Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8257, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589385

RESUMO

Pacific Walruses (Odobenus rosmarus divergens [Illiger 1815]) are gregarious marine mammals considered to be sentinels of the Arctic because of their dependence on sea ice for feeding, molting, and parturition. Like many other marine mammal species, their population sizes were decimated by historical overhunting in the nineteenth and twentieth centuries. Although they have since been protected from nearly all commercial hunting pressure, they now face rapidly accelerating habitat loss as global warming reduces the extent of summer sea ice in the Arctic. To investigate how genetic variation was impacted by overhunting, we obtained mitochondrial DNA sequences from historic Pacific Walrus samples in Alaska that predate the period of overhunting, as well as from extant populations. We found that genetic variation was unchanged over this period, suggesting Pacific Walruses are resilient to genetic attrition in response to reduced population size, and that this may be related to their high vagility and lack of population structure. Although Pacific Walruses will almost certainly continue to decline in number as the planet warms and summer sea ice is further reduced, they may be less susceptible to the ratcheting effects of inbreeding that typically accompany shrinking populations.


Assuntos
Caniformia , Morsas , Animais , Morsas/genética , DNA Antigo , Ecossistema , Variação Genética
2.
Commun Biol ; 6(1): 359, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005462

RESUMO

Age determination of wild animals, including pinnipeds, is critical for accurate population assessment and management. For most pinnipeds, current age estimation methodologies utilize tooth or bone sectioning which makes antemortem estimations problematic. We leveraged recent advances in the development of epigenetic age estimators (epigenetic clocks) to develop highly accurate pinniped epigenetic clocks. For clock development, we applied the mammalian methylation array to profile 37,492 cytosine-guanine sites (CpGs) across highly conserved stretches of DNA in blood and skin samples (n = 171) from primarily three pinniped species representing the three phylogenetic families: Otariidae, Phocidae and Odobenidae. We built an elastic net model with Leave-One-Out-Cross Validation (LOOCV) and one with a Leave-One-Species-Out-Cross-Validation (LOSOCV). After identifying the top 30 CpGs, the LOOCV produced a highly correlated (r = 0.95) and accurate (median absolute error = 1.7 years) age estimation clock. The LOSOCV elastic net results indicated that blood and skin clock (r = 0.84) and blood (r = 0.88) pinniped clocks could predict age of animals from pinniped species not used for clock development to within 3.6 and 4.4 years, respectively. These epigenetic clocks provide an improved and relatively non-invasive tool to determine age in skin or blood samples from all pinniped species.


Assuntos
Caniformia , Leões-Marinhos , Focas Verdadeiras , Animais , Leões-Marinhos/genética , Morsas/genética , Metilação de DNA , Filogenia , Caniformia/genética , Focas Verdadeiras/genética , Envelhecimento/genética
3.
Proc Biol Sci ; 289(1972): 20212773, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35382600

RESUMO

Mediaeval walrus hunting in Iceland and Greenland-driven by Western European demand for ivory and walrus hide ropes-has been identified as an important pre-modern example of ecological globalization. By contrast, the main origin of walrus ivory destined for eastern European markets, and then onward trade to Asia, is assumed to have been Arctic Russia. Here, we investigate the geographical origin of nine twelfth-century CE walrus specimens discovered in Kyiv, Ukraine-combining archaeological typology (based on chaîne opératoire assessment), ancient DNA (aDNA) and stable isotope analysis. We show that five of seven specimens tested using aDNA can be genetically assigned to a western Greenland origin. Moreover, six of the Kyiv rostra had been sculpted in a way typical of Greenlandic imports to Western Europe, and seven are tentatively consistent with a Greenland origin based on stable isotope analysis. Our results suggest that demand for the products of Norse Greenland's walrus hunt stretched not only to Western Europe but included Ukraine and, by implication given linked trade routes, also Russia, Byzantium and Asia. These observations illuminate the surprising scale of mediaeval ecological globalization and help explain the pressure this process exerted on distant wildlife populations and those who harvested them.


Assuntos
DNA Antigo , Morsas , Animais , Arqueologia , Geografia , Federação Russa , Morsas/genética
4.
Mol Biol Evol ; 36(12): 2656-2667, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513267

RESUMO

There is a growing body of evidence demonstrating the impacts of human arrival in new "pristine" environments, including terrestrial habitat alterations and species extinctions. However, the effects of marine resource utilization prior to industrialized whaling, sealing, and fishing have largely remained understudied. The expansion of the Norse across the North Atlantic offers a rare opportunity to study the effects of human arrival and early exploitation of marine resources. Today, there is no local population of walruses on Iceland, however, skeletal remains, place names, and written sources suggest that walruses existed, and were hunted by the Norse during the Settlement and Commonwealth periods (870-1262 AD). This study investigates the timing, geographic distribution, and genetic identity of walruses in Iceland by combining historical information, place names, radiocarbon dating, and genomic analyses. The results support a genetically distinct, local population of walruses that went extinct shortly after Norse settlement. The high value of walrus products such as ivory on international markets likely led to intense hunting pressure, which-potentially exacerbated by a warming climate and volcanism-resulted in the extinction of walrus on Iceland. We show that commercial hunting, economic incentives, and trade networks as early as the Viking Age were of sufficient scale and intensity to result in significant, irreversible ecological impacts on the marine environment. This is to one of the earliest examples of local extinction of a marine species following human arrival, during the very beginning of commercial marine exploitation.


Assuntos
Extinção Biológica , Genoma Mitocondrial , Migração Humana/história , Morsas/genética , Animais , História Medieval , Islândia , Filogeografia
5.
Proc Biol Sci ; 285(1884)2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089624

RESUMO

The importance of the Atlantic walrus ivory trade for the colonization, peak, and collapse of the medieval Norse colonies on Greenland has been extensively debated. Nevertheless, no studies have directly traced medieval European ivory back to distinct Arctic populations of walrus. Analysing the entire mitogenomes of 37 archaeological specimens from Europe, Svalbard, and Greenland, we here discover that Atlantic walrus comprises two monophyletic mitochondrial (MT) clades, which diverged between 23 400 and 251 120 years ago. Our improved genomic resolution allows us to reinterpret the geographical distribution of partial MT data from 306 modern and nineteenth-century specimens, finding that one of these clades was exclusively accessible to Greenlanders. With this discovery, we ascertain the biological origin of 23 archaeological specimens from Europe (most dated between 900 and 1400 CE). These results reveal a significant shift in trade from an early, predominantly eastern source towards a near exclusive representation of Greenland ivory. Our study provides empirical evidence for how this remote Arctic resource was progressively integrated into a medieval pan-European trade network, contributing to both the resilience and vulnerability of Norse Greenland society.


Assuntos
Comércio/história , Dente Canino/química , DNA Antigo/análise , DNA Mitocondrial/análise , Morsas/genética , Animais , Groenlândia , História Medieval
6.
Genetika ; 53(2): 223-32, 2017 Feb.
Artigo em Russo | MEDLINE | ID: mdl-29372970

RESUMO

We study 117 Pacific walrus samples from three rookeries within the western part of Chukchi Sea (Cape Vankarem, Cape Serdtse-Kamen, and Kolyuchin Island). We analyze the variability of nuclear (20 microsatellite loci) and mitochondrial DNA (three fragments). Two microsatellite loci which are described as microsatellites for the first time are used in this study: repeated sequences within introns of Coro1c and Plod2 genes. A high degree of genetic diversity is demonstrated for both nuclear and mitochondrial markers compared to Atlantic walrus. A high degree of genetic diversity is preserved within populations of Pacific walrus, despite a strong decline in the recent past. We discover the absence of significant differentiation for microsatellite loci and the presence of weak differentiation for mtDNA (mainly for a D-loop fragment). Walrus specimens that use the rookeries of the western part of Chukchi Sea are thought to belong to a single reproductive group.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Repetições de Microssatélites , Morsas/genética , Animais , Sibéria
7.
BMC Res Notes ; 9: 112, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26892244

RESUMO

BACKGROUND: The population size of Atlantic walruses (Odobenus rosmarus rosmarus) is depleted relative to historical abundance levels. In Svalbard, centuries of over-exploitation brought the walrus herds to the verge of extinction, and such bottlenecks may have caused loss of genetic variation. To address this for Svalbard walruses, mitochondrial haplotypes of historical walruses from two major haul-out sites, Bjørnøya and Håøya, within the Archipelago were explored using bone samples from animals killed during the peak period of harvesting. RESULTS: Using ancient DNA methodologies, the mitochondrial NADH dehydrogenase 1 (ND1) gene, the cytochrome c oxidase 1 (COI) gene, and the control region (CR) were targeted for 15 specimens from Bjørnøya (of which five were entirely negative) and 9 specimens from Håøya (of which one was entirely negative). While ND1 and COI sequences were obtained for only a few samples, the CR delivered the most comprehensive data set, and the average genetic distance among historic Svalbard samples was 0.0028 (SD = 0.0023). CONCLUSIONS: The CR sequences from the historical samples appear to be nested among contemporary Atlantic walruses, and no distinct mitochondrial haplogroups were identified in the historical samples that may have been lost during the periods of extensive hunting. However, given the low sample size and poor phylogenetic resolution it cannot be excluded that such haplogroups existed.


Assuntos
Variação Genética , Genética Populacional/história , Região de Controle de Locus Gênico , Proteínas Mitocondriais/genética , Filogenia , Morsas/genética , Animais , Osso e Ossos/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Haplótipos , História do Século XX , História do Século XXI , Masculino , NADH Desidrogenase/genética , Densidade Demográfica , Svalbard , Morsas/classificação
8.
Vet Immunol Immunopathol ; 169: 10-4, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827833

RESUMO

Pinnipeds are a diverse clade of semi-aquatic mammals, which act as key indicators of ecosystem health. Their transition from land to marine environments provides a complex microbial milieu, making them vulnerable to both aquatic and terrestrial pathogens, thereby contributing to pinniped population decline. Indeed, viral pathogens such as influenza A virus and phocine distemper virus (PDV) have been identified as the cause of several of these mass mortality events. Furthermore, bacterial infection with mammalian Brucella sp. and methicillin-resistant Staphylococcus aureus strains have also been observed in marine mammals, posing further risk to both co-habiting endangered species and public health. During these disease outbreaks, mortality rates have varied amongst different pinniped species. Analyses of innate immune receptors at the host-pathogen interface have previously identified variants which may drive these species-specific responses. Through a combination of both sequence- and structure-based methods, this study characterises members of the Toll-like receptor (TLR) 1 superfamily from both harbour and elephant seals, identifying variations which will help us to understand these species-specific innate immune responses, potentially aiding the development of specific vaccine-adjuvants for these species.


Assuntos
Phoca , Focas Verdadeiras , Receptor 1 Toll-Like/química , Receptor 6 Toll-Like/química , Animais , Variação Genética , Infecções/imunologia , Infecções/veterinária , Modelos Moleculares , Phoca/genética , Phoca/imunologia , Conformação Proteica , Focas Verdadeiras/genética , Análise de Sequência de Proteína , Especificidade da Espécie , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/imunologia , Receptor 6 Toll-Like/genética , Receptor 6 Toll-Like/imunologia , Morsas/genética , Morsas/imunologia
9.
PLoS One ; 11(1): e0147647, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26821159

RESUMO

Karyotype evolution in Carnivora is thoroughly studied by classical and molecular cytogenetics and supplemented by reconstructions of Ancestral Carnivora Karyotype (ACK). However chromosome painting information from two pinniped families (Odobenidae and Otariidae) is noticeably missing. We report on the construction of the comparative chromosome map for species from each of the three pinniped families: the walrus (Odobenus rosmarus, Odobenidae-monotypic family), near threatened Steller sea lion (Eumetopias jubatus, Otariidae) and the endemic Baikal seal (Pusa sibirica, Phocidae) using combination of human, domestic dog and stone marten whole-chromosome painting probes. The earliest karyological studies of Pinnipedia showed that pinnipeds were characterized by a pronounced karyological conservatism that is confirmed here with species from Phocidae, Otariidae and Odobenidae sharing same low number of conserved human autosomal segments (32). Chromosome painting in Pinnipedia and comparison with non-pinniped carnivore karyotypes provide strong support for refined structure of ACK with 2n = 38. Constructed comparative chromosome maps show that pinniped karyotype evolution was characterized by few tandem fusions, seemingly absent inversions and slow rate of genome rearrangements (less then one rearrangement per 10 million years). Integrative comparative analyses with published chromosome painting of Phoca vitulina revealed common cytogenetic signature for Phoca/Pusa branch and supports Phocidae and Otaroidea (Otariidae/Odobenidae) as sister groups. We revealed rearrangements specific for walrus karyotype and found the chromosomal signature linking together families Otariidae and Odobenidae. The Steller sea lion karyotype is the most conserved among three studied species and differs from the ACK by single fusion. The study underlined the strikingly slow karyotype evolution of the Pinnipedia in general and the Otariidae in particular.


Assuntos
Leões-Marinhos/genética , Focas Verdadeiras/genética , Morsas/genética , Animais , Carnivoridade , Mapeamento Cromossômico , Coloração Cromossômica , Sondas de DNA/genética , Evolução Molecular , Humanos , Cariótipo , Masculino , Mustelidae/genética
10.
Mol Ecol ; 24(2): 328-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25482153

RESUMO

Approximate Bayesian computation (ABC) is a powerful tool for model-based inference of demographic histories from large genetic data sets. For most organisms, its implementation has been hampered by the lack of sufficient genetic data. Genotyping-by-sequencing (GBS) provides cheap genome-scale data to fill this gap, but its potential has not fully been exploited. Here, we explored power, precision and biases of a coalescent-based ABC approach where GBS data were modelled with either a population mutation parameter (θ) or a fixed site (FS) approach, allowing single or several segregating sites per locus. With simulated data ranging from 500 to 50 000 loci, a variety of demographic models could be reliably inferred across a range of timescales and migration scenarios. Posterior estimates were informative with 1000 loci for migration and split time in simple population divergence models. In more complex models, posterior distributions were wide and almost reverted to the uninformative prior even with 50 000 loci. ABC parameter estimates, however, were generally more accurate than an alternative composite-likelihood method. Bottleneck scenarios proved particularly difficult, and only recent bottlenecks without recovery could be reliably detected and dated. Notably, minor-allele-frequency filters - usual practice for GBS data - negatively affected nearly all estimates. With this in mind, we used a combination of FS and θ approaches on empirical GBS data generated from the Atlantic walrus (Odobenus rosmarus rosmarus), collectively providing support for a population split before the last glacial maximum followed by asymmetrical migration and a high Arctic bottleneck. Overall, this study evaluates the potential and limitations of GBS data in an ABC-coalescence framework and proposes a best-practice approach.


Assuntos
Teorema de Bayes , Genética Populacional , Modelos Genéticos , Morsas/genética , Animais
11.
PLoS One ; 9(6): e99569, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24924490

RESUMO

Species biogeography is a result of complex events and factors associated with climate change, ecological interactions, anthropogenic impacts, physical geography, and evolution. To understand the contemporary biogeography of a species, it is necessary to understand its history. Specimens from areas of localized extinction are important, as extirpation of species from these areas may represent the loss of unique adaptations and a distinctive evolutionary trajectory. The walrus (Odobenus rosmarus) has a discontinuous circumpolar distribution in the arctic and subarctic that once included the southeastern Canadian Maritimes region. However, exploitation of the Maritimes population during the 16th-18th centuries led to extirpation, and the species has not inhabited areas south of 55°N for ∼250 years. We examined genetic and morphological characteristics of specimens from the Maritimes, Atlantic (O. r. rosmarus) and Pacific (O. r. divergens) populations to test the hypothesis that the first group was distinctive. Analysis of Atlantic and Maritimes specimens indicated that most skull and mandibular measurements were significantly different between the Maritimes and Atlantic groups and discriminant analysis of principal components confirmed them as distinctive groups, with complete isolation of skull features. The Maritimes walrus appear to have been larger animals, with larger and more robust tusks, skulls and mandibles. The mtDNA control region haplotypes identified in Maritimes specimens were unique to the region and a greater average number of nucleotide differences were found between the regions (Atlantic and Maritimes) than within either group. Levels of diversity (h and π) were lower in the Maritimes, consistent with other studies of species at range margins. Our data suggest that the Maritimes walrus was a morphologically and genetically distinctive group that was on a different evolutionary path from other walrus found in the north Atlantic.


Assuntos
DNA/genética , Extinção Biológica , Análise de Sequência de DNA/métodos , Morsas/anatomia & histologia , Morsas/genética , Animais , Canadá , DNA Mitocondrial/genética , Análise Discriminante , Feminino , Geografia , Haplótipos , Masculino , Mandíbula/anatomia & histologia , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Crânio/anatomia & histologia
12.
Mol Ecol ; 7(10): 1323-36, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9787444

RESUMO

The population structure of the Atlantic walrus, Odobenus rosmarus rosmarus, was studied using 11 polymorphic microsatellites and restriction fragment length polymorphism detected in the NADH-dehydrogenase ND1, ND2 and ND3/4 segments in mtDNA. A total of 105 walrus samples were analysed from northwest (NW) Greenland, east (E) Greenland, Svalbard and Franz Joseph Land. Two of the 10 haplotypes detected in the four samples were diagnostic for the NW Greenland sample, which implied that the group of walruses in this area is evolutionary distinct from walruses in the other three areas. One individual sampled in E Greenland exhibited a Pacific haplotype, which proved a connection between the Pacific walrus and walruses in eastern Greenland. The Franz Joseph Land, Svalbard and E Greenland samples shared the most common haplotype, indicating very little differentiation at the mtDNA level. Gene flow (Nm) estimates among the four areas indicated a very restricted exchange of female genes between NW Greenland and the more eastern Atlantic Arctic samples, and a closer relationship between the three samples composing the eastern Atlantic Arctic. The genetic variation at 11 polymorphic microsatellite loci grouped individuals into three populations, NW Greenland, E Greenland and a common Franz Joseph Land-Svalbard population, which were connected by moderate gene flow.


Assuntos
Morsas/genética , Animais , Regiões Árticas , DNA Mitocondrial/genética , Ecossistema , Feminino , Variação Genética , Genética Populacional , Groenlândia , Haplótipos , Repetições de Microssatélites , NADH Desidrogenase/genética , Filogenia , Polimorfismo de Fragmento de Restrição , Federação Russa , Svalbard
14.
Mol Biol Evol ; 12(1): 28-52, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-7877495

RESUMO

The evolutionary origin of the pinnipeds (seals, sea lions, and walruses) is still uncertain. Most authors support a hypothesis of a monophyletic origin of the pinnipeds from a caniform carnivore. A minority view suggests a diphyletic origin with true seals being related to the mustelids (otters and ferrets). The phylogenetic relationships of the walrus to other pinniped and carnivore families are also still particularly problematic. Here we examined the relative support for mono- and diphyletic hypotheses using DNA sequence data from the mitochondrial small subunit (12S) rRNA and cytochrome b genes. We first analyzed a small group of taxa representing the three pinniped families (Phocidae, Otariidae, and Odobenidae) and caniform carnivore families thought to be related to them. We inferred phylogenetic reconstructions from DNA sequence data using standard parsimony and neighbor-joining algorithms for phylogenetic inference as well as a new method called spectral analysis (Hendy and Penny) in which phylogenetic information is displayed independently of any selected tree. We identified and compensated for potential sources of error known to lead to selection of incorrect phylogenetic trees. These include sampling error, unequal evolutionary rates on lineages, unequal nucleotide composition among lineages, unequal rates of change at different sites, and inappropriate tree selection criteria. To correct for these errors, we performed additional transformations of the observed substitution patterns in the sequence data, applied more stringent structural constraints to the analyses, and included several additional taxa to help resolve long, unbranched lineages in the tree. We find that there is strong support for a monophyletic origin of the pinnipeds from within the caniform carnivores, close to the bear/raccoon/panda radiation. Evidence for a diphyletic origin was very weak and can be partially attributed to unequal nucleotide compositions among the taxa analyzed. Subsequently, there is slightly more evidence for grouping the walrus with the eared seals versus the true seals. A more conservative interpretation, however, is that the walrus is an early, but not the first, independent divergence from the common pinniped ancestor.


Assuntos
Caniformia/genética , Filogenia , Algoritmos , Animais , Sequência de Bases , Caniformia/classificação , Grupo dos Citocromos b/genética , Primers do DNA , DNA Mitocondrial/genética , DNA Ribossômico/genética , Árvores de Decisões , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Ribossômico/genética , Focas Verdadeiras/genética , Morsas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...