Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 660
Filtrar
1.
Toxicol Appl Pharmacol ; 483: 116802, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38184280

RESUMO

The incidence of postoperative myocardial injury remains high as the underlying pathogenesis is still unknown. The dorsal root ganglion (DRG) neurons express transient receptor potential vanilloid 1 (TRPV1) and its downstream effector, calcitonin gene-related peptide (CGRP) participating in transmitting pain signals and cardiac protection. Opioids remain a mainstay therapeutic option for moderate-to-severe pain relief clinically, as a critical component of multimodal postoperative analgesia via intravenous and epidural delivery. Evidence indicates the interaction of opioids and TRPV1 activities in DRG neurons. Here, we verify the potential impairment of myocardial viability by epidural usage of opioids in postoperative analgesia. We found that large dose of epidural morphine (50 µg) significantly worsened the cardiac performance (+dP/dtmax reduction by 11% and -dP/dtmax elevation by 24%, all P < 0.001), the myocardial infarct size (morphine vs Control, 0.54 ± 0.09 IS/AAR vs. 0.23 ± 0.06 IS/AAR, P < 0.001) and reduced CGRP in the myocardium (morphine vs. Control, 9.34 ± 2.24 pg/mg vs. 21.23 ± 4.32 pg/mg, P < 0.001), while induced definite suppression of nociception in the postoperative animals. It was demonstrated that activation of µ-opioid receptor (µ-OPR) induced desensitization of TRPV1 by attenuating phosphorylation of the channel in the dorsal root ganglion neurons, via inhibiting the accumulation of cAMP. CGRP may attenuated the buildup of ROS and the reduction of mitochondrial membrane potential in cardiomyocytes induced by hypoxia/reoxygenation. The findings of this study indicate that epidurally giving large dose of µ-OPR agonist may aggravate myocardial injury by inhibiting the activity of TRPV1/CGRP pathway.


Assuntos
Analgésicos Opioides , Peptídeo Relacionado com Gene de Calcitonina , Animais , Analgésicos Opioides/toxicidade , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Receptores Opioides mu/agonistas , Morfina/toxicidade , Miocárdio/patologia , Dor/tratamento farmacológico , Dor/metabolismo , Dor/patologia , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglios Espinais
2.
Artigo em Inglês | MEDLINE | ID: mdl-37127059

RESUMO

While pain results from the activation of nociceptors following noxious stimuli, mounting evidence links pain- and stress-related responses in mammals. In zebrafish, the activation of hypothalamic-pituitary-interrenal (HPI) axis may also regulate body pigmentation (the camouflage response). Here, we aimed to investigate a putative relationship between pain-, stress-, and camouflage-related parameters in adult zebrafish. To answer this question, we assessed whether intraperitoneal acetic acid injection can activate the HPI axis, measuring whole-body cortisol and the camouflage response as physiological endpoints in the presence or absence of morphine or naloxone, an opioid antagonist. Acetic acid induced a stereotypic circling behavior in the top of the tank, accompanied by abdominal writhing-like response, a specific phenotype that reflects local nociceptive effect. Both whole-body cortisol levels and camouflage response increased in the acetic acid group, while morphine prevented these responses, and naloxone antagonized morphine-induced effects. Moreover, we observed positive correlations between representative behavioral, physiological and skin coloration endpoints, and a "pain index" was proposed to summarize phenotypic profile of zebrafish under different pharmacological manipulations. Collectively, these findings suggest a coordinated activation of pain, camouflage- and stress-related pathways following acetic acid injection in zebrafish. Our data also support that camouflage response represents a novel and relevant biomarker for future probing pain and stress neurobiology, with a robust sensitivity to opioidergic drugs.


Assuntos
Ácido Acético , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Ácido Acético/toxicidade , Ácido Acético/metabolismo , Hidrocortisona/metabolismo , Naloxona/farmacologia , Naloxona/metabolismo , Morfina/toxicidade , Morfina/metabolismo , Dor , Fenótipo , Mamíferos/metabolismo
4.
J Neuroinflammation ; 19(1): 87, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414088

RESUMO

BACKGROUND: Chronic morphine exposure induces immunosuppression in the peripheral and central nervous system, resulting in susceptibility of patients to invading pathogens. Mitophagy is a crucial regulator of inflammation, and dysregulated mitophagy may cause immunosuppression, but whether mitophagy is linked with morphine-induced immunosuppression in the brain remains unknown. NLRX1 is the only mitochondrially localized NOD family receptor protein which serves as a critical regulator in immunity and mitophagy activation, but it remains an enigma how NLRX1 functions in the crosstalk between microglial inflammatory defense and mitophagy in the presence of morphine. METHODS: Primary microglia and astrocytes, BV2 and MA cell lines were utilized. Mice were stimulated with repeated morphine treatment to mimic chronic morphine exposure, and activation of mitophagy, lysosomal functions, and inflammation were assayed in specific brain regions and immune organs with or without NLRX1-silencing. RESULTS: Morphine induced microglial mitophagy in a LC3 (microtubule-associated proteins light chain 3)-dependent manner, which was mediated by NLRX1. Contrastingly, morphine impaired lysosomal functions, including generation, acidification and mitophagosome-lysosome fusion, thus leading to insufficient mitophagy activation in microglia. NLRX1-silencing inhibited mitophagy activity and rescued lysosomal functions including generation and acidification in microglia. The NLRX1-mediated incomplete mitophagy in microglial cells contributed to immunosuppression and vulnerability towards pathogenic challenge after morphine treatment. In vivo, NLRX1-mediated microglial mitophagy activation by morphine was mainly located in the murine brain cortex, striatum, and cerebellum, where NLRX1 functioned as a negative immune regulator and facilitated septic shock. Collectively, microglial immune responses to septic shock were amenable to NLRX1 silencing in the brain with morphine treatment. CONCLUSION: Morphine activated insufficient mitophagy in microglia which was regulated by NLRX1, ultimately leading to host immunosuppression and susceptible conditions in the brain.


Assuntos
Mitofagia , Choque Séptico , Animais , Humanos , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos NOD , Microglia/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Morfina/toxicidade , Choque Séptico/metabolismo , Choque Séptico/patologia
5.
Drug Chem Toxicol ; 45(1): 250-261, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31656103

RESUMO

Long-term morphine use for therapeutic approaches may lead to serious side effects. Several studies have suggested opioid antagonist and antioxidant therapy for reducing adverse effects of morphine. Cinnamaldehyde has a potent anti-oxidant property. In this study, separate and combined effects of cinnamaldehyde and naloxone (an opioid receptor antagonist) on behavioral changes and cerebellar histological and biochemical outcomes were investigated after long-term morphine administration. Seventy-eight rats were divided into two major morphine-treated and morphine-untreated groups. Morphine-treated group was subdivided into seven subgroups for receiving vehicle, normal saline, cinnamaldehyde (1.25, 5, and 20 mg/kg), naloxone, and cinnamaldehyde plus naloxone before morphine. Morphine-untreated group was subdivided into six subgroups and treated with vehicle, cinnamaldehyde (1.25, 5, and 20 mg/kg), naloxone, and their combination. Chemical compounds were administered for 28 consecutive days. Behavioral tests including footprint, rotarod, and beam balance tests were employed. Histopathological and biochemical alterations of cerebellum were determined. Body and cerebellum weights, stride width, time spent on the rotarod, Purkinje cell number, thickness of molecular and granular layers, superoxide dismutase (SOD), and total antioxidant capacity (TAC) decreased as a result of administrating morphine. Morphine increased beam transverse time, malondealdehyde (MDA), tumor necrosis factor-α (TNF-α), and caspase-3 levels. Histopathological changes such as cellular vacuolation and loss were also produced as a result of treatment with morphine. Cinnamaldehyde, naloxone, and their combination treatments improved all the above-mentioned alterations induced by morphine. We concluded that cinnamaldehyde produced a neuroprotective effect through anti-oxidant, anti-inflammatory, apoptotic, and probably naloxone-sensitive opioid receptor interaction mechanisms.


Assuntos
Morfina , Naloxona , Acroleína/análogos & derivados , Animais , Cerebelo , Morfina/toxicidade , Naloxona/toxicidade , Antagonistas de Entorpecentes/toxicidade , Ratos
6.
Pain ; 163(3): 508-517, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34433775

RESUMO

ABSTRACT: Opioids are the frontline analgesics in pain management. However, chronic use of opioid analgesics causes paradoxical pain that contributes to the decrease of their efficacy in pain control and the escalation of dose in long-term management of pain. The underling pathogenic mechanism is not well understood. Microglia have been commonly believed to play a critical role in the expression of opioid-induced hyperalgesia in animal models. We performed microglial ablation experiments using either genetic (CD11b-diphtheria toxin receptor transgenic mouse) or pharmacological (colony-stimulating factor-1 receptor inhibitor PLX5622) approaches. Surprisingly, ablating microglia using these specific and effective approaches did not cause detectable impairment in the expression of hyperalgesia induced by morphine. We confirmed this conclusion with a behavioral test of mechanical and thermal hyperalgesia, in male and female mice, and with different species (mouse and rat). These findings raise caution about the widely assumed contribution of microglia to the development of opioid-induced hyperalgesia.


Assuntos
Analgésicos Opioides , Hiperalgesia , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Animais , Feminino , Hiperalgesia/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Morfina/uso terapêutico , Morfina/toxicidade , Ratos , Roedores
7.
Int J Toxicol ; 40(6): 530-541, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34610777

RESUMO

Respiratory monitoring, using impedance with implanted telemetry in socially housed animals, was not possible until the recent development of digital signal transmission. The objective of this study was to evaluate digital telemetry monitoring of cardiopulmonary parameters (respiratory rate, tidal volume, minute volume, electrocardiography (DII), systemic arterial blood pressure, physical activity, and body temperature) in conscious, single-housed, non-rodent species commonly used in toxicology studies following administration of positive/negative controls (saline, dexmedetomidine, morphine, amphetamine, and doxapram), and also, the effects of various social housing arrangements in untreated female and/or male cynomolgus monkeys, Beagle dogs, and Göttingen minipigs (n = 4 per species). Aggressions were observed in socially housed male minipigs, however, which prevented pair-housed assessments in this species. All tested pharmacological agents significantly altered more than one organ system, highlighting important inter-organ dependencies when analyzing functional endpoints. Stress-related physiological changes were observed with single-housing or pair-housing with a new cage mate in cynomolgus monkeys and Beagle dogs, suggesting that stable social structures are preferable to limit variability, especially around dosing. Concomitant monitoring of cardiovascular and respiratory parameters from the same animals may help reduce the number of animals (3 Rs) needed to fulfill the S7A guidelines and allows for identification of organ system functional correlations. Globally, the data support the use of social housing in non-rodents for safety pharmacology multi-organ system (heart and lungs) monitoring investigations.


Assuntos
Anfetamina/toxicidade , Analgésicos Opioides/toxicidade , Sistema Cardiovascular/efeitos dos fármacos , Dexmedetomidina/toxicidade , Doxapram/toxicidade , Eletrocardiografia/efeitos dos fármacos , Morfina/toxicidade , Animais , Estimulantes do Sistema Nervoso Central/toxicidade , Cães , Impedância Elétrica , Macaca fascicularis , Suínos , Porco Miniatura
8.
Neurotoxicology ; 87: 24-29, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34478770

RESUMO

Opioid overdoses (ODs) are increasing in Mexico's northern border. Because naloxone is usually not available, witnesses inject common salt (NaCl) into a vein of OD victims in an attempt to help them regain consciousness. Despite this widespread practice, no preclinical studies have addressed the efficacy of NaCl as an opioid antidote. Here we tested saline solutions at different concentrations. Because the highest (31.6 %) caused tail necrosis, we selected 17.7 % as a hypertonic saline solution (HSS) to determine if it could prevent the lethal effect of morphine (Mor), fentanyl (Fen), or Mor + Fen in adult Wistar male rats. We also evaluated if NaCl could modify the opioid antagonist effect of naloxone. Our results show that HSS: a) sensitizes animals to thermal but not mechanical stimuli; b) does not prevent mortality caused by high morphine or fentanyl doses; c) decreases the latency to recovery from the sedative effects caused by low doses of morphine or fentanyl; and d) increases naloxone's efficacy to prevent the lethality produced by Mor or Fen, but not by Mor + Fen. These results suggest that HSS is marginally effective in shortening the recovery time from nonfatal opioid ODs and increases naloxone's efficacy to counteract opioid-induced ODs.


Assuntos
Overdose de Opiáceos/tratamento farmacológico , Solução Salina Hipertônica/uso terapêutico , Animais , Relação Dose-Resposta a Droga , Fentanila/toxicidade , Injeções Intravenosas , Masculino , Morfina/toxicidade , Naloxona/farmacologia , Medição da Dor , Ratos , Ratos Wistar , Solução Salina Hipertônica/administração & dosagem
9.
J Vasc Res ; 58(6): 392-402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34521095

RESUMO

Recent studies have shown that chronic use of prescription or illicit opioids leads to an increased risk of cardiovascular events and pulmonary arterial hypertension. Indices of vascular age and arterial stiffness are also shown to be increased in opioid-dependent patients, with the effects being more marked in women. There are currently no studies investigating sex-specific vascular dysfunction in opioid use, and the mechanisms leading to opioid-induced vascular damage remain unknown. We hypothesized that exposure to exogenous opioids causes sex-specific vascular remodeling that will be more pronounced in female. Acknowledging the emerging roles of cofilins and extracellular signal-regulated kinases (ERKs) in mediating actin dynamics, we investigated the effects of morphine on these molecules. Twenty-four hour exposure to morphine increased inactivated cofilin and activated ERKs in resistance arteries from female mice, which may promote stress fiber over-assembly. We also performed continuous intraluminal infusion of morphine in pressurized resistance arteries from male and female mice using culture pressure myographs. We observed that morphine reduced the vascular diameter in resistance arteries from female, but not male mice. These results have significant implications for the previously unexplored role of exogenous opioids as a modifiable cardiovascular risk factor, especially in women.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Analgésicos Opioides/toxicidade , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hemodinâmica/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Morfina/toxicidade , Remodelação Vascular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Masculino , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/patologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fosforilação , Ratos Sprague-Dawley , Fatores Sexuais , Transdução de Sinais
10.
Sci Rep ; 11(1): 19248, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584173

RESUMO

The discovery of the expression of opioid receptors in the skin and their role in orchestrating the process of tissue repair gave rise to questions regarding the potential effects of clinical morphine treatment in wound healing. Although short term treatment was reported to improve tissue regeneration, in vivo chronic administration was associated to an impairment of the physiological healing process and systemic fibrosis. Human mesenchymal stem cells (hMSCs) play a fundamental role in tissue regeneration. In this regard, acute morphine exposition was recently reported to impact negatively on the functional characteristics of hMSCs, but little is currently known about its long-term effects. To determine how a prolonged treatment could impair their functional characteristics, we exposed hMSCs to increasing morphine concentrations respectively for nine and eighteen days, evaluating in particular the fibrogenic potential exerted by the long-term exposition. Our results showed a time dependent cell viability decline, and conditions compatible with a cellular senescent state. Ultrastructural and protein expression analysis were indicative of increased autophagy, suggesting a relation to a detoxification activity. In addition, the enhanced transcription observed for the genes involved in the synthesis and regulation of type I collagen suggested the possibility that a prolonged morphine treatment might exert its fibrotic potential risk, even involving the hMSCs.


Assuntos
Células-Tronco Mesenquimais/efeitos dos fármacos , Morfina/toxicidade , Cicatrização/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/análise , Colágeno Tipo I/metabolismo , Fibrose , Humanos , Células-Tronco Mesenquimais/fisiologia , Cultura Primária de Células , Testes de Toxicidade Subaguda
11.
Neurosci Lett ; 761: 136111, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34271134

RESUMO

Current estimates indicate that opioid use and misuse are a rising epidemic, which presents a substantial socioeconomic burden around the world. Chronic opioid consumption, specifically during the critical period of adolescence, can lead to enduring effects not only in individuals but also in future generations. Utilizing rodent model, we have previously reported the impacts of paternal exposure to chronic morphine during adolescence on neurobehavioral features in progenies. Currently, the potential transgenerational effects of paternal morphine exposure during adolescence on anxiety-like behavior and short-term memory remains unknown. Male Wistar rats were exposed to increasing doses of morphine for ten days in adolescence (PND 30-39). Thereafter, following a 30-days drug-free period, the treated male rats mated with naïve females. The anxiety-like behavior and short-term memory performance were assessed in adult male and female offspring (PND 60) using open field and Y-maze tests. Both male and female progenies of morphine-treated sires revealed a significant reduction in the movement velocity compared to progenies of saline-treated sires as measured by open field test. Morphine-sired male but not female offspring also showed a non-significant large decreasing effect on time spent in the center and frequency of entries to the center of open field box. Moreover, a significant reduction in the number of entries and percent of time spent in the novel arm was observed in male and female morphine-sired offspring, as measured using Y-maze test. Growth outcomes also did not demonstrate any difference in the number of dam's fertility, pups birth, and death between morphine-sired and saline-sired groups in both sexes. Collectively, paternal exposure to morphine during adolescence induces sex-specific and selective disturbances in short-term memory while anxiety-like behavior was slightly disturbed.


Assuntos
Ansiedade/fisiopatologia , Memória de Curto Prazo/efeitos dos fármacos , Morfina/toxicidade , Entorpecentes/toxicidade , Animais , Ansiedade/etiologia , Ansiedade/genética , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Epigênese Genética , Feminino , Masculino , Ratos , Ratos Wistar , Caracteres Sexuais
12.
J Trace Elem Med Biol ; 67: 126776, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33984544

RESUMO

BACKGROUND: Chronic use of morphine is associated with reproductive complications, such as hypogonadism and infertility. While the side effects of morphine have been extensively studied in the testis, much less is known regarding the effects of morphine on Sertoli cells and the effects of zinc on morphine-induced testicular injury as well as their underlying mechanisms. Therefore, the purpose of this study was to investigate the effect of morphine (alone and co-administered with zinc) on cell viability and apoptosis of the testicular (Sertoli) cells as well as the tumor suppressor p53 and phosphorylated-protein kinase B (p-Akt) protein levels in both in vitro and in vivo models. METHODS: Cultured Sertoli cells were exposed to morphine (23 µM), zinc (8 µM), and zinc prior to morphine and their effects on Sertoli cell viability and apoptosis were investigated. Morphine (3 mg/kg) and zinc (5 mg/kg, 1 h before morphine) were also injected intraperitoneally to rats and then the apoptotic changes in the testis were evaluated. RESULTS: Cell viability and p-Akt protein levels decreased in morphine-treated cells, while apoptosis and p53 protein expression increased in these cells. Pretreatment with zinc recovered morphine-induced apoptotic effects, as well as over-expression of p53 and down-regulation of p-Akt. These findings were supported by a subsequent animal study. CONCLUSION: The present data indicated the protective effect of zinc against morphine-induced testicular (Sertoli) cell toxicity via p53/Akt pathways in both in vivo and in vitro models and suggested the clinical importance of zinc on infertility among chronic opioid users and addicted men.


Assuntos
Infertilidade , Testículo , Animais , Apoptose , Masculino , Morfina/toxicidade , Proteínas Proto-Oncogênicas c-akt , Ratos , Proteína Supressora de Tumor p53 , Zinco/farmacologia
13.
Food Chem Toxicol ; 152: 112200, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33891991

RESUMO

Epigenetic marks may be also affected by several factors, such as age, lifestyle, early life experiences and exposure to chemicals or drugs, such as opioids. Previous studies have focused on how morphine epigenetically regulates different regions of the brain that are implicated in tolerance, dependence and other psychiatric disorders more related to the physio-pathological effects of opioids. Nevertheless, a significant knowledge gap remains regarding the effect of chronic treatment on other organs and biological systems. Therefore, the aim of this work is to increase our knowledge about the impact of chronic morphine exposure on DNA methylation and histone modification levels in each of the organs of male and female model mice in vivo. Our results reveal, for the first time, that chronic morphine treatment induced changes in DNA methylation/hydroxymethylation and histone modification in-vivo at the systemic level, revealing a potential physiological effect on the regulation of gene expression. Notably, morphine-induced epigenetic modification occurs in a sex-dependent manner, revealing the existence of different underlying mechanisms of epigenetic modification in male and female mice.


Assuntos
DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Histonas/efeitos dos fármacos , Morfina/toxicidade , Animais , Metilação de DNA/efeitos dos fármacos , Feminino , Masculino , Camundongos , Dependência de Morfina/metabolismo , Fatores Sexuais
14.
Cardiovasc Toxicol ; 21(7): 553-562, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33796943

RESUMO

Morphine (MOR) is a strong analgesic that is often used in treatment of severe pains during cancer treatment, and thus might be concomitantly used with anticancer drugs as cisplatin (CP). The aim of the current study was to investigate the mechanisms by which MOR can affect CP-induced cardiotoxicity and to explore effects of MOR on the cytotoxic efficacy of CP. MOR (10 mg/kg/day i.p.) was administered to rats for 10 days, with or without 7.5 mg/kg CP single i.p. dose at day 5 of the experiment. In addition, MOR and/or CP were administered to MCF-7 cells to test their cytotoxicity. Compared to control, CP caused cardiotoxic effects manifested by significant increase in serum enzymatic markers; creatine kinase-MB and lactate dehydrogenase, with histopathological cardiac damage. In addition, CP caused cardiac oxidative stress, manifested by significant increased tissue lipid peroxidation product; malondialdehyde and nitric oxide, with significant decrease in tissue antioxidants as reduced glutathione, superoxide dismutase and catalase compared to control. Furthermore, CP significantly increased tissue proinflammatory cytokines; TNF-α and IL-6, as well as upregulated the apoptotic marker; caspase 3 compared to control. MOR/CP combination significantly deteriorated all tested parameters compared to CP alone. In MCF-7 breast cancer cells, administration of MOR in concentrations of 0.1, 1, 10 or 30 µM concomitantly with 1 or 10 µM CP caused dose-dependent reduction in CP-induced cytotoxicity in vitro. In conclusion, MOR administration might deteriorate CP-induced cardiotoxicity during cancer chemotherapy through oxidant, pro-inflammatory and apoptotic mechanisms, and might reduce CP chemotherapeutic efficacy.


Assuntos
Analgésicos Opioides/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cardiopatias/prevenção & controle , Morfina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Analgésicos Opioides/toxicidade , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cardiotoxicidade , Caspase 3/metabolismo , Cisplatino/toxicidade , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Células MCF-7 , Masculino , Morfina/toxicidade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
15.
Neuroscience ; 461: 80-90, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662528

RESUMO

Maternal opioids abuse has some deleterious consequences on next generations. Besides, children's rearing conditions can affect the behavioral states and brain plasticity in their later life. In the present study, we investigated the effects of maternal morphine (MOR) treatment and post-weaning rearing conditions on memory, pain threshold, and the ventral striatum dopaminergic activity in male offspring. Female Wistar rats were treated twice daily either with escalating doses of MOR or with normal saline (NS) one week before mating, during pregnancy and lactation. After weaning, the male pups were assigned to six groups and then raised for an 8-week period under three different conditions: standard (STD), isolated (ISO) or enriched environment (EE). The behavioral tests, including passive avoidance task, novel object recognition, and tail-flick test, were also performed. Moreover, the ventral striatum dopamine's content (DA), mRNA expressions of dopamine receptor 1(D1R) and dopamine receptor 2 (D2R), and dopamine transporter (DAT) were evaluated. The obtained data showed that maternal MOR exposure and post-weaning social isolation could dramatically impair memory in offspring, while EE could reverse these adverse outcomes. Moreover, results of tail flick latency indicated the increased pain threshold in EE animals. At molecular level, maternal MOR injections and social isolation reduced DA levels and altered expressions of D1R, D2R, and DAT within the ventral striatum of these male offspring. However, post-weaning EE partially buffered these changes. Our finding signified the effects of maternal MOR exposure and social isolation on the behaviors and neurochemistry of brain in next generation, and it also provided evidence on reversibility of these alterations following EE.


Assuntos
Dopamina , Estriado Ventral , Animais , Feminino , Humanos , Masculino , Morfina/toxicidade , Ratos , Ratos Wistar , Isolamento Social , Desmame
16.
J Psychopharmacol ; 35(5): 591-605, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33749357

RESUMO

BACKGROUND: Long-term morphine use is associated with serious side effects, such as morphine-induced hyperalgesia and analgesic tolerance. Previous investigations have documented the association between dopamine (DA) neurons in the ventral tegmental area (VTA) and pain. However, whether VTA DA neurons are implicated in morphine-induced hyperalgesia and analgesic tolerance remains elusive. METHODS: Initially, we observed behavioural effects of lidocaine administration into VTA or ablation of VTA DA neurons on morphine-induced hyperalgesia and anti-nociceptive tolerance. Subsequently, c-Fos expression in nucleus accumbens (NAc) shell-projecting and medial prefrontal cortex (mPFC)-projecting VTA DA neurons after chronic morphine treatment was respectively investigated. Afterwards, the effects of chemogenetic manipulation of NAc shell-projecting or mPFC-projecting DA neurons on morphine-induced hyperalgesia and anti-nociceptive tolerance were observed. Additionally, effects of chemogenetic manipulation of VTA GABA neurons on c-Fos expression in VTA DA neurons were investigated. RESULTS: Lidocaine injection into VTA relieved established hyperalgesia and anti-nociceptive tolerance whereas ablation of VTA DA neurons prevented the development of morphine-induced hyperalgesia and anti-nociceptive tolerance. Chronic morphine treatment increased c-Fos expression in NAc shell-projecting DA neurons, rather than in mPFC-projecting DA neurons. Chemogenetic manipulation of NAc shell-projecting DA neurons had influence on morphine-induced hyperalgesia and tolerance. However, chemogenetic manipulation of mPFC-projecting DA neurons had no significant effects on morphine-induced hyperalgesia and anti-nociceptive tolerance. Chemogenetic manipulation of VTA GABA neurons affected the c-Fos expression in VTA DA neurons. CONCLUSIONS: These findings revealed the involvement of NAc shell-projecting VTA DA neurons in morphine-induced hyperalgesia and anti-nociceptive tolerance, and may shed new light on the clinical management of morphine-induced hyperalgesia and analgesic tolerance. PERSPECTIVE: This study demonstrated that NAc shell-projecting DA neurons rather than mPFC-projecting DA neurons in the VTA were implicated in morphine-induced hyperalgesia and anti-nociceptive tolerance. Our findings may pave the way for the discovery of novel therapies for morphine-induced hyperalgesia and analgesic tolerance.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Tolerância a Medicamentos , Hiperalgesia/induzido quimicamente , Morfina/toxicidade , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Analgésicos Opioides/toxicidade , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Morfina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
17.
Neurotoxicol Teratol ; 85: 106964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33621603

RESUMO

Opioid abuse continues to plague society, and in recent years, there has been an epidemic, leading to increased addiction and death. It is poorly understood how prenatal opioid use affects the lives of children. The aim of this work was to evaluate the effect of early embryonic codeine or morphine exposure in zebrafish (Danio rerio), examining gastrulation progression (epiboly), teratogenic effects, mortality and locomotor behavior response to light/dark cycles. Zebrafish embryos were exposed to codeine or morphine (designated C or M) at 1, 5 or 10 mg/L (designated 01, 05 or 10, respectively) from 3 to 24 h postfertilization (hpf) or from 3 to 48 hpf (designated -24 or - 48 for 1 or 2 days of exposure, respectively). The C10-24, C01-48, C05-48 and C10-48 groups showed significantly smaller eyes than control larvae at 7 days postfertilization (dpf). Locomotor behavior of control larvae in light/dark cycles showed greater swimming time and distance in dark cycles. Two-day codeine exposure produced strong effects, showing no significant response due to light/dark cycles in distance moved. Morphine exposed groups showed similar effects as observed in 2-day codeine exposed groups, showing less large movement activity and also no significant difference between inactive duration in response to light/dark cycles. In conclusion, we observed low teratogenic effects and mortality effects. Animals exposed to high levels and higher exposure times of opioids were hypoactive, relative to controls, in the dark period. Future studies will be needed to understand the neural defects producing behavior changes.


Assuntos
Analgésicos Opioides/toxicidade , Atividade Motora/efeitos dos fármacos , Animais , Codeína/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Morfina/toxicidade , Natação , Peixe-Zebra/embriologia
18.
Mol Neurobiol ; 58(7): 3061-3070, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33624141

RESUMO

Among all the side effects, opioid-induced constipation (OIC) has the highest incidence rate in people who take chronic opioid therapy. Increasing evidence shows that enteric glial cells (EGCs) play a pivotal role in the modulation of gastrointestinal motility. We aim to investigate whether EGCs are involved in OIC and possible mechanisms. Eight-week male C57BL/6 mice were randomized into four groups: the control group, the morphine group, the gliotoxin fluorocitrate (FC) group, and the FC plus morphine group. OIC was induced by injection of morphine subcutaneously. Colonic motility was evaluated by in vivo motility assays and colonic migrating motor complex (CMMC) in vitro. Both the Ca2+ responses and the release of inflammatory cytokine by EGCs were detected in vitro. Proteins were detected by immunofluorescence staining and Western blot. The morphine group showed prolonged gastrointestinal motility compared with the control group. Once EGCs were disrupted by FC, such inhibitory effect was abolished. There was a remarkable enhancement of the GFAP expression on colonic EGCs. Immunofluorescence exhibited that µ-opioid receptor (MOR) collocated with GFAP, indicating the existence of MOR in EGCs. Moreover, morphine activated the EGCs significantly through enhancing GFAP expression and Ca2+ amplitude. Both effects can be reversed by MOR-siRNA. Morphine treatment elevated the enteric glial release of proinflammatory cytokines notably and this effect was abolished when EGCs were silenced by MOR-siRNA. The activation of EGCs via MOR and the increased proinflammatory cytokine from EGCs may be involved in morphine-induced constipation. These results provided a potential therapeutic target for OIC.


Assuntos
Constipação Intestinal/induzido quimicamente , Constipação Intestinal/metabolismo , Sistema Nervoso Entérico/metabolismo , Morfina/toxicidade , Neuroglia/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/toxicidade , Animais , Linhagem Celular , Colo/efeitos dos fármacos , Colo/metabolismo , Citocinas/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Feminino , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Gravidez , Ratos , Receptores Opioides mu/agonistas
19.
Toxicol Appl Pharmacol ; 416: 115458, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33607128

RESUMO

Morphine is an opioid agonist and a nonselective mu, kappa and delta receptor agonist. It is a commonly used analgesic drug for the treatment of acute and chronic pain as well as cancer pain. Morphine is particularly important to address the problem of morphine tolerance. Tcf7l2, known as a risk gene for schizophrenia and autism, encodes a member of the LEF1/TCF transcription factor family. TCF7L2 is an important transcription factor that is upregulated in neuropathic pain models. However, the relationship between TCF7L2 and morphine tolerance has not been reported. In this study, we found that morphine tolerance led to the upregulation of TCF7L2 in the spinal cord, and also led to the upregulation of TCF7L2 expression in glial cells, which promoted inflammation related signal, and activated TLR4 / NF-κB/NLRP3 pathway. In addition, TCF7L2 regulated microglial cell activation induced by chronic morphine treatment. Mechanically, we found that TCF7L2 transcriptionally regulated TLR4 expression, and the depletion of TCF7L2 alleviated morphine tolerance induced by chronic morphine treatment, and further alleviated pain hypersensitivity induced by chronic morphine treatment. We therefore suggested that TCF7L2 regulates the activation of TLR4/ NF-κB/NLRP3 pathway in microglia, and is involved in the formation of morphine tolerance. Our results provide a new idea for the regulation mechanism of morphine tolerance.


Assuntos
Analgésicos Opioides/toxicidade , Tolerância a Medicamentos , Hiperalgesia/induzido quimicamente , Microglia/efeitos dos fármacos , Morfina/toxicidade , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dor Nociceptiva/prevenção & controle , Receptor 4 Toll-Like/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Transdução de Sinais , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Receptor 4 Toll-Like/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Regulação para Cima
20.
Physiol Rep ; 9(2): e14709, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33484235

RESUMO

Midbrain dopamine neurons communicate signals of reward anticipation and attribution of salience. This capacity is distorted in heroin or cocaine abuse or in conditions such as human mania. A shared characteristic among rodent models of these behavioral disorders is that dopamine neurons in these animals acquired a small size and manifest an augmented spontaneous and burst activity. The biophysical mechanism underlying this increased excitation is currently unknown, but is believed to primarily follow from a substantial drop in K+ conductance secondary to morphology reduction. This work uses a dopamine neuron mathematical model to show, surprisingly, that under size diminution a reduction in K+ conductance is an adaptation that attempts to decrease cell excitability. The homeostatic response that preserves the intrinsic activity is the conservation of the ion channel density for each conductance; a result that is analytically demonstrated and challenges the experimentalist tendency to reduce intrinsic excitation to K+ conductance expression level. Another unexpected mechanism that buffers the raise in intrinsic activity is the presence of the ether-a-go-go-related gen K+ channel since its activation is illustrated to increase with size reduction. Computational experiments finally demonstrate that size attenuation results in the paradoxical enhancement of afferent-driven bursting as a reduced temporal summation indexed correlates with improved depolarization. This work illustrates, on the whole, that experimentation in the absence of mathematical models may lead to the erroneous interpretation of the counterintuitive aspects of empirical data.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/patologia , Modelos Neurológicos , Morfina/toxicidade , Potenciais de Ação , Animais , Tamanho Celular/efeitos dos fármacos , Biologia Computacional/métodos , Neurônios Dopaminérgicos/metabolismo , Fenômenos Eletrofisiológicos , Homeostase , Mesencéfalo/metabolismo , Camundongos , Entorpecentes/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...