RESUMO
Embryonic lipids are crucial for the formation of cellular membranes and dynamically participate in metabolic pathways. Cells can synthesize simple fatty acids, and the elongation of fatty acids facilitates the formation of complex lipids. The aim of this work was to investigate the involvement of the elongation of very long chain fatty acid enzyme 5 (ELOVL5) in embryonic development and lipid determination. Bovine embryos were produced in vitro using a standard protocol and randomly divided to receive one of three treatments at Day 4: morpholino (Mo) gene expression knockdown assay for ELOVL5 (ELOVL5-Mo), Mo antisense oligonucleotides for the thalassemic ß-globulin human mRNA (technical control Mo), and placebo (biological control). The phenotypes of embryonic development, cell number, ELOVL5 protein abundance, lipid droplet deposits, and lipid fingerprint were investigated. No detrimental effects (p > 0.05) were observed on embryo development in terms of cleavage (59.4 ± 3.5%, 63.6 ± 4.1%, and 65.4 ± 2.2%), blastocyst production (31.3 ± 4.2%, 28.1 ± 4.9%, and 36.1 ± 2.1%), and blastocyst cell number (99.6 ± 7.7, 100.2 ± 6.2, 86.8 ± 5.6), respectively, for biological control, technical control Mo, and ELOVL5-Mo. ELOVL5 protein abundance and cytoplasmic lipid droplet deposition were increased (p < 0.05) in ELOVL5-Mo-derived blastocysts compared with the controls. However, seven lipid species, including phosphatidylcholines, phosphatidylethanolamines, and triacylglycerol, were downregulated in the ELOVL5-Mo-derived blastocysts compared with the biological control. Therefore, ELOVL5 is involved in the determination of embryonic lipid content and composition. Transient translational blockage of ELOVL5 reduced the expression of specific lipid species and promoted increased cytoplasmic lipid droplet deposition, but with no apparent deleterious effect on embryonic development and blastocyst cell number.
Assuntos
Blastocisto/metabolismo , Membrana Celular/química , Citoplasma/química , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Animais , Blastocisto/química , Bovinos , Desenvolvimento Embrionário , Elongases de Ácidos Graxos/antagonistas & inibidores , Feminino , Técnicas de Silenciamento de Genes , Humanos , Metabolismo dos Lipídeos , Morfolinos/farmacologia , Gravidez , Globinas beta/antagonistas & inibidores , Globinas beta/genéticaRESUMO
The Reprimo gene family comprises a group of single-exon genes for which their physiological function remains poorly understood. Heretofore, mammalian Reprimo (RPRM) has been described as a putative p53-dependent tumor suppressor gene that functions at the G2/M cell cycle checkpoint. Another family member, Reprimo-like (RPRML), has not yet an established role in physiology or pathology. Importantly, RPRML expression pattern is conserved between zebrafish and human species. Here, using CRISPR-Cas9 and antisense morpholino oligonucleotides, we disrupt the expression of rprml in zebrafish and demonstrate that its loss leads to impaired definitive hematopoiesis. The formation of hemangioblasts and the primitive wave of hematopoiesis occur normally in absence of rprml. Later in development there is a significant reduction in erythroid-myeloid precursors (EMP) at the posterior blood island (PBI) and a significant decline of definitive hematopoietic stem/progenitor cells (HSPCs). Furthermore, loss of rprml also increases the activity of caspase-3 in endothelial cells within the caudal hematopoietic tissue (CHT), the first perivascular niche where HSPCs reside during zebrafish embryonic development. Herein, we report an essential role for rprml during hematovascular development in zebrafish embryos, specifically during the definitive waves of hematopoiesis, indicating for the first time a physiological role for the rprml gene.
Assuntos
Hemangioblastos/metabolismo , Proteínas de Membrana/genética , Peixe-Zebra/embriologia , Animais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Desenvolvimento Embrionário , Hematopoese , Morfolinos/farmacologia , Família Multigênica , Peixe-Zebra/sangue , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.
Assuntos
Movimento Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Crista Neural/citologia , Transdução de Sinais , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Adesões Focais/efeitos dos fármacos , Modelos Biológicos , Morfolinos/farmacologia , Crista Neural/metabolismo , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Xenopus/embriologia , Quinases da Família src/metabolismoRESUMO
Adenosinergic signaling has important effects on brain function, anatomy, and physiology in both late and early stages of development. Exposure to caffeine, a non-specific blocker of adenosine receptor, has been indicated as a developmental risk factor. Disruption of adenosinergic signaling during early stages of development can change the normal neural network formation and possibly lead to an increase in susceptibility to seizures. In this work, morpholinos (MO) temporarily blocked the translation of adenosine receptor transcripts, adora1, adora2aa, and adora2ab, during the embryonic phase of zebrafish. It was observed that the block of adora2aa and adora2aa + adora2ab transcripts increased the mortality rate and caused high rate of malformations. To test the susceptibility of MO adora1, MO adora2aa, MO adora2ab, and MO adora2aa + adora2ab animals to seizure, pentylenetetrazole (10 mM) was used as a convulsant agent in larval and adult stages of zebrafish development. Although no MO promoted significant differences in latency time to reach the seizures stages in 7-day-old larvae, during the adult stage, all MO animals showed a decrease in the latency time to reach stages III, IV, and V of seizure. These results indicated that transient interventions in the adenosinergic signaling through high affinity adenosine receptors during embryonic development promote strong outcomes on survival and morphology. Additionally, long-term effects on neural development can lead to permanent impairment on neural signaling resulting in increased susceptibility to seizure.
Assuntos
Adenosina/metabolismo , Desenvolvimento Embrionário , Epilepsia/embriologia , Epilepsia/patologia , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Suscetibilidade a Doenças , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilização , Larva/efeitos dos fármacos , Masculino , Morfolinos/farmacologia , Atividade Motora/efeitos dos fármacos , FenótipoRESUMO
In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula -chordin and -noggin expressing centre (BCNE) and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain) is directly required to restrict anterior neural development.
Assuntos
Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Embrião não Mamífero/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Mesoderma/embriologia , Notocorda/embriologia , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Blástula/efeitos dos fármacos , Blástula/metabolismo , Padronização Corporal/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glicoproteínas/metabolismo , Cabeça/anormalidades , Cabeça/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Morfolinos/farmacologia , Placa Neural/embriologia , Placa Neural/metabolismo , Neurogênese/efeitos dos fármacos , Notocorda/efeitos dos fármacos , Notocorda/metabolismo , Fenótipo , Xenopus/metabolismoRESUMO
Neural crest induction is the result of the combined action at the neural plate border of FGF, BMP, and Wnt signals from the neural plate, mesoderm and nonneural ectoderm. In this work we show that the expression of Indian hedgehog (Ihh, formerly named Banded hedgehog) and members of the Hedgehog pathway occurs at the prospective neural fold, in the premigratory and migratory neural crest. We performed a functional analysis that revealed the requirement of Ihh signaling in neural crest development. During the early steps of neural crest induction loss of function experiments with antisense morpholino or locally grafted cyclopamine-loaded beads suppressed the expression of early neural crest markers concomitant with the increase in neural and epidermal markers. We showed that changes in Ihh activity produced no alterations in either cell proliferation or apoptosis, suggesting that this signal involves cell fate decisions. A temporal analysis showed that Hedgehog is continuously required not only in the early and late specification but also during the migration of the neural crest. We also established that the mesodermal source of Ihh is important to maintain specification and also to support the migratory process. By a combination of embryological and molecular approaches our results demonstrated that Ihh signaling drives in the migration of neural crest cells by autocrine or paracrine mechanisms. Finally, the abrogation of Ihh signaling strongly affected only the formation of cartilages derived from the neural crest, while no effects were observed on melanocytes. Taken together, our results provide insights into the role of the Ihh cell signaling pathway during the early steps of neural crest development.
Assuntos
Movimento Celular , Proteínas Hedgehog/fisiologia , Crista Neural/crescimento & desenvolvimento , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Biomarcadores/análise , Proliferação de Células/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Melanócitos/fisiologia , Morfolinos/farmacologia , Crista Neural/efeitos dos fármacos , Transdução de Sinais , Alcaloides de Veratrum/farmacologia , Xenopus laevis/metabolismoRESUMO
Cellular nucleic acid binding protein (Cnbp) is a highly conserved single-stranded nucleic acid binding protein required for rostral head development. The use of a morpholino that inhibits Cnbp mRNA translation previously revealed a role of Cnbp in balancing neural crest cell apoptosis and proliferation in the developing zebrafish. Here, we report the use of another morpholino that specifically modifies the splicing of Cnbp pre-mRNA resulting in a reduction of full-length mRNA levels along with the generation of a novel transcript coding for an isoform that may act as dominant negative proteins. The use of this morpholino resulted in more severe phenotypes that enabled us to demonstrate that Cnbp loss-of-function adversely affects the formation and survival of craniofacial cartilaginous structures not only controlling the ratio of cell proliferation and apoptosis but also defining skeletogenic neural crest cell fate.