNPs) were identified. We analyzed SNP density, average heterozygosity, nucleotide diversity, and population differentiation parameter Fst within and between the eight strains. Principal component and population structure analysis clearly resolve the strains at the level of their ancestral founder populations, and the genetic architecture of these strains correctly reflects their breeding history. We confirmed the successful establishment of the first inbred laboratory opossum strain LSD (inbreeding coefficient F > 0.99) and a nearly inbred strain FD2M1 (0.98 < F < 0.99), each derived from a different ancestral background. These strains are suitable for various experimental protocols requiring controlled genetic backgrounds and for intercrosses and backcrosses that can generate offspring with informative SNPs for studying a variety of genetic and epigenetic processes. Together with recent advances in reproductive manipulation and CRISPR/Cas9 techniques for Monodelphis domestica, the existence of distinctive inbred strains will enable genome editing on different genetic backgrounds, greatly expanding the utility of this marsupial model for biomedical research.


Assuntos
Monodelphis , Animais , Genoma , Genômica , Humanos , Laboratórios , Monodelphis/genética , Filogenia
4.
Biochem Biophys Res Commun ; 587: 85-91, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34864550

RESUMO

One of the major challenges of modern neurobiology concerns the inability of the adult mammalian central nervous system (CNS) to regenerate and repair itself after injury. It is still unclear why the ability to regenerate CNS is lost during evolution and development and why it becomes very limited in adult mammals. A convenient model to study cellular and molecular basis of this loss is neonatal opossum (Monodelphis domestica). Opossums are marsupials that are born very immature with the unique possibility to successfully regenerate postnatal spinal cord after injury in the first two weeks of their life, after which this ability abbruptly stops. Using comparative proteomic approach we identified the proteins that are differentially distributed in opossum spinal tissue that can and cannot regenerate after injury, among which stand out the proteins related to neurodegenerative diseases (NDD), such as Huntington, Parkinson and Alzheimer's disease, previously detected by comparative transcriptomics on the analog tissue. The different distribution of the selected proteins detected by comparative proteomics was further confirmed by Western blot (WB), and the changes in the expression of related genes were analysed by quantitative reverse transcription PCR (qRT-PCR). Furthermore, we explored the cellular localization of the selected proteins using immunofluorescent microscopy. To our knowledge, this is the first report on proteins differentially present in developing, non-injured mammalian spinal cord tissue with different regenerative capacities. The results of this study indicate that the proteins known to have an important role in the pathophysiology of neurodegeneration in aged CNS, could also have an important phyisological role during CNS postnatal development and in neuroregeneration process.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Monodelphis/genética , Regeneração Nervosa/genética , Proteínas do Tecido Nervoso/genética , Medula Espinal/metabolismo , Transcriptoma , Animais , Animais Recém-Nascidos , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Masculino , Anotação de Sequência Molecular , Monodelphis/crescimento & desenvolvimento , Monodelphis/metabolismo , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Proteômica/métodos , Medula Espinal/crescimento & desenvolvimento , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Fatores de Tempo
5.
Curr Biol ; 31(17): 3956-3963.e4, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34293331

RESUMO

Marsupials represent one of three extant mammalian subclasses with very unique characteristics not shared by other mammals. Most notably, much of the development of neonates immaturely born after a relatively short gestation takes place in the external environment. Among marsupials, the gray short-tailed opossum (Monodelphis domestica; hereafter "the opossum") is one of very few established laboratory models. Due to many biologically unique characteristics and experimentally advantageous features, the opossum is used as a prototype species for basic research on marsupial biology.1,2 However, in vivo studies of gene function in the opossum, and thus marsupials in general, lag far behind those of eutherian mammals due to the lack of reliable means to manipulate their genomes. In this study, we describe the successful generation of genome edited opossums by a combination of refined methodologies in reproductive biology and embryo manipulation. We took advantage of the opossum's resemblance to popular rodent models, such as the mouse and rat, in body size and breeding characteristics. First, we established a tractable pipeline of reproductive technologies, from induction of ovulation, timed copulation, and zygote collection to embryo transfer to pseudopregnant females, that warrant an essential platform to manipulate opossum zygotes. Further, we successfully demonstrated the generation of gene knockout opossums at the Tyr locus by microinjection of pronuclear stage zygotes using CRISPR/Cas9 genome editing, along with germline transmission of the edited alleles to the F1 generation. This study provides a critical foundation for venues to expand mammalian reverse genetics into the metatherian subclass.


Assuntos
Monodelphis , Animais , Sistemas CRISPR-Cas , Feminino , Edição de Genes , Genoma , Camundongos , Monodelphis/genética , Ratos
6.
Science ; 371(6536): 1383-1388, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33766885

RESUMO

αß and γδ T cell receptors (TCRs) are highly diverse antigen receptors that define two evolutionarily conserved T cell lineages. We describe a population of γµTCRs found exclusively in non-eutherian mammals that consist of a two-domain (Vγ-Cγ) γ-chain paired to a three-domain (Vµ-Vµj-Cµ) µ-chain. γµTCRs were characterized by restricted diversity in the Vγ and Vµj domains and a highly diverse unpaired Vµ domain. Crystal structures of two distinct γµTCRs revealed the structural basis of the association of the γµTCR heterodimer. The Vµ domain shared the characteristics of a single-domain antibody within which the hypervariable CDR3µ loop suggests a major antigen recognition determinant. We define here the molecular basis underpinning the assembly of a third TCR lineage, the γµTCR.


Assuntos
Monodelphis/imunologia , Receptores de Antígenos de Linfócitos T/química , Subpopulações de Linfócitos T/imunologia , Animais , Linhagem da Célula , Regiões Determinantes de Complementaridade/química , Cristalografia por Raios X , Modelos Moleculares , Monodelphis/genética , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T gama-delta
7.
Nature ; 586(7830): 612-617, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814901

RESUMO

Single-cell RNA sequencing of embryos can resolve the transcriptional landscape of development at unprecedented resolution. To date, single-cell RNA-sequencing studies of mammalian embryos have focused exclusively on eutherian species. Analysis of mammalian outgroups has the potential to identify deeply conserved lineage specification and pluripotency factors, and can extend our understanding of X dosage compensation. Metatherian (marsupial) mammals diverged from eutherians around 160 million years ago. They exhibit distinctive developmental features, including late implantation1 and imprinted X chromosome inactivation2, which is associated with expression of the XIST-like noncoding RNA RSX3. Here we perform a single-cell RNA-sequencing analysis of embryogenesis and X chromosome inactivation in a marsupial, the grey short-tailed opossum (Monodelphis domestica). We resolve the developmental trajectory and transcriptional signatures of the epiblast, primitive endoderm and trophectoderm, and identify deeply conserved lineage-specific markers that pre-date the eutherian-marsupial divergence. RSX coating and inactivation of the X chromosome occurs early and rapidly. This observation supports the hypothesis that-in organisms with early X chromosome inactivation-imprinted X chromosome inactivation prevents biallelic X silencing. We identify XSR, an RSX antisense transcript expressed from the active X chromosome, as a candidate for the regulator of imprinted X chromosome inactivation. Our datasets provide insights into the evolution of mammalian embryogenesis and X dosage compensation.


Assuntos
Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/genética , Monodelphis/embriologia , Monodelphis/genética , Análise de Célula Única , Transcriptoma/genética , Inativação do Cromossomo X/genética , Animais , Linhagem da Célula/genética , Embrião de Mamíferos/embriologia , Feminino , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Masculino , Monodelphis/classificação , RNA Antissenso/genética , RNA não Traduzido/genética , Regulação para Cima , Cromossomo X/genética
8.
BMC Genomics ; 19(1): 732, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290757

RESUMO

BACKGROUND: After a short gestation, marsupials give birth to immature neonates with lungs that are not fully developed and in early life the neonate partially relies on gas exchange through the skin. Therefore, significant lung development occurs after birth in marsupials in contrast to eutherian mammals such as humans and mice where lung development occurs predominantly in the embryo. To explore the mechanisms of marsupial lung development in comparison to eutherians, morphological and gene expression analysis were conducted in the gray short-tailed opossum (Monodelphis domestica). RESULTS: Postnatal lung development of Monodelphis involves three key stages of development: (i) transition from late canalicular to early saccular stages, (ii) saccular and (iii) alveolar stages, similar to developmental stages overlapping the embryonic and perinatal period in eutherians. Differentially expressed genes were identified and correlated with developmental stages. Functional categories included growth factors, extracellular matrix protein (ECMs), transcriptional factors and signalling pathways related to branching morphogenesis, alveologenesis and vascularisation. Comparison with published data on mice highlighted the conserved importance of extracellular matrix remodelling and signalling pathways such as Wnt, Notch, IGF, TGFß, retinoic acid and angiopoietin. The comparison also revealed changes in the mammalian gene expression program associated with the initiation of alveologenesis and birth, pointing to subtle differences between the non-functional embryonic lung of the eutherian mouse and the partially functional developing lung of the marsupial Monodelphis neonates. The data also highlighted a subset of contractile proteins specifically expressed in Monodelphis during and after alveologenesis. CONCLUSION: The results provide insights into marsupial lung development and support the potential of the marsupial model of postnatal development towards better understanding of the evolution of the mammalian bronchioalveolar lung.


Assuntos
Perfilação da Expressão Gênica , Pulmão/embriologia , Monodelphis/crescimento & desenvolvimento , Monodelphis/genética , Organogênese/genética , Animais , Pulmão/fisiologia , Especificidade de Órgãos
9.
Nat Ecol Evol ; 2(10): 1626-1632, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201962

RESUMO

A recent surge of studies have suggested that many novel genes arise de novo from previously noncoding DNA and not by duplication. However, most studies concentrated on longer evolutionary time scales and rarely considered protein structural properties. Therefore, it remains unclear how these properties are shaped by evolution, depend on genetic mechanisms and influence gene survival. Here we compare open reading frames (ORFs) from high coverage transcriptomes from mouse and another four mammals covering 160 million years of evolution. We find that novel ORFs pervasively emerge from noncoding regions but are rapidly lost again, while relatively fewer arise from the divergence of coding sequences but are retained much longer. We also find that a subset (14%) of the mouse-specific ORFs bind ribosomes and are potentially translated, showing that such ORFs can be the starting points of gene emergence. Surprisingly, disorder and other protein properties of young ORFs hardly change with gene age in short time frames. Only length and nucleotide composition change significantly. Thus, some transcribed de novo genes resemble 'frozen accidents' of randomly emerged ORFs that survived initial purging. This perspective complies with very recent studies indicating that some neutrally evolving transcripts containing random protein sequences may be translated and be viable starting points of de novo gene emergence.


Assuntos
Evolução Molecular , Mamíferos/genética , Fases de Leitura Aberta/genética , Transcriptoma/genética , Animais , Dipodomys/genética , Humanos , Camundongos/genética , Monodelphis/genética , Ratos/genética
10.
Genome Res ; 27(12): 1961-1973, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29079676

RESUMO

Sexual dimorphism depends on sex-biased gene expression, but the contributions of microRNAs (miRNAs) have not been globally assessed. We therefore produced an extensive small RNA sequencing data set to analyze male and female miRNA expression profiles in mouse, opossum, and chicken. Our analyses uncovered numerous cases of somatic sex-biased miRNA expression, with the largest proportion found in the mouse heart and liver. Sex-biased expression is explained by miRNA-specific regulation, including sex-biased chromatin accessibility at promoters, rather than piggybacking of intronic miRNAs on sex-biased protein-coding genes. In mouse, but not opossum and chicken, sex bias is coordinated across tissues such that autosomal testis-biased miRNAs tend to be somatically male-biased, whereas autosomal ovary-biased miRNAs are female-biased, possibly due to broad hormonal control. In chicken, which has a Z/W sex chromosome system, expression output of genes on the Z Chromosome is expected to be male-biased, since there is no global dosage compensation mechanism that restores expression in ZW females after almost all genes on the W Chromosome decayed. Nevertheless, we found that the dominant liver miRNA, miR-122-5p, is Z-linked but expressed in an unbiased manner, due to the unusual retention of a W-linked copy. Another Z-linked miRNA, the male-biased miR-2954-3p, shows conserved preference for dosage-sensitive genes on the Z Chromosome, based on computational and experimental data from chicken and zebra finch, and acts to equalize male-to-female expression ratios of its targets. Unexpectedly, our findings thus establish miRNA regulation as a novel gene-specific dosage compensation mechanism.


Assuntos
Galinhas/genética , Mecanismo Genético de Compensação de Dose/genética , MicroRNAs/genética , Monodelphis/genética , Caracteres Sexuais , Animais , Conjuntos de Dados como Assunto , Feminino , Tentilhões/genética , Perfilação da Expressão Gênica , Masculino , Camundongos , MicroRNAs/biossíntese , Proteínas/genética , Sequências Reguladoras de Ácido Nucleico
11.
Genetics ; 204(4): 1601-1612, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27784721

RESUMO

Evolutionary studies have long emphasized that the genetic architecture of traits holds important microevolutionary consequences. Yet, studies comparing the genetic architecture of traits across species are rare, and discussions of the evolution of genetic systems are made on theoretical arguments rather than on empirical evidence. Here, we compared the genetic architecture of cranial traits in two different mammalian model organisms: the gray short-tailed opossum, Monodelphis domestica, and the laboratory mouse, Mus musculus We show that both organisms share a highly polygenic genetic architecture for craniofacial traits, with many loci of small effect. However, these two model species differ significantly in the overall degree of pleiotropy, N, of the genotype-to-phenotype map, with opossums presenting a higher average N They also diverge in their degree of genetic modularity, with opossums presenting less modular patterns of genetic association among traits. We argue that such differences highlight the context dependency of gene effects, with developmental systems shaping the variational properties of genetic systems. Finally, we also demonstrate based on the opossum data that current measurements for the relationship between the mutational effect size and N need to be re-evaluated in relation to the importance of the cost of pleiotropy for mammals.


Assuntos
Evolução Molecular , Pleiotropia Genética , Genótipo , Animais , Camundongos , Modelos Genéticos , Monodelphis/genética
12.
RNA Biol ; 13(9): 826-36, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27315396

RESUMO

Long non-coding RNAs (lncRNAs) are widely expressed and play various roles in cell homeostasis. However, because of their low conservation at the sequence level, recapitulating lncRNA evolutionary history is often challenging. While performing an ultrastructural analysis of viral particles present in uterine glands of gestating opossum females, we serendipitously noticed the presence of numerous structures similar to paraspeckles, nuclear bodies which in human and mouse cells are assembled around an architectural NEAT1/MENϵ/ß lncRNA. Here, using an opossum kidney (OK) cell line, we confirmed by immuno-electron microscopy the presence of paraspeckles in marsupials. We then identified the orthologous opossum NEAT1 gene which, although poorly conserved at the sequence level, displays NEAT1 characteristic features such as short and long isoforms expressed from a unique promoter and for the latter an RNase P cleavage site at its 3'-end. Combining tissue-specific qRT-PCR, in situ hybridization at the optical and electron microscopic levels, we show that (i) NEAT1 is paraspeckle-associated in opossum (ii) NEAT1 expression is strongly induced in late gestation in uterine/placental extracts (iii) NEAT1 induction occurs in the uterine gland nuclei in which paraspeckles were detected. Finally, treatment of OK cells with proteasome inhibitors induces paraspeckle assembly, as previously observed in human cells. Altogether, these results demonstrate that paraspeckles are tissue-specific, stress-responding nuclear bodies in marsupials, illustrating their structural and functional continuity over 200 My of evolution throughout the mammalian lineage. In contrast, the rapid evolution of the NEAT1 transcripts highlights the relaxed constraint that, despite functional conservation, is exerted on this lncRNA.


Assuntos
Evolução Molecular , Monodelphis/genética , RNA Longo não Codificante/genética , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Mapeamento Cromossômico , Expressão Gênica , Conformação de Ácido Nucleico , Especificidade de Órgãos/genética , Organogênese/genética , Isoformas de RNA , RNA Longo não Codificante/química
13.
PLoS One ; 10(7): e0133314, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186457

RESUMO

Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein family, which also includes the enamel matrix proteins amelogenin, ameloblastin and enamelin. Although AMTN is supposed to play an important role in enamel formation, data were long limited to the rodents, in which it is expressed during the maturation stage. Recent comparative studies in sauropsids and amphibians revealed that (i) AMTN was expressed earlier, i.e. as soon as ameloblasts are depositing the enamel matrix, and (ii) AMTN structure was different, a change which mostly resulted from an intraexonic splicing in the large exon 8 of an ancestral mammal. The present study was performed to know whether the differences in AMTN structure and expression in rodents compared to non-mammalian tetrapods dated back to an early ancestral mammal or were acquired later in mammalian evolution. We sequenced, assembled and screened the jaw transcriptome of a neonate opossum Monodelphis domestica, a marsupial. We found two AMTN transcripts. Variant 1, representing 70.8% of AMTN transcripts, displayed the structure known in rodents, whereas variant 2 (29.2%) exhibited the nonmammalian tetrapod structure. Then, we studied AMTN expression during amelogenesis in a neonate specimen. We obtained similar data as those reported in rodents. These findings indicate that more than 180 million years ago, before the divergence of marsupials and placentals, changes occurred in AMTN function and structure. The spatiotemporal expression was delayed to the maturation stage of amelogenesis and the intraexonic splicing gave rise to isoform 1, encoded by variant 1 and lacking the RGD motif. The ancestral isoform 2, housing the RGD, was initially conserved, as demonstrated here in a marsupial, then secondarily lost in the placental lineages. These findings bring new elements towards our understanding of the non-prismatic to prismatic enamel transition that occurred at the onset of mammals.


Assuntos
Amelogênese/genética , Esmalte Dentário/crescimento & desenvolvimento , Esmalte Dentário/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Monodelphis/genética , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Proteínas do Esmalte Dentário/química , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Dados de Sequência Molecular , Monodelphis/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
14.
J Evol Biol ; 28(4): 973-85, 2015 04.
Artigo em Inglês | MEDLINE | ID: mdl-25818173

RESUMO

We tested the hypothesis that the rate of marsupial cranial evolution is dependent on the distribution of genetic variation in multivariate space. To do so, we carried out a genetic analysis of cranial morphological variation in laboratory strains of Monodelphis domestica and used estimates of genetic covariation to analyse the morphological diversification of the Monodelphis brevicaudata species group. We found that within-species genetic variation is concentrated in only a few axes of the morphospace and that this strong genetic covariation influenced the rate of morphological diversification of the brevicaudata group, with between-species divergence occurring fastest when occurring along the genetic line of least resistance. Accounting for the geometric distribution of genetic variation also increased our ability to detect the selective regimen underlying species diversification, with several instances of selection only being detected when genetic covariances were taken into account. Therefore, this work directly links patterns of genetic covariation among traits to macroevolutionary patterns of morphological divergence. Our findings also suggest that the limited distribution of Monodelphis species in morphospace is the result of a complex interplay between the limited dimensionality of available genetic variation and strong stabilizing selection along two major axes of genetic variation.


Assuntos
Variação Genética , Monodelphis/anatomia & histologia , Monodelphis/genética , Animais , Evolução Biológica , Crânio/anatomia & histologia
15.
Immunogenetics ; 67(4): 259-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25737310

RESUMO

The gray short-tailed opossum Monodelphis domestica is one of the few marsupial species for which a high quality whole genome sequence is available and the major histocompatibility complex (MHC) region has been annotated. Previous analyses revealed only a single locus within the opossum MHC region, designated Modo-UA1, with the features expected for encoding a functionally classical class I α-chain. Nine other class I genes found within the MHC are highly divergent and have features usually associated with non-classical roles. The original annotation, however, was based on an early version of the opossum genome assembly. More recent analyses of allelic variation in individual opossums revealed too many Modo-UA1 sequences per individual to be accounted for by a single MHC class I locus found in the genome assembly. A reanalysis of a later generation assembly, MonDom5, revealed the presence of two additional loci, now designated Modo-UA3 and UA4, in a region that was expanded and more complete than in the earlier assembly. Modo-UA1, UA3, and UA4 are all transcribed, although Modo-UA4 transcripts are rarer. Modo-UA4 is also relatively non-polymorphic. Evidence presented support the accuracy of the later assembly and the existence of three related class I genes in the opossum, making opossums more typical of mammals and most tetrapods by having multiple apparent classical MHC class I loci.


Assuntos
Complexo Principal de Histocompatibilidade/genética , Monodelphis/genética , Monodelphis/imunologia , Sequência de Aminoácidos , Animais , Variação Genética , Filogenia , Alinhamento de Sequência
16.
BMC Evol Biol ; 14: 267, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25539578

RESUMO

BACKGROUND: X chromosome inactivation is the transcriptional silencing of one X chromosome in the somatic cells of female mammals. In eutherian mammals (e.g. humans) one of the two X chromosomes is randomly chosen for silencing, with about 15% (usually in younger evolutionary strata of the X chromosome) of genes escaping this silencing. In contrast, in the distantly related marsupial mammals the paternally derived X is silenced, although not as completely as the eutherian X. A chromosome wide examination of X inactivation, using RNA-seq, was recently undertaken in grey short-tailed opossum (Monodelphis domestica) brain and extraembryonic tissues. However, no such study has been conduced in Australian marsupials, which diverged from their American cousins ~80 million years ago, leaving a large gap in our understanding of marsupial X inactivation. RESULTS: We used RNA-seq data from blood or liver of a family (mother, father and daughter) of tammar wallabies (Macropus eugenii), which in conjunction with available genome sequence from the mother and father, permitted genotyping of 42 expressed heterozygous SNPs on the daughter's X. These 42 SNPs represented 34 X loci, of which 68% (23 of the 34) were confirmed as inactivated on the paternally derived X in the daughter's liver; the remaining 11 X loci escaped inactivation. Seven of the wallaby loci sampled were part of the old X evolutionary stratum, of which three escaped inactivation. Three loci were classified as part of the newer X stratum, of which two escaped inactivation. A meta-analysis of previously published opossum X inactivation data revealed that 5 of 52 genes in the old X stratum escaped inactivation. CONCLUSIONS: We demonstrate that chromosome wide inactivation of the paternal X is common to an Australian marsupial representative, but that there is more escape from inactivation than reported for opossum (32% v 14%). We also provide evidence that, unlike the human X chromosome, the location of loci within the oldest evolutionary stratum on the marsupial X does not correlate with their probability of escape from inactivation.


Assuntos
Evolução Biológica , Cromossomos de Mamíferos/genética , Macropodidae/genética , Mamíferos/genética , Monodelphis/genética , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Austrália , Feminino , Humanos , Masculino , Mamíferos/classificação , Monodelphis/classificação
17.
Mol Phylogenet Evol ; 79: 199-214, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25017146

RESUMO

Short-tailed opossums (genus Monodelphis) represent one of the most speciose clades of New World marsupials, with 26 currently recognized species that collectively range from eastern Panama to northern Argentina. Here we present the first phylogenetic analyses of the genus based on dense taxonomic sampling and multiple genes. From most sampled species we obtained >4800bp of DNA sequence from one mitochondrial gene (CYTB), two autosomal exons (IRBP exon 1, BRCA1 exon 11), one autosomal intron (SLC38 intron 7), and one X-linked intron (OGT intron 14). Maximum-parsimony, maximum-likelihood and Bayesian analyses of these data strongly support the monophyly of Monodelphis and recover six major clades within the genus. Additionally, our analyses support previous suggestions that several nominal taxa are synonyms of other species (M. "sorex" of M. dimidiata, M. "theresa" of M. scalops, M. "rubida" and M. "umbristriata" of M. americana, and M. "maraxina" of M. glirina). By contrast, four unnamed lineages recovered by our analyses may represent new species. Reconstructions of ancestral states of two discrete characters-dorsal pelage color pattern and habitat-suggest that the most recent common ancestor of Monodelphis was uniformly colored (with unpatterned dorsal pelage) and inhabited moist forest. Whereas some dorsal pelage patterns appear to have evolved homoplastically in Monodelphis, dorsal stripes may have had a unique historical origin in this genus.


Assuntos
Evolução Biológica , Monodelphis/classificação , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , Éxons , Genes Mitocondriais , Íntrons , Funções Verossimilhança , Modelos Genéticos , Monodelphis/anatomia & histologia , Monodelphis/genética , Análise de Sequência de DNA
18.
PLoS One ; 9(6): e99080, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24914927

RESUMO

This study describes a combined transcriptome and proteome analysis of Monodelphis domestica response to spinal cord injury at two different postnatal ages. Previously we showed that complete transection at postnatal day 7 (P7) is followed by profuse axon growth across the lesion with near-normal locomotion and swimming when adult. In contrast, at P28 there is no axon growth across the lesion, the animals exhibit weight-bearing locomotion, but cannot use hind limbs when swimming. Here we examined changes in gene and protein expression in the segment of spinal cord rostral to the lesion at 24 h after transection at P7 and at P28. Following injury at P7 only forty genes changed (all increased expression); most were immune/inflammatory genes. Following injury at P28 many more genes changed their expression and the magnitude of change for some genes was strikingly greater. Again many were associated with the immune/inflammation response. In functional groups known to be inhibitory to regeneration in adult cords the expression changes were generally muted, in some cases opposite to that required to account for neurite inhibition. For example myelin basic protein expression was reduced following injury at P28 both at the gene and protein levels. Only four genes from families with extracellular matrix functions thought to influence neurite outgrowth in adult injured cords showed substantial changes in expression following injury at P28: Olfactomedin 4 (Olfm4, 480 fold compared to controls), matrix metallopeptidase (Mmp1, 104 fold), papilin (Papln, 152 fold) and integrin α4 (Itga4, 57 fold). These data provide a resource for investigation of a priori hypotheses in future studies of mechanisms of spinal cord regeneration in immature animals compared to lack of regeneration at more mature stages.


Assuntos
Envelhecimento/genética , Monodelphis/crescimento & desenvolvimento , Monodelphis/genética , Proteoma/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Transcriptoma/genética , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Interleucina-1beta/metabolismo , Masculino , Bainha de Mielina/metabolismo , Tamanho do Órgão/genética , Proteômica , Medula Espinal/metabolismo , Medula Espinal/patologia
19.
BMC Genomics ; 15: 89, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24484454

RESUMO

BACKGROUND: Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. RESULTS: We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. CONCLUSIONS: In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines.


Assuntos
Fibroblastos/metabolismo , Genoma , Impressão Genômica , Histonas/genética , Monodelphis/genética , Animais , Imunoprecipitação da Cromatina , Ilhas de CpG , Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Masculino , Proteína Meis1 , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
20.
Genome Res ; 24(1): 70-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24065774

RESUMO

Evidence from a few genes in diverse species suggests that X-chromosome inactivation (XCI) in marsupials is characterized by exclusive, but leaky inactivation of the paternally derived X chromosome. To study the phenomenon of marsupial XCI more comprehensively, we profiled parent-of-origin allele-specific expression, DNA methylation, and histone modifications in fetal brain and extra-embryonic membranes in the gray, short-tailed opossum (Monodelphis domestica). The majority of X-linked genes (152 of 176 genes with trackable SNP variants) exhibited paternally imprinted expression, with nearly 100% of transcripts derived from the maternal allele; whereas 24 loci (14%) escaped inactivation, showing varying levels of biallelic expression. In addition to recently reported evidence of marsupial XCI regulation by the noncoding Rsx transcript, strong depletion of H3K27me3 at escaper gene loci in the present study suggests that histone state modifications also correlate strongly with opossum XCI. In contrast to mouse, the opossum did not show an association between X-linked gene expression and promoter DNA methylation, with one notable exception. Unlike all other X-linked genes examined, Rsx was differentially methylated on the maternal and paternal X chromosomes, and expression was exclusively from the inactive (paternal) X chromosome. Our study provides the first comprehensive catalog of parent-of-origin expression status for X-linked genes in a marsupial and sheds light on the regulation and evolution of imprinted XCI in mammals.


Assuntos
Encéfalo/embriologia , Genes Ligados ao Cromossomo X , Monodelphis/embriologia , Monodelphis/genética , Placenta/metabolismo , RNA não Traduzido/genética , Inativação do Cromossomo X , Cromossomo X/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Metilação de DNA , Embrião de Mamíferos , Epigênese Genética , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Histonas , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Gravidez , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...