Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.476
Filtrar
1.
Methods Mol Biol ; 2807: 61-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743221

RESUMO

The 20-year revolution in optical fluorescence microscopy, supported by the optimization of both spatial resolution and timely acquisition, allows the visualization of nanoscaled objects in cell biology. Currently, the use of a recent generation of super-resolution fluorescence microscope coupled with improved fluorescent probes gives the possibility to study the replicative cycle of viruses in living cells, at the single-virus particle or protein level. Here, we highlight the protocol for visualizing HIV-1 Gag assembly at the host T-cell plasma membrane using super-resolution light microscopy. Total internal reflection fluorescence microscopy (TIRF-M) coupled with single-molecule localization microscopy (SMLM) enables the detection and characterization of the assembly of viral proteins at the plasma membrane of infected host cells at the single protein level. Here, we describe the TIRF equipment, the T-cell culture for HIV-1, the sample preparation for single-molecule localization microscopies such as PALM and STORM, acquisition protocols, and Gag assembling cluster analysis.


Assuntos
Membrana Celular , HIV-1 , Microscopia de Fluorescência , Imagem Individual de Molécula , Linfócitos T , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1/fisiologia , Humanos , Membrana Celular/metabolismo , Membrana Celular/virologia , Imagem Individual de Molécula/métodos , Linfócitos T/virologia , Linfócitos T/metabolismo , Microscopia de Fluorescência/métodos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
2.
Methods Mol Biol ; 2807: 77-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743222

RESUMO

HIV-1 virions incorporate viral RNA, cellular RNAs, and proteins during the assembly process. Some of these components, such as the viral RNA genome and viral proteins, are essential for viral replication, whereas others, such as host innate immune proteins, can inhibit virus replication. Therefore, analyzing the virion content is an integral part of studying HIV-1 replication. Traditionally, virion contents have been examined using biochemical assays, which can provide information on the presence or absence of the molecule of interest but not its distribution in the virion population. Here, we describe a method, single-virion analysis, that directly examines the presence of molecules of interest in individual viral particles using fluorescence microscopy. Thus, this method can detect both the presence and the distribution of molecules of interest in the virion population. Single-virion analysis was first developed to study HIV-1 RNA genome packaging. In this assay, HIV-1 unspliced RNA is labeled with a fluorescently tagged RNA-binding protein (protein A) and some of the Gag proteins are labeled with a different fluorescent protein (protein B). Using fluorescence microscopy, HIV-1 particles can be identified by the fluorescent protein B signal and the presence of unspliced HIV-1 RNA can be identified by the fluorescent protein A signal. Therefore, the proportions of particles that contain unspliced RNA can be determined by the fraction of Gag particles that also have a colocalized RNA signal. By tagging the molecule of interest with fluorescent proteins, single-virion analysis can be easily adapted to study the incorporation of other viral or host cell molecules into particles. Indeed, this method has been adapted to examine the proportion of HIV-1 particles that contain APOBEC3 proteins and the fraction of particles that contain a modified Gag protein. Therefore, single-virion analysis is a flexible method to study the nucleic acid and protein content of HIV-1 particles.


Assuntos
HIV-1 , Microscopia de Fluorescência , RNA Viral , Vírion , HIV-1/fisiologia , HIV-1/genética , Vírion/metabolismo , Microscopia de Fluorescência/métodos , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Montagem de Vírus , Replicação Viral , Infecções por HIV/virologia , Infecções por HIV/metabolismo
3.
Viruses ; 16(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38675835

RESUMO

Many protein expression systems are primarily utilised to produce a single, specific recombinant protein. In contrast, most biological processes such as virus assembly rely upon a complex of several interacting proteins rather than the activity of a sole protein. The high complexity of the baculovirus genome, coupled with a multiphase replication cycle incorporating distinct transcriptional steps, made it the ideal system to manipulate for high-level expression of a single, or co-expression of multiple, foreign proteins within a single cell. We have developed and utilised a series of recombinant baculovirus systems to unravel the sequential assembly process of a complex non-enveloped model virus, bluetongue virus (BTV). The high protein yields expressed by the baculovirus system not only facilitated structure-function analysis of each viral protein but were also advantageous to crystallography studies and supported the first atomic-level resolution of a recombinant viral protein, the major BTV capsid protein. Further, the formation of recombinant double-shelled virus-like particles (VLPs) provided insights into the structure-function relationships among the four major structural proteins of the BTV whilst also representing a potential candidate for a viral vaccine. The baculovirus multi-gene expression system facilitated the study of structurally complex viruses (both non-enveloped and enveloped viruses) and heralded a new generation of viral vaccines.


Assuntos
Baculoviridae , Proteínas Recombinantes , Baculoviridae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Animais , Expressão Gênica , Vírus Bluetongue/genética , Vetores Genéticos/genética , Montagem de Vírus , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química
4.
J Virol ; 98(5): e0006824, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38661364

RESUMO

The portal protein of tailed bacteriophage plays essential roles in various aspects of capsid assembly, motor assembly, genome packaging, connector formation, and infection processes. After DNA packaging is complete, additional proteins are assembled onto the portal to form the connector complex, which is crucial as it bridges the mature head and tail. In this study, we report high-resolution cryo-electron microscopy (cryo-EM) structures of the portal vertex from bacteriophage lambda in both its prohead and mature virion states. Comparison of these structures shows that during head maturation, in addition to capsid expansion, the portal protein undergoes conformational changes to establish interactions with the connector proteins. Additionally, the independently assembled tail undergoes morphological alterations at its proximal end, facilitating its connection to the head-tail joining protein and resulting in the formation of a stable portal-connector-tail complex. The B-DNA molecule spirally glides through the tube, interacting with the nozzle blade region of the middle-ring connector protein. These insights elucidate a mechanism for portal maturation and DNA translocation within the phage lambda system. IMPORTANCE: The tailed bacteriophages possess a distinct portal vertex that consists of a ring of 12 portal proteins associated with a 5-fold capsid shell. This portal protein is crucial in multiple stages of virus assembly and infection. Our research focused on examining the structures of the portal vertex in both its preliminary prohead state and the fully mature virion state of bacteriophage lambda. By analyzing these structures, we were able to understand how the portal protein undergoes conformational changes during maturation, the mechanism by which it prevents DNA from escaping, and the process of DNA spirally gliding.


Assuntos
Bacteriófago lambda , Proteínas do Capsídeo , Capsídeo , Microscopia Crioeletrônica , Vírion , Montagem de Vírus , Bacteriófago lambda/fisiologia , Bacteriófago lambda/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Vírion/metabolismo , Vírion/ultraestrutura , Capsídeo/metabolismo , Capsídeo/ultraestrutura , DNA Viral/genética , DNA Viral/metabolismo , Empacotamento do DNA , Modelos Moleculares , Conformação Proteica
5.
ACS Infect Dis ; 10(4): 1162-1173, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38564659

RESUMO

Hepatitis B virus (HBV) is the leading cause of chronic liver pathologies worldwide. HBV nucleocapsid, a key structural component, is formed through the self-assembly of the capsid protein units. Therefore, interfering with the self-assembly process is a promising approach for the development of novel antiviral agents. Applied to HBV, this approach has led to several classes of capsid assembly modulators (CAMs). Here, we report structurally novel CAMs with moderate activity and low toxicity, discovered through a biophysics-guided approach combining docking, molecular dynamics simulations, and a series of assays with a particular emphasis on biophysical experiments. Several of the identified compounds induce the formation of aberrant capsids and inhibit HBV DNA replication in vitro, suggesting that they possess modest capsid assembly modulation effects. The synergistic computational and experimental approaches provided key insights that facilitated the identification of compounds with promising activities. The discovery of preclinical CAMs presents opportunities for subsequent optimization efforts, thereby opening new avenues for HBV inhibition.


Assuntos
Capsídeo , Vírus da Hepatite B , Capsídeo/metabolismo , Proteínas do Capsídeo , Montagem de Vírus , Nucleocapsídeo
6.
J Biomed Sci ; 31(1): 34, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561844

RESUMO

BACKGROUND: It is generally believed that hepatitis B virus (HBV) core protein (HBc) dephosphorylation (de-P) is important for viral DNA synthesis and virion secretion. HBV polymerase contains four domains for terminal protein, spacer, reverse transcriptase, and RNase H activities. METHODS: HBV Polymerase mutants were transfected into HuH-7 cells and assayed for replication and HBc de-P by the Phos-tag gel analysis. Infection assay was performed by using a HepG2-NTCP-AS2 cell line. RESULTS: Here, we show that a novel phosphatase activity responsible for HBc de-P can be mapped to the C-terminal domain of the polymerase overlapping with the RNase H domain. Surprisingly, while HBc de-P is crucial for viral infectivity, it is essential for neither viral DNA synthesis nor virion secretion. The potential origin, significance, and mechanism of this polymerase-associated phosphatase activity are discussed in the context of an electrostatic homeostasis model. The Phos-tag gel analysis revealed an intriguing pattern of "bipolar distribution" of phosphorylated HBc and a de-P HBc doublet. CONCLUSIONS: It remains unknown if such a polymerase-associated phosphatase activity can be found in other related biosystems. This polymerase-associated phosphatase activity could be a druggable target in clinical therapy for hepatitis B.


Assuntos
Capsídeo , Vírus da Hepatite B , Vírus da Hepatite B/genética , Capsídeo/metabolismo , Montagem de Vírus/genética , DNA Viral , RNA Viral/metabolismo , Proteínas do Capsídeo/metabolismo , Replicação Viral/genética , Ribonuclease H/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
7.
Nat Commun ; 15(1): 3576, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678040

RESUMO

Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.


Assuntos
Microscopia Crioeletrônica , Proteínas Ligantes de Maltose , Nucleocapsídeo , Nucleocapsídeo/metabolismo , Nucleocapsídeo/ultraestrutura , Proteínas Ligantes de Maltose/metabolismo , Proteínas Ligantes de Maltose/genética , Montagem de Vírus , Capsídeo/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
8.
PLoS Comput Biol ; 20(4): e1012009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648223

RESUMO

Influenza A virus contains regions of its segmented genome associated with ability to package the segments into virions, but many such regions are poorly characterised. We provide detailed predictions of the key locations within these packaging-associated regions, and their structures, by applying a recently-improved pipeline for delineating constrained regions in RNA viruses and applying structural prediction algorithms. We find and characterise other known constrained regions within influenza A genomes, including the region associated with the PA-X frameshift, regions associated with alternative splicing, and constraint around the initiation motif for a truncated PB1 protein, PB1-N92, associated with avian viruses. We further predict the presence of constrained regions that have not previously been described. The extra characterisation our work provides allows investigation of these key regions for drug target potential, and points towards determinants of packaging compatibility between segments.


Assuntos
Biologia Computacional , Vírus da Influenza A , Montagem de Vírus , Vírus da Influenza A/genética , Montagem de Vírus/genética , Biologia Computacional/métodos , Genoma Viral/genética , Algoritmos , Simulação por Computador , RNA Viral/genética , RNA Viral/química , RNA Viral/metabolismo , Humanos , Vírus de RNA/genética
9.
Cell ; 187(9): 2236-2249.e17, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38614100

RESUMO

Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.


Assuntos
Vírus Bluetongue , Proteínas do Capsídeo , Capsídeo , Microscopia Crioeletrônica , RNA Viral , Empacotamento do Genoma Viral , Vírus Bluetongue/genética , Vírus Bluetongue/fisiologia , Vírus Bluetongue/metabolismo , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Animais , RNA Viral/metabolismo , RNA Viral/genética , Genoma Viral/genética , Montagem de Vírus , Tomografia com Microscopia Eletrônica , Vírion/metabolismo , Vírion/genética , Vírion/ultraestrutura , Modelos Moleculares , Linhagem Celular , Cricetinae
10.
Commun Biol ; 7(1): 486, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649430

RESUMO

The ongoing evolution of SARS-CoV-2 to evade vaccines and therapeutics underlines the need for innovative therapies with high genetic barriers to resistance. Therefore, there is pronounced interest in identifying new pharmacological targets in the SARS-CoV-2 viral life cycle. The small molecule PAV-104, identified through a cell-free protein synthesis and assembly screen, was recently shown to target host protein assembly machinery in a manner specific to viral assembly. In this study, we investigate the capacity of PAV-104 to inhibit SARS-CoV-2 replication in human airway epithelial cells (AECs). We show that PAV-104 inhibits >99% of infection with diverse SARS-CoV-2 variants in immortalized AECs, and in primary human AECs cultured at the air-liquid interface (ALI) to represent the lung microenvironment in vivo. Our data demonstrate that PAV-104 inhibits SARS-CoV-2 production without affecting viral entry, mRNA transcription, or protein synthesis. PAV-104 interacts with SARS-CoV-2 nucleocapsid (N) and interferes with its oligomerization, blocking particle assembly. Transcriptomic analysis reveals that PAV-104 reverses SARS-CoV-2 induction of the type-I interferon response and the maturation of nucleoprotein signaling pathway known to support coronavirus replication. Our findings suggest that PAV-104 is a promising therapeutic candidate for COVID-19 with a mechanism of action that is distinct from existing clinical management approaches.


Assuntos
Antivirais , Células Epiteliais , SARS-CoV-2 , Replicação Viral , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Células Epiteliais/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Antivirais/farmacologia , Montagem de Vírus/efeitos dos fármacos , COVID-19/virologia , Tratamento Farmacológico da COVID-19
11.
Nucleic Acids Res ; 52(8): 4440-4455, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38554115

RESUMO

Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d results in accumulation of phage-encoded mRNAs in the phage nucleus, reduces phage protein production, and compromises virion assembly. Taken together, our data show that the conserved ChmC protein plays crucial roles in the viral life cycle, potentially by facilitating phage mRNA translocation through the nuclear shell to promote protein production and virion development.


Assuntos
Bacteriófagos , RNA Mensageiro , Proteínas de Ligação a RNA , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Núcleo Celular/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , RNA Viral/metabolismo , RNA Viral/genética , Sistemas CRISPR-Cas , Montagem de Vírus/genética , Genoma Viral
12.
J Phys Chem B ; 128(11): 2595-2606, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38477117

RESUMO

The HIV-1 assembly process begins with a newly synthesized Gag polyprotein being targeted to the inner leaflet of the plasma membrane of the infected cells to form immature viral particles. Gag-membrane interactions are mediated through the myristoylated (Myr) N-terminal matrix (MA) domain of Gag, which eventually multimerize on the membrane to form trimers and higher order oligomers. The study of the structure and dynamics of peripheral membrane proteins like MA has been challenging for both experimental and computational studies due to the complex transient dynamics of protein-membrane interactions. Although the roles of anionic phospholipids (PIP2, PS) and the Myr group in the membrane targeting and stable membrane binding of MA are now well-established, the cooperative interactions between the MA monomers and MA-membrane remain elusive in the context of viral assembly and release. Our present study focuses on the membrane binding dynamics of a higher order oligomeric structure of MA protein (a dimer of trimers), which has not been explored before. Employing time-lagged independent component analysis (tICA) to our microsecond-long trajectories, we investigate conformational changes of the matrix protein induced by membrane binding. Interestingly, the Myr switch of an MA monomer correlates with the conformational switch of adjacent monomers in the same trimer. Together, our findings suggest complex protein dynamics during the formation of the immature HIV-1 lattice; while MA trimerization facilitates Myr insertion, MA trimer-trimer interactions in the immature lattice can hinder the same.


Assuntos
HIV-1 , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/metabolismo , Montagem de Vírus , Membrana Celular/metabolismo , Ligação Proteica , Proteínas da Matriz Viral/química
13.
Elife ; 132024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517277

RESUMO

For most retroviruses, including HIV, association with the plasma membrane (PM) promotes the assembly of immature particles, which occurs simultaneously with budding and maturation. In these viruses, maturation is initiated by oligomerization of polyprotein precursors. In contrast, several retroviruses, such as Mason-Pfizer monkey virus (M-PMV), assemble in the cytoplasm into immature particles that are transported across the PM. Therefore, protease activation and specific cleavage must not occur until the pre-assembled particle interacts with the PM. This interaction is triggered by a bipartite signal consisting of a cluster of basic residues in the matrix (MA) domain of Gag polyprotein and a myristoyl moiety N-terminally attached to MA. Here, we provide evidence that myristoyl exposure from the MA core and its insertion into the PM occurs in M-PMV. By a combination of experimental methods, we show that this results in a structural change at the C-terminus of MA allowing efficient cleavage of MA from the downstream region of Gag. This suggests that, in addition to the known effect of the myristoyl switch of HIV-1 MA on the multimerization state of Gag and particle assembly, the myristoyl switch may have a regulatory role in initiating sequential cleavage of M-PMV Gag in immature particles.


Assuntos
Vírus dos Macacos de Mason-Pfizer , Vírus dos Macacos de Mason-Pfizer/química , Vírus dos Macacos de Mason-Pfizer/fisiologia , Proteínas , Produtos do Gene gag/química , Endopeptidases , Membrana Celular , Montagem de Vírus
14.
Cell Host Microbe ; 32(4): 466-478.e11, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479395

RESUMO

Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.


Assuntos
Citomegalovirus , Proteômica , Humanos , Citomegalovirus/fisiologia , Montagem de Vírus , Replicação Viral , Proteínas , Autofagia , Lisossomos , Concentração de Íons de Hidrogênio
15.
Cell Chem Biol ; 31(3): 477-486.e7, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518746

RESUMO

Of the targets for HIV-1 therapeutics, the capsid core is a relatively unexploited but alluring drug target due to its indispensable roles throughout virus replication. Because of this, we aimed to identify "clickable" covalent modifiers of the HIV-1 capsid protein (CA) for future functionalization. We screened a library of fluorosulfate compounds that can undergo sulfur(VI) fluoride exchange (SuFEx) reactions, and five compounds were identified as hits. These molecules were further characterized for antiviral effects. Several compounds impacted in vitro capsid assembly. One compound, BBS-103, covalently bound CA via a SuFEx reaction to Tyr145 and had antiviral activity in cell-based assays by perturbing virus production, but not uncoating. The covalent binding of compounds that target the HIV-1 capsid could aid in the future design of antiretroviral drugs or chemical probes that will help study aspects of HIV-1 replication.


Assuntos
Proteínas do Capsídeo , HIV-1 , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Montagem de Vírus , Replicação Viral , Antivirais/farmacologia
16.
Nature ; 627(8005): 905-914, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448589

RESUMO

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Assuntos
Bacteriófagos , Capsídeo , DNA Viral , Genoma Viral , Vírion , Montagem de Vírus , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Íons/análise , Íons/química , Íons/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética , Água/análise , Água/química , Água/metabolismo
17.
Dev Comp Immunol ; 156: 105160, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38485065

RESUMO

The lacking of stable and susceptible cell lines has hampered research on pathogenic mechanism of crustacean white spot syndrome virus (WSSV). To look for the suitable cell line which can sustain WSSV infection, we performed the studies on WSSV infection in the Spodoptera frugiperda (Sf9) insect cells. In consistent with our previous study in vitro in crayfish hematopoietic tissue cells, the WSSV envelope was detached from nucleocapsid around 2 hpi in Sf9 cells, which was accompanied with the cytoplasmic transport of nucleocapsid toward the cell nucleus within 3 hpi. Furthermore, the expression profile of both gene and protein of WSSV was determined in Sf9 cells after viral infection, in which a viral immediate early gene IE1 and an envelope protein VP28 exhibited gradually increased presence from 3 to 24 hpi. Similarly, the significant increase of WSSV genome replication was found at 3-48 hpi in Sf9 cells after infection with WSSV, indicating that Sf9 cells supported WSSV genome replication. Unfortunately, no assembled progeny virion was observed at 24 and 48 hpi in Sf9 cell nuclei as determined by transmission electron microscope, suggesting that WSSV progeny could not be assembled in Sf9 cell line as the viral structural proteins could not be transported into cell nuclei. Collectively, these findings provide a cell model for comparative analysis of WSSV infection mechanism with crustacean cells.


Assuntos
Spodoptera , Vírion , Montagem de Vírus , Replicação Viral , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Spodoptera/virologia , Células Sf9 , Vírion/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Nucleocapsídeo/metabolismo , Nucleocapsídeo/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Genoma Viral , Linhagem Celular
18.
mBio ; 15(4): e0086123, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38411060

RESUMO

A member of the Retroviridae, human immunodeficiency virus type 1 (HIV-1), uses the RNA genome packaged into nascent virions to transfer genetic information to its progeny. The genome packaging step is a highly regulated and extremely efficient process as a vast majority of virus particles contain two copies of full-length unspliced HIV-1 RNA that form a dimer. Thus, during virus assembly HIV-1 can identify and selectively encapsidate HIV-1 unspliced RNA from an abundant pool of cellular RNAs and various spliced HIV-1 RNAs. Several "G" features facilitate the packaging of a dimeric RNA genome. The viral polyprotein Gag orchestrates virus assembly and mediates RNA genome packaging. During this process, Gag preferentially binds unpaired guanosines within the highly structured 5' untranslated region (UTR) of HIV-1 RNA. In addition, the HIV-1 unspliced RNA provides a scaffold that promotes Gag:Gag interactions and virus assembly, thereby ensuring its packaging. Intriguingly, recent studies have shown that the use of different guanosines at the junction of U3 and R as transcription start sites results in HIV-1 unspliced RNA species with 99.9% identical sequences but dramatically distinct 5' UTR conformations. Consequently, one species of unspliced RNA is preferentially packaged over other nearly identical RNAs. These studies reveal how conformations affect the functions of HIV-1 RNA elements and the complex regulation of HIV-1 replication. In this review, we summarize cis- and trans-acting elements critical for HIV-1 RNA packaging, locations of Gag:RNA interactions that mediate genome encapsidation, and the effects of transcription start sites on the structure and packaging of HIV-1 RNA.


Assuntos
HIV-1 , Humanos , HIV-1/fisiologia , RNA Viral/metabolismo , Montagem de Vírus , Genoma Viral
19.
Proc Natl Acad Sci U S A ; 121(7): e2312775121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38324570

RESUMO

Self-assembly of complex and functional materials remains a grand challenge in soft material science. Efficient assembly depends on a delicate balance between thermodynamic and kinetic effects, requiring fine-tuning affinities and concentrations of subunits. By contrast, we introduce an assembly paradigm that allows large error-tolerance in the subunit affinity and helps avoid kinetic traps. Our combined experimental and computational approach uses a model system of triangular subunits programmed to assemble into T = 3 icosahedral capsids comprising 60 units. The experimental platform uses DNA origami to create monodisperse colloids whose three-dimensional geometry is controlled to nanometer precision, with two distinct bonds whose affinities are controlled to kBT precision, quantified in situ by static light scattering. The computational model uses a coarse-grained representation of subunits, short-ranged potentials, and Langevin dynamics. Experimental observations and modeling reveal that when the bond affinities are unequal, two distinct hierarchical assembly pathways occur, in which the subunits first form dimers in one case and pentamers in another. These hierarchical pathways produce complete capsids faster and are more robust against affinity variation than egalitarian pathways, in which all binding sites have equal strengths. This finding suggests that hierarchical assembly may be a general engineering principle for optimizing self-assembly of complex target structures.


Assuntos
Capsídeo , Ciência dos Materiais , Capsídeo/metabolismo , Proteínas do Capsídeo/química , DNA/química , Cinética , Termodinâmica , Montagem de Vírus , Ciência dos Materiais/métodos
20.
Viruses ; 16(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399968

RESUMO

In all tailed phages, the packaging of the double-stranded genome into the head by a terminase motor complex is an essential step in virion formation. Despite extensive research, there are still major gaps in the understanding of this highly dynamic process and the mechanisms responsible for DNA translocation. Over the last fifteen years, single-molecule fluorescence technologies have been applied to study viral nucleic acid packaging using the robust and flexible T4 in vitro packaging system in conjunction with genetic, biochemical, and structural analyses. In this review, we discuss the novel findings from these studies, including that the T4 genome was determined to be packaged as an elongated loop via the colocalization of dye-labeled DNA termini above the portal structure. Packaging efficiency of the TerL motor was shown to be inherently linked to substrate structure, with packaging stalling at DNA branches. The latter led to the design of multiple experiments whose results all support a proposed torsional compression translocation model to explain substrate packaging. Evidence of substrate compression was derived from FRET and/or smFRET measurements of stalled versus resolvase released dye-labeled Y-DNAs and other dye-labeled substrates relative to motor components. Additionally, active in vivo T4 TerS fluorescent fusion proteins facilitated the application of advanced super-resolution optical microscopy toward the visualization of the initiation of packaging. The formation of twin TerS ring complexes, each expected to be ~15 nm in diameter, supports a double protein ring-DNA synapsis model for the control of packaging initiation, a model that may help explain the variety of ring structures reported among pac site phages. The examination of the dynamics of the T4 packaging motor at the single-molecule level in these studies demonstrates the value of state-of-the-art fluorescent tools for future studies of complex viral replication mechanisms.


Assuntos
Bacteriófago T4 , DNA Viral , DNA Viral/metabolismo , Bacteriófago T4/genética , Fluorescência , Montagem de Vírus , Empacotamento do DNA , Endodesoxirribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...