Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
6.
Dynamis (Granada) ; 43(2): 487-503, 2023. ilus
Artigo em Espanhol | IBECS | ID: ibc-229576

RESUMO

A finales del siglo XVIII la confluencia de anomalías climáticas de carácter extremo propició la alteración de los ecosistemas, y la expansión de las fiebres palúdicas más allá de sus tradicionales áreas endémicas afectando al desarrollo de la vida cotidiana de la sociedad de la época. Entre 1783 y 1786 las fiebres se extendieron por la península Ibérica suscitando una creciente inquietud por parte de médicos y de autoridades para lograr atajar la epidemia de forma efectiva. Las tercianas, también estuvieron presentes en las Islas Baleares, especialmente en Menorca, como desvelan los informes remitidos por los corresponsales de la Real Academia Médico-Práctica de Barcelona en relación con el episodio de fiebres de 1782. La finalidad de este artículo reside en analizar, a través del testimonio del doctor Miquel Oleo, médico de Ciutadella en Menorca, los principales puntos de infección de la isla, atendiendo a las condiciones del medio que imperaban en ese momento y a las particularidades del clima de la isla y de las actividades humanas que se desarrollaban. Asimismo, dedicamos un apartado a analizar las soluciones propuestas por el médico en respuesta a las preguntas formuladas por Juan Baptista de San Martín y Navas, Auditor Real del Ejército e Isla de Menorca y vocal de su junta de gobierno. (AU)


The confluence of extreme climatic anomalies in the late 18th Century led to the alteration of ecosystems and the expansion of malarial fevers beyond their traditional endemic areas, affecting the development of daily life in the society of the time. Fevers spread throughout the Iberian Peninsula between 1783 and 1786, causing growing concern among doctors and authorities about ways to effectively tackle the epidemic. Tertial fevers were also present in the Balearic Islands, especially in Menorca, as reported by correspondents of the Real Academia Médico-Práctica de Barcelona in relation to the episode of fevers in 1782. The aim of this article was to analyze, through the testimony of Dr. Miquel Oleo, a doctor from Ciutadella in Menorca, the main points of infection on the island, taking account of the prevailing environmental conditions and the particularities of the island’s climate and human activities. We also devote a section to analyzing the solutions proposed by the doctor in response to the questions posed by Juan Baptista de San Martín y Navas, Royal Auditor of the Army and Island of Menorca and member of its governing board. (AU)


Assuntos
Humanos , História do Século XVIII , Malária/epidemiologia , Malária/história , Mudança Climática/história , Mudança Climática/mortalidade , Efeitos do Clima , Espanha/epidemiologia , Epidemias/história
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903648

RESUMO

Decades of air pollution regulation have yielded enormous benefits in the United States, but vehicle emissions remain a climate and public health issue. Studies have quantified the vehicle-related fine particulate matter (PM2.5)-attributable mortality but lack the combination of proper counterfactual scenarios, latest epidemiological evidence, and detailed spatial resolution; all needed to assess the benefits of recent emission reductions. We use this combination to assess PM2.5-attributable health benefits and also assess the climate benefits of on-road emission reductions between 2008 and 2017. We estimate total benefits of $270 (190 to 480) billion in 2017. Vehicle-related PM2.5-attributable deaths decreased from 27,700 in 2008 to 19,800 in 2017; however, had per-mile emission factors remained at 2008 levels, 48,200 deaths would have occurred in 2017. The 74% increase from 27,700 to 48,200 PM2.5-attributable deaths with the same emission factors is due to lower baseline PM2.5 concentrations (+26%), more vehicle miles and fleet composition changes (+22%), higher baseline mortality (+13%), and interactions among these (+12%). Climate benefits were small (3 to 19% of the total). The percent reductions in emissions and PM2.5-attributable deaths were similar despite an opportunity to achieve disproportionately large health benefits by reducing high-impact emissions of passenger light-duty vehicles in urban areas. Increasingly large vehicles and an aging population, increasing mortality, suggest large health benefits in urban areas require more stringent policies. Local policies can be effective because high-impact primary PM2.5 and NH3 emissions disperse little outside metropolitan areas. Complementary national-level policies for NOx are merited because of its substantial impacts-with little spatial variability-and dispersion across states and metropolitan areas.


Assuntos
Saúde Pública , Meios de Transporte , Emissões de Veículos/prevenção & controle , Poluentes Atmosféricos/economia , Poluição do Ar/economia , Poluição do Ar/prevenção & controle , Causas de Morte/tendências , Mudança Climática/economia , Mudança Climática/mortalidade , Efeitos Psicossociais da Doença , Gases de Efeito Estufa/economia , Humanos , Exposição por Inalação/economia , Exposição por Inalação/prevenção & controle , Material Particulado/economia , Meios de Transporte/classificação , Estados Unidos
11.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845023

RESUMO

Variation in temperature is known to influence mortality patterns in ectotherms. Even though a few experimental studies on model organisms have reported a positive relationship between temperature and actuarial senescence (i.e., the increase in mortality risk with age), how variation in climate influences the senescence rate across the range of a species is still poorly understood in free-ranging animals. We filled this knowledge gap by investigating the relationships linking senescence rate, adult lifespan, and climatic conditions using long-term capture-recapture data from multiple amphibian populations. We considered two pairs of related anuran species from the Ranidae (Rana luteiventris and Rana temporaria) and Bufonidae (Anaxyrus boreas and Bufo bufo) families, which diverged more than 100 Mya and are broadly distributed in North America and Europe. Senescence rates were positively associated with mean annual temperature in all species. In addition, lifespan was negatively correlated with mean annual temperature in all species except A. boreas In both R. luteiventris and A. boreas, mean annual precipitation and human environmental footprint both had negligible effects on senescence rates or lifespans. Overall, our findings demonstrate the critical influence of thermal conditions on mortality patterns across anuran species from temperate regions. In the current context of further global temperature increases predicted by Intergovernmental Panel on Climate Change scenarios, a widespread acceleration of aging in amphibians is expected to occur in the decades to come, which might threaten even more seriously the viability of populations and exacerbate global decline.


Assuntos
Envelhecimento/metabolismo , Anuros/metabolismo , Envelhecimento/fisiologia , Animais , Biodiversidade , Bufonidae/metabolismo , Mudança Climática/mortalidade , Europa (Continente) , Aquecimento Global/mortalidade , América do Norte , Ranidae/metabolismo , Temperatura
13.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34462347

RESUMO

Global aridification is projected to intensify. Yet, our knowledge of its potential impacts on species ranges remains limited. Here, we investigate global aridity velocity and its overlap with three sectors (natural protected areas, agricultural areas, and urban areas) and terrestrial biodiversity in historical (1979 through 2016) and future periods (2050 through 2099), with and without considering vegetation physiological response to rising CO2 Both agricultural and urban areas showed a mean drying velocity in history, although the concurrent global aridity velocity was on average +0.05/+0.20 km/yr-1 (no CO2 effects/with CO2 effects; "+" denoting wetting). Moreover, in drylands, the shifts of vegetation greenness isolines were found to be significantly coupled with the tracks of aridity velocity. In the future, the aridity velocity in natural protected areas is projected to change from wetting to drying across RCP (representative concentration pathway) 2.6, RCP6.0, and RCP8.5 scenarios. When accounting for spatial distribution of terrestrial taxa (including plants, mammals, birds, and amphibians), the global aridity velocity would be -0.15/-0.02 km/yr-1 ("-" denoting drying; historical), -0.12/-0.15 km/yr-1 (RCP2.6), -0.36/-0.10 km/yr-1 (RCP6.0), and -0.75/-0.29 km/yr-1 (RCP8.5), with amphibians particularly negatively impacted. Under all scenarios, aridity velocity shows much higher multidirectionality than temperature velocity, which is mainly poleward. These results suggest that aridification risks may significantly influence the distribution of terrestrial species besides warming impacts and further impact the effectiveness of current protected areas in future, especially under RCP8.5, which best matches historical CO2 emissions [C. R. Schwalm et al., Proc. Natl. Acad. Sci. U.S.A. 117, 19656-19657 (2020)].


Assuntos
Biodiversidade , Mudança Climática/mortalidade , Secas/mortalidade , Adaptação Biológica , Animais , Ecossistema , Aquecimento Global/estatística & dados numéricos , Humanos , Temperatura
14.
Environ Health Prev Med ; 26(1): 69, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217207

RESUMO

BACKGROUND: Ambient temperature may contribute to seasonality of mortality; in particular, a warming climate is likely to influence the seasonality of mortality. However, few studies have investigated seasonality of mortality under a warming climate. METHODS: Daily mean temperature, daily counts for all-cause, circulatory, and respiratory mortality, and annual data on prefecture-specific characteristics were collected for 47 prefectures in Japan between 1972 and 2015. A quasi-Poisson regression model was used to assess the seasonal variation of mortality with a focus on its amplitude, which was quantified as the ratio of mortality estimates between the peak and trough days (peak-to-trough ratio (PTR)). We quantified the contribution of temperature to seasonality by comparing PTR before and after temperature adjustment. Associations between annual mean temperature and annual estimates of the temperature-unadjusted PTR were examined using multilevel multivariate meta-regression models controlling for prefecture-specific characteristics. RESULTS: The temperature-unadjusted PTRs for all-cause, circulatory, and respiratory mortality were 1.28 (95% confidence interval (CI): 1.27-1.30), 1.53 (95% CI: 1.50-1.55), and 1.46 (95% CI: 1.44-1.48), respectively; adjusting for temperature reduced these PTRs to 1.08 (95% CI: 1.08-1.10), 1.10 (95% CI: 1.08-1.11), and 1.35 (95% CI: 1.32-1.39), respectively. During the period of rising temperature (1.3 °C on average), decreases in the temperature-unadjusted PTRs were observed for all mortality causes except circulatory mortality. For each 1 °C increase in annual mean temperature, the temperature-unadjusted PTR for all-cause, circulatory, and respiratory mortality decreased by 0.98% (95% CI: 0.54-1.42), 1.39% (95% CI: 0.82-1.97), and 0.13% (95% CI: - 1.24 to 1.48), respectively. CONCLUSION: Seasonality of mortality is driven partly by temperature, and its amplitude may be decreasing under a warming climate.


Assuntos
Doenças Cardiovasculares/mortalidade , Mudança Climática/mortalidade , Mortalidade/tendências , Doenças Respiratórias/mortalidade , Causas de Morte , Temperatura Baixa/efeitos adversos , Temperatura Alta/efeitos adversos , Humanos , Japão/epidemiologia , Análise de Regressão , Estações do Ano , Tempo
17.
Nat Commun ; 12(1): 1039, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589602

RESUMO

Recent studies have reported a variety of health consequences of climate change. However, the vulnerability of individuals and cities to climate change remains to be evaluated. We project the excess cause-, age-, region-, and education-specific mortality attributable to future high temperatures in 161 Chinese districts/counties using 28 global climate models (GCMs) under two representative concentration pathways (RCPs). To assess the influence of population ageing on the projection of future heat-related mortality, we further project the age-specific effect estimates under five shared socioeconomic pathways (SSPs). Heat-related excess mortality is projected to increase from 1.9% (95% eCI: 0.2-3.3%) in the 2010s to 2.4% (0.4-4.1%) in the 2030 s and 5.5% (0.5-9.9%) in the 2090 s under RCP8.5, with corresponding relative changes of 0.5% (0.0-1.2%) and 3.6% (-0.5-7.5%). The projected slopes are steeper in southern, eastern, central and northern China. People with cardiorespiratory diseases, females, the elderly and those with low educational attainment could be more affected. Population ageing amplifies future heat-related excess deaths 2.3- to 5.8-fold under different SSPs, particularly for the northeast region. Our findings can help guide public health responses to ameliorate the risk of climate change.


Assuntos
Doenças Cardiovasculares/mortalidade , Mudança Climática/mortalidade , Pneumopatias/mortalidade , Modelos Estatísticos , Saúde Pública/tendências , Adolescente , Adulto , Idoso , Doenças Cardiovasculares/epidemiologia , Criança , Pré-Escolar , China/epidemiologia , Simulação por Computador , Escolaridade , Feminino , Temperatura Alta , Humanos , Lactente , Recém-Nascido , Pneumopatias/epidemiologia , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida
18.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-888604

RESUMO

BACKGROUND@#Ambient temperature may contribute to seasonality of mortality; in particular, a warming climate is likely to influence the seasonality of mortality. However, few studies have investigated seasonality of mortality under a warming climate.@*METHODS@#Daily mean temperature, daily counts for all-cause, circulatory, and respiratory mortality, and annual data on prefecture-specific characteristics were collected for 47 prefectures in Japan between 1972 and 2015. A quasi-Poisson regression model was used to assess the seasonal variation of mortality with a focus on its amplitude, which was quantified as the ratio of mortality estimates between the peak and trough days (peak-to-trough ratio (PTR)). We quantified the contribution of temperature to seasonality by comparing PTR before and after temperature adjustment. Associations between annual mean temperature and annual estimates of the temperature-unadjusted PTR were examined using multilevel multivariate meta-regression models controlling for prefecture-specific characteristics.@*RESULTS@#The temperature-unadjusted PTRs for all-cause, circulatory, and respiratory mortality were 1.28 (95% confidence interval (CI): 1.27-1.30), 1.53 (95% CI: 1.50-1.55), and 1.46 (95% CI: 1.44-1.48), respectively; adjusting for temperature reduced these PTRs to 1.08 (95% CI: 1.08-1.10), 1.10 (95% CI: 1.08-1.11), and 1.35 (95% CI: 1.32-1.39), respectively. During the period of rising temperature (1.3 °C on average), decreases in the temperature-unadjusted PTRs were observed for all mortality causes except circulatory mortality. For each 1 °C increase in annual mean temperature, the temperature-unadjusted PTR for all-cause, circulatory, and respiratory mortality decreased by 0.98% (95% CI: 0.54-1.42), 1.39% (95% CI: 0.82-1.97), and 0.13% (95% CI: - 1.24 to 1.48), respectively.@*CONCLUSION@#Seasonality of mortality is driven partly by temperature, and its amplitude may be decreasing under a warming climate.


Assuntos
Humanos , Doenças Cardiovasculares/mortalidade , Causas de Morte , Mudança Climática/mortalidade , Temperatura Baixa/efeitos adversos , Temperatura Alta/efeitos adversos , Japão/epidemiologia , Mortalidade/tendências , Análise de Regressão , Doenças Respiratórias/mortalidade , Estações do Ano , Tempo
19.
Lancet Planet Health ; 4(11): e512-e521, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33159878

RESUMO

BACKGROUND: Various retrospective studies have reported on the increase of mortality risk due to higher diurnal temperature range (DTR). This study projects the effect of DTR on future mortality across 445 communities in 20 countries and regions. METHODS: DTR-related mortality risk was estimated on the basis of the historical daily time-series of mortality and weather factors from Jan 1, 1985, to Dec 31, 2015, with data for 445 communities across 20 countries and regions, from the Multi-Country Multi-City Collaborative Research Network. We obtained daily projected temperature series associated with four climate change scenarios, using the four representative concentration pathways (RCPs) described by the Intergovernmental Panel on Climate Change, from the lowest to the highest emission scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). Excess deaths attributable to the DTR during the current (1985-2015) and future (2020-99) periods were projected using daily DTR series under the four scenarios. Future excess deaths were calculated on the basis of assumptions that warmer long-term average temperatures affect or do not affect the DTR-related mortality risk. FINDINGS: The time-series analyses results showed that DTR was associated with excess mortality. Under the unmitigated climate change scenario (RCP 8.5), the future average DTR is projected to increase in most countries and regions (by -0·4 to 1·6°C), particularly in the USA, south-central Europe, Mexico, and South Africa. The excess deaths currently attributable to DTR were estimated to be 0·2-7·4%. Furthermore, the DTR-related mortality risk increased as the long-term average temperature increased; in the linear mixed model with the assumption of an interactive effect with long-term average temperature, we estimated 0·05% additional DTR mortality risk per 1°C increase in average temperature. Based on the interaction with long-term average temperature, the DTR-related excess deaths are projected to increase in all countries or regions by 1·4-10·3% in 2090-99. INTERPRETATION: This study suggests that globally, DTR-related excess mortality might increase under climate change, and this increasing pattern is likely to vary between countries and regions. Considering climatic changes, our findings could contribute to public health interventions aimed at reducing the impact of DTR on human health. FUNDING: Korea Ministry of Environment.


Assuntos
Mudança Climática/mortalidade , Mortalidade/tendências , Temperatura , Cidades , Temperatura Baixa/efeitos adversos , Saúde Global , Temperatura Alta/efeitos adversos , Humanos , Modelos Lineares , Estudos Retrospectivos , Fatores de Risco , Estações do Ano , Fatores de Tempo
20.
Proc Natl Acad Sci U S A ; 117(47): 29720-29729, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33139533

RESUMO

Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern postdrought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.


Assuntos
Secas/mortalidade , Florestas , Biodiversidade , Mudança Climática/mortalidade , Ecossistema , Especificidade da Espécie , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...