RESUMO
Spinal cord injury (SCI) has very poor clinical prospects, resulting in irreversible loss of function below the injury site. Although applied in clinical trials, olfactory ensheathing cells transplantation (OEC) derived from lamina propria (OLP) is still a controversial repair strategy. The present study explored the efficacy of OLP or respiratory lamina propria (RLP) transplantation and the optimum period after SCI for application of this potential therapy. Adult male rats were submitted to spinal cord transection and underwent acute, 2-week or 4-week post-injury transplantation with pieces of OLP (containing OECs) or RLP (without OECs). After grafting, animals with OLP and RLP showed discrete and similar hindlimb motor improvement, with comparable spinal cord tissue sparing and sprouting in the lesion area. Acute transplantation of OLP and RLP seems to foster limited supraspinal axonal regeneration as shown by the presence of neurons stained by retrograde tracing in the brainstem nuclei. A larger number of 5-HT positive fibers were found in the cranial stump of the OLP and RLP groups compared to the lesion and caudal regions. Calcitonin gene-related peptide fibers were present in considerable numbers at the SCI site in both types of transplantation. Our results failed to verify differences between acute, 2-week and 4-week delayed transplantation of OLP and RLP, suggesting that the limited functional and axon reparative effects observed could not be exclusively related to OECs. A greater understanding of the effects of these tissue grafts is necessary to strengthen the rationale for application of this treatment in humans.