Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Arch Toxicol ; 98(1): 347-361, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37906319

RESUMO

The acyclic linear monoterpenes Linalool (Lin) and Linalyl acetate (LinAc) occur in nature as major constituents of various essential oils such as lavender oils. A potential endocrine activity of these compounds was discussed in literature including premature thelarche and prepubertal gynecomastia due to lavender product use. This study aims to follow-up on these critical findings reported by testing Lin and LinAc in several studies in line with current guidance and regulatory framework. No relevant anti-/ER and AR-mediated activity was observed in recombinant yeast cell-based screening tests and guideline reporter gene in vitro assays in mammalian cells. Findings in the screening test suggested an anti-androgenic activity, which could not be confirmed in the respective mammalian cell guideline assay. Mechanistic guideline in vivo studies (Uterotrophic and Hershberger assays) with Lin did not show significant dose related changes in estrogen or androgen sensitive organ weights and a guideline reproductive toxicity screening study did not reveal evident effects on sex steroid hormone sensitive organ weights, associated histopathological findings and altered sperm parameters. Estrous cycling and mating/fertility indices were not affected and no evident Lin-related steroid hormone dependent effects were found in the offspring. Overall, the initial concerns from literature were not confirmed. Findings in the yeast screening test were aberrant from follow-up guideline in vitro and in vivo studies, which underlines the need to apply careful interpretation of single in vitro test results to support a respective line of evidence and to establish a biologically plausible link to an adverse outcome.


Assuntos
Androgênios , Óleos Voláteis , Animais , Masculino , Alérgenos , Estrona , Mamíferos , Monoterpenos/farmacologia , Monoterpenos/toxicidade , Óleos Voláteis/farmacologia , Óleos Voláteis/toxicidade , Óleos de Plantas , Saccharomyces cerevisiae , Sementes
2.
Toxins (Basel) ; 15(4)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37104178

RESUMO

With the increasing development of pest resistances, it is not easy to achieve satisfactory control effects by using only one agrochemical. Additionally, although the alkaloid matrine (MT) isolated from Sophora flavescens is now utilized as a botanical pesticide in China, in fact, its pesticidal activities are much lower in magnitude than those of commercially agrochemicals. To improve its pesticidal activities, here, the joint pesticidal effects of MT with another alkaloid oxymatrine (OMT) (isolated from S. flavescens) and the monoterpene essential oil 1,8-cineole (CN) (isolated from the eucalyptus leaves) were investigated in the laboratory and greenhouse conditions. Moreover, their toxicological properties were also studied. Against Plutella xylostella, when the mass ratio of MT and OMT was 8/2, good larvicidal activity was obtained; against Tetranychus urticae, when the mass ratio of MT and OMT was 3/7, good acaricidal activity was obtained. Especially when MT and OMT were combined with CN, the significant synergistic effects were observed: against P. xylostella, the co-toxicity coefficient (CTC) of MT/OMT (8/2)/CN was 213; against T. urticae, the CTC of MT/OMT (3/7)/CN was 252. Moreover, the activity changes over time of two detoxification enzymes, carboxylesterase (CarE) and glutathione S-transferase (GST) of P. xylostella treated with MT/OMT (8/2)/CN, were observed. In addition, by scanning electron microscope (SEM), the toxicological study suggested that the acaricidal activity of MT/OMT (3/7)/CN may be related to the damage of the cuticle layer crest of T. urticae.


Assuntos
Acaricidas , Alcaloides , Óleos Voláteis , Praguicidas , Óleos Voláteis/toxicidade , Monoterpenos/toxicidade , Alcaloides/toxicidade , Alcaloides/química , Quinolizinas , Eucaliptol
3.
Acta Trop ; 241: 106900, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940855

RESUMO

The blood-sucking bug, Triatoma infestans, is one of the main vectors of Chagas disease in America. It is usually controlled with pyrethroids, but the emergence of resistance to these insecticides creates the need to look for alternative products. Eugenol, menthol and menthyl acetate are botanical monoterpenes, which produce lethal and sublethal effects on insects. The purpose of this work was to determine what type of toxicological interactions occur when binary mixtures, formed by the pyrethroid permethrin and sublehtal doses of eugenol, menthol or menthyl acetate, are applied to T. infestans. First instar nymphs were exposed to filter papers impregnated with the insecticides. The number of knocked down insects was registered at different times and Knock Down Time 50% (KT50) values were calculated. The following KT50 values with their corresponding 95% Confidence Intervals were obtained: permethrin, 47.29 (39.92 - 56.32) min; permethrin + eugenol, 34.08 (29.60 - 39.01) min; permethrin + menthol, 27.54 (23.28 - 32.55) min; permethrin + menthyl acetate, 43.62 (39.99 - 47.59) min. Eugenol and menthol increased the speed of action of permethrin (synergism), but menthyl acetate had no effect on it (additivity). These results provide the basis to further explore interactions between conventional insecticides and plant monoterpenes as potential tools for controlling T. infestans.


Assuntos
Doença de Chagas , Inseticidas , Piretrinas , Triatoma , Animais , Permetrina/toxicidade , Inseticidas/toxicidade , Eugenol/toxicidade , Mentol/toxicidade , Piretrinas/farmacologia , Monoterpenos/toxicidade , Acetatos/farmacologia , Resistência a Inseticidas
4.
Molecules ; 27(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35268817

RESUMO

Monoterpenes make up the largest group of plant secondary metabolites. They can be found in numerous plants, among others, the Lamiaceae family. The compounds demonstrate antioxidative, antibacterial, sedative and anti-inflammatory activity, hence, they are often employed in medicine and pharmaceuticals. Additionally, their fragrant character is often made use of, notably in the food and cosmetic industries. Nevertheless, long-lasting studies have revealed their toxic properties. This fact has led to a detailed analysis of the compounds towards their side effects on the human organism. Although most are safe for human food and medical applications, there are monoterpene compounds that, in certain amounts or under particular circumstances (e.g., pregnancy), can cause serious disorders. The presented review characterises in vitro and in vivo, the toxic character of selected monoterpenes (α-terpinene, camphor, citral, limonene, pulegone, thujone), as well as that of their original plant sources and their essential oils. The selected monoterpenes reveal various toxic properties among which are embryotoxic, neurotoxic, allergenic and genotoxic. It is also known that the essential oils of popular plants can also reveal toxic characteristics that many people are unaware of.


Assuntos
Lamiaceae , Óleos Voláteis , Cânfora , Feminino , Humanos , Lamiaceae/metabolismo , Limoneno/metabolismo , Monoterpenos/metabolismo , Monoterpenos/toxicidade , Óleos Voláteis/metabolismo , Óleos Voláteis/toxicidade , Óleos de Plantas/metabolismo , Gravidez
12.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361036

RESUMO

Hinokitiol is a natural tropolone derivative that is present in the heartwood of cupressaceous plants, and has been extensively investigated for its anti-inflammatory, antioxidant, and antitumor properties in the context of various diseases. To date, the effects of hinokitiol on endometrial cancer (EC) has not been explored. The purpose of our study was to investigate the anti-proliferative effects of hinokitiol on EC cells. Cell viability was determined with an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the quantification of apoptosis and reactive oxygen species (ROSs) was performed by using flow cytometry, while protein expression was measured with the Western blotting technique. Hinokitiol significantly suppressed cell proliferation through the inhibition of the expression of cell-cycle mediators, such as cyclin D1 and cyclin-dependent kinase 4 (CDK4), as well as the induction of the tumor suppressor protein p53. In addition, hinokitiol increased the number of apoptotic cells and increased the protein expression of cleaved-poly-ADP-ribose polymerase (PARP) and active cleaved-caspase-3, as well as the ratio of Bcl-2-associated X protein (Bax) to B-cell lymphoma 2 (Bcl-2). Interestingly, except for KLE cells, hinokitiol induced autophagy by promoting the accumulation of the microtubule-associated protein light chain 3B (LC3B) and reducing the sequestosome-1 (p62/SQSTM1) protein level. Furthermore, hinokitiol triggered ROS production and upregulated the phosphorylation of extracellular-signal-regulated kinase (p-ERK1/2) in EC cells. These results demonstrate that hinokitiol has potential anti-proliferative and pro-apoptotic benefits in the treatment of endometrial cancer cell lines (Ishikawa, HEC-1A, and KLE).


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Apoptose , Pontos de Checagem do Ciclo Celular , Neoplasias do Endométrio/metabolismo , Monoterpenos/toxicidade , Tropolona/análogos & derivados , Autofagia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Feminino , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tropolona/toxicidade , Proteína Supressora de Tumor p53/metabolismo
13.
Toxicol Mech Methods ; 31(8): 559-565, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34112059

RESUMO

Phenolic compounds carvacrol, thymol, eugenol, and vanillin are four of the most thoroughly investigated essential oil components given their relevant biological properties. These compounds are generally considered safe for consumption and have been used in a wide range of food and non-food applications. Significant biological properties, including antimicrobial, antioxidant, analgesic, anti-inflammatory, anti-mutagenic, or anti-carcinogenic activity, have been described for these components. They are versatile molecules with wide-ranging potential applications whose use may substantially increase in forthcoming years. However, some in vitro and in vivo studies, and several case reports, have indicated that carvacrol, thymol, and eugenol may have potential toxicological effects. Oxidative stress has been described as the main mechanism underlying their cytotoxic behavior, and mutagenic and genotoxic effects have been occasionally observed. In vivo studies show adverse effects after acute and prolonged carvacrol and thymol exposure in mice, rats, and rabbits, and eugenol has caused pulmonary and renal damage in exposed frogs. In humans, exposure to these three compounds may cause different adverse reactions, including skin irritation, inflammation, ulcer formation, dermatitis, or slow healing. Toxicological vanillin effects have been less reported, although reduced cell viability after exposure to high concentrations has been described. In this context, the possible risks deriving from increased exposure to these components for human health and the environment should be thoroughly revised.


Assuntos
Óleos Voláteis , Animais , Antibacterianos , Eugenol/efeitos adversos , Eugenol/toxicidade , Camundongos , Monoterpenos/efeitos adversos , Monoterpenos/toxicidade , Óleos Voláteis/efeitos adversos , Óleos Voláteis/toxicidade , Coelhos , Ratos , Timol/efeitos adversos , Timol/toxicidade
16.
Eur J Med Chem ; 207: 112726, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905862

RESUMO

In this study, we screened a large library of (+)-camphor and (-)-borneol derivatives to assess their filovirus entry inhibition activities using pseudotype systems. Structure-activity relationship studies revealed several compounds exhibiting submicromolar IC50 values. These compounds were evaluated for their effect against natural Ebola virus (EBOV) and Marburg virus. Compound 3b (As-358) exhibited the good antiviral potency (IC50 = 3.7 µM, SI = 118) against Marburg virus, while the hydrochloride salt of this compound 3b·HCl had a strong inhibitory effect against Ebola virus (IC50 = 9.1 µM, SI = 31) and good in vivo safety (LD50 > 1000 mg/kg). The results of molecular docking and in vitro mutagenesis analyses suggest that the synthesized compounds bind to the active binding site of EBOV glycoprotein similar to the known inhibitor toremifene.


Assuntos
Antivirais/química , Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Marburgvirus/efeitos dos fármacos , Monoterpenos/química , Monoterpenos/farmacologia , Animais , Antivirais/toxicidade , Ebolavirus/fisiologia , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/fisiologia , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Monoterpenos/toxicidade , Internalização do Vírus
17.
Food Chem Toxicol ; 145: 111584, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32682832

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, fifth in the series, evaluates the safety of NFCs containing linalool and/or other characteristic mono- and sesquiterpenoid tertiary alcohols and esters using the safety evaluation procedure published by the FEMA Expert Panel in 2005 and updated in 2018. The procedure relies on a complete chemical characterization of the NFC intended for commerce and organization of the chemical constituents of each NFC into well-defined congeneric groups. The safety of each NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of both the constituent congeneric groups and the NFCs. Sixteen NFCs, derived from the Lavandula, Aniba, Elettaria, Daucus, Salvia, Coriandrum, Ribes, Guaiacum/Bulnesia, Citrus, Pogostemon, Melaleuca and Michelia genera, were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Assuntos
Aromatizantes/toxicidade , Monoterpenos/toxicidade , Plantas/química , Sesquiterpenos/toxicidade , Animais , Qualidade de Produtos para o Consumidor , Escherichia coli/efeitos dos fármacos , Feminino , Aromatizantes/química , Humanos , Masculino , Camundongos , Monoterpenos/química , Testes de Mutagenicidade , Nível de Efeito Adverso não Observado , Óleos de Plantas/química , Óleos de Plantas/toxicidade , Ratos , Salmonella typhimurium/efeitos dos fármacos , Sesquiterpenos/química
18.
Molecules ; 25(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325864

RESUMO

BACKGROUND: Fruit peels are generally underutilized byproducts of the food industry, although they are valuable sources of bioactive compounds. The aim of this study is to evaluate a new application for three Citrus peel EOs as bio-herbicides. METHODS: After a micro-morphological evaluation of Citrus peels by SEM analysis, the phytochemical composition of the EOs of Citrus × bergamia Risso & Poit., Citrus × myrtifolia Raf., and Citrus limon (L.) Osbeck was characterized by GC/FID and GC/MS analyses. The in vitro phytotoxicity against germination and initial radical elongation of several crop and weed species was evaluated. Furthermore, the eco-compatibility of these EOs has been assessed by the brine shrimp (Artemia salina) lethality assay. RESULTS: SEM analysis highlighted the morphometric differences of the schizolysigenous pockets among the peels of the three Citrus species. Oxygenated monoterpenes are the main constituents in C. × bergamia (51.09%), whereas monoterpene hydrocarbons represent the most abundant compounds in C. × myrtifolia (82.15%) and C. limon (80.33%) EOs. They showed marked and selective phytotoxic activity in vitro, often at very low concentration (0.1 µg/mL) against all plant species investigated, without showing any toxicity on Artemia salina, opening the perspective of their use as safe bio-herbicides.


Assuntos
Citrus/química , Frutas/química , Monoterpenos/análise , Óleos Voláteis/análise , Óleos de Plantas/análise , Sementes/efeitos dos fármacos , Animais , Artemia/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletrônica de Varredura , Monoterpenos/química , Monoterpenos/toxicidade , Óleos Voláteis/química , Óleos Voláteis/toxicidade , Óleos de Plantas/química , Óleos de Plantas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...