Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnobiol Ethnomed ; 19(1): 2, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604690

RESUMO

BACKGROUND: Enset is an important source of food and is consumed by about 25 million people as a staple or co-staple food crop mainly in southern parts of Ethiopia. Large numbers of enset landraces exist in different administrative zones of Ethiopia with a wide range of altitudes and agroclimatic zones. However, limited information is available on the diversity, distribution, and utilization pattern corresponding to the diverse ethnolinguistic as well as sociocultural communities of the country. Hence, this study was devised to explore and document the richness of farmers' tradition and practice on the diversity and distribution of enset landraces on the farm level and selection pattern for different purposes regarding the production, utilization, and conservation of enset genetic resources. METHODS: The study was conducted in four major enset-growing administrative zones of Ethiopia, namely Hadiya, Kembata-Tembaro, Gurage, and Silte. A total of 240 farm households were surveyed using individual interviews, 18 key informant interviews, 36 focus group discussions with 5 participants, and direct on-farm field observations for data collection. Considering that enset has a rich cultural background and indigenous knowledge, ethnobotanical research approach was applied to data collection and analysis. The Shannon-Weaver, Simpson, Pielou, and Jaccard's similarity indices were used to evaluate the diversity and similarity of the landraces as well as using descriptive statistics in SPSS Ver. 24. Preference in direct matrix ranking was also used to compute and rank the enset landraces most preferred by the people in the context of specific use value in the study area. RESULTS: A total of 282 farmer-named enset landraces have been identified, with a range from 2 to 32 on individual homegardens. The largest number of landraces was found in the Hadiya Zone (86), while the lowest was scored in the Silte Zone (57). The Shannon diversity index (H') ranged from 3.73 (Silte) to 3.96 (Hadiya). Similarly, landraces revealed a very narrow range of variances in Simpson's 1-D diversity index, and it ranged from 0.963 (Silte) to 0.978 (Hadiya). Likewise, the similarity index ranged from 0.24 to 0.73 sharing 16-47 landraces in common. Of the 282 landraces, 210 (74.5%) were recorded in more than one zones, whereas 72 (25.5%) had narrow distribution being restricted to a single zone. CONCLUSIONS: Farmers have established long-term practices and experiences in cultivation, utilization, and conservation of a diverse group of enset landraces to fill their domestic and market purposes in each zone. The variation is likely to be related to agroclimatic differences, ethnicity factors, food cultures, and historical backgrounds. Therefore, to facilitate on-farm conservation as well as sustainable utilization of the enset genetic resources, farmers need to be supported by different stakeholders for all their worth and also in crop improvement programs.


Assuntos
Etnobotânica , Musaceae , Humanos , Fazendas , Etiópia , Musaceae/genética , Alimentos
2.
Gene ; 836: 146666, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35690281

RESUMO

MADS box gene family is transcription factor gene family that is involved in growth and development of eukaryotes. In plants the MADS box gene family is mainly associated with floral meristem identity and flower development, apart from being involved in nearly all the phases of plant growth. The MADS box gene family has also been shown to be involved during fruit development and ripening. In this study the MADS box gene family from Musa balbisiana was identified and the divergence of this gene family between Musa balbisiana and Musa acuminata studied. A total of 97 MADS box genes were identified from the genome of Musa balbisiana. Phylogenetic analysis showed that the MbMADS box genes were categorised into type I (α and γ; the ß group was not distinguishable) and type II groups (MIKCc and MIKC* and MIKCc was further divided into 13 subfamilies). The typeII group has the largest number of genes and also showed the most expansion which could be correlated with the whole genome duplications. There were significant differences in the MADS box genes from Musa acuminata and Musa balbisiana during evolution that can be correlated with different floral phenotype and fruit ripening pattern. The divergence of the MADS RIN genes in Musa balbisiana as compared to Musa acuminata might play an important role in the slow ripening of Musa balbisiana fruits.


Assuntos
Evolução Molecular , Genoma de Planta , Proteínas de Domínio MADS/genética , Musaceae , Sequência de Aminoácidos , Cromossomos de Plantas , Frutas/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Proteínas de Domínio MADS/química , Musaceae/genética , Filogenia , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos
3.
Gigascience ; 112022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35488861

RESUMO

BACKGROUND: Ensete glaucum (2n = 2x = 18) is a giant herbaceous monocotyledonous plant in the small Musaceae family along with banana (Musa). A high-quality reference genome sequence assembly of E. glaucum is a resource for functional and evolutionary studies of Ensete, Musaceae, and the Zingiberales. FINDINGS: Using Oxford Nanopore Technologies, chromosome conformation capture (Hi-C), Illumina and RNA survey sequence, supported by molecular cytogenetics, we report a high-quality 481.5 Mb genome assembly with 9 pseudo-chromosomes and 36,836 genes. A total of 55% of the genome is composed of repetitive sequences with predominantly LTR-retroelements (37%) and DNA transposons (7%). The single 5S ribosomal DNA locus had an exceptionally long monomer length of 1,056 bp, more than twice that of the monomers at multiple loci in Musa. A tandemly repeated satellite (1.1% of the genome, with no similar sequence in Musa) was present around all centromeres, together with a few copies of a long interspersed nuclear element (LINE) retroelement. The assembly enabled us to characterize in detail the chromosomal rearrangements occurring between E. glaucum and the x = 11 species of Musa. One E. glaucum chromosome has the same gene content as Musa acuminata, while others show multiple, complex, but clearly defined evolutionary rearrangements in the change between x= 9 and 11. CONCLUSIONS: The advance towards a Musaceae pangenome including E. glaucum, tolerant of extreme environments, makes a complete set of gene alleles, copy number variation, and a reference for structural variation available for crop breeding and understanding environmental responses. The chromosome-scale genome assembly shows the nature of chromosomal fusion and translocation events during speciation, and features of rapid repetitive DNA change in terms of copy number, sequence, and genomic location, critical to understanding its role in diversity and evolution.


Assuntos
Musa , Musaceae , Cromossomos , Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis , Musa/genética , Musaceae/genética , Melhoramento Vegetal , Retroelementos , Análise de Sequência de DNA
4.
BMC Genomics ; 23(1): 223, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313810

RESUMO

BACKGROUND: Musaceae is an economically important family consisting of 70-80 species. Elucidation of the interspecific relationships of this family is essential for a more efficient conservation and utilization of genetic resources for banana improvement. However, the scarcity of herbarium specimens and quality molecular markers have limited our understanding of the phylogenetic relationships in wild species of Musaceae. Aiming at improving the phylogenetic resolution of Musaceae, we analyzed a comprehensive set of 49 plastomes for 48 species/subspecies representing all three genera of this family. RESULTS: Musaceae plastomes have a relatively well-conserved genomic size and gene content, with a full length ranging from 166,782 bp to 172,514 bp. Variations in the IR borders were found to show phylogenetic signals to a certain extent in Musa. Codon usage bias analysis showed different preferences for the same codon between species and three genera and a common preference for A/T-ending codons. Among the two genes detected under positive selection (dN/dS > 1), ycf2 was indicated under an intensive positive selection. The divergent hotspot analysis allowed the identification of four regions (ndhF-trnL, ndhF, matK-rps16, and accD) as specific DNA barcodes for Musaceae species. Bayesian and maximum likelihood phylogenetic analyses using full plastome resulted in nearly identical tree topologies with highly supported relationships between species. The monospecies genus Musella is sister to Ensete, and the genus Musa was divided into two large clades, which corresponded well to the basic number of n = x = 11 and n = x =10/9/7, respectively. Four subclades were divided within the genus Musa. A dating analysis covering the whole Zingiberales indicated that the divergence of Musaceae family originated in the Palaeocene (59.19 Ma), and the genus Musa diverged into two clades in the Eocene (50.70 Ma) and then started to diversify from the late Oligocene (29.92 Ma) to the late Miocene. Two lineages (Rhodochlamys and Australimusa) radiated recently in the Pliocene /Pleistocene periods. CONCLUSIONS: The plastome sequences performed well in resolving the phylogenetic relationships of Musaceae and generated new insights into its evolution. Plastome sequences provided valuable resources for population genetics and phylogenetics at lower taxon.


Assuntos
Magnoliopsida , Musa , Musaceae , Teorema de Bayes , Musa/genética , Musaceae/genética , Filogenia
5.
Plant Genome ; 15(1): e20100, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34227250

RESUMO

Banana (Musaceae family) has a complex genetic history and includes a genus Musa with a variety of cultivated clones with edible fruits, Ensete species that are grown for their edible corm, and monospecific Musella whose generic status has been questioned. The most commonly exported banana cultivars belong to Cavendish, a subgroup of Musa triploid cultivars, which is under threat by fungal pathogens, though there are also related species M. balbisiana Colla (B genome), M. textilis Née (T genome), and M. schizocarpa N. W. Simmonds (S genome), along with hybrids of these genomes, which potentially host genes of agronomic interest. Here we present the first cross-genus pangenome of banana, which contains representatives of the Musa and Ensete genera. Clusters based on gene presence-absence variation (PAV) clearly separate Musa and Ensete, while Musa is split further based on species. These results present the first pangenome study across genus boundaries and identifies genes that differentiate between Musaceae species, information that may support breeding programs in these crops.


Assuntos
Musa , Musaceae , Genoma de Planta , Musa/genética , Musaceae/genética , Melhoramento Vegetal , Poliploidia
6.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36807539

RESUMO

BACKGROUND: Musa beccarii (Musaceae) is a banana species native to Borneo, sometimes grown as an ornamental plant. The basic chromosome number of Musa species is x = 7, 10, or 11; however, M. beccarii has a basic chromosome number of x = 9 (2n = 2x = 18), which is the same basic chromosome number of species in the sister genera Ensete and Musella. Musa beccarii is in the section Callimusa, which is sister to the section Musa. We generated a high-quality chromosome-scale genome assembly of M. beccarii to better understand the evolution and diversity of genomes within the family Musaceae. FINDINGS: The M. beccarii genome was assembled by long-read and Hi-C sequencing, and genes were annotated using both long Iso-seq and short RNA-seq reads. The size of M. beccarii was the largest among all known Musaceae assemblies (∼570 Mbp) due to the expansion of transposable elements and increased 45S ribosomal DNA sites. By synteny analysis, we detected extensive genome-wide chromosome fusions and fissions between M. beccarii and the other Musa and Ensete species, far beyond those expected from differences in chromosome number. Within Musaceae, M. beccarii showed a reduced number of terpenoid synthase genes, which are related to chemical defense, and enrichment in lipid metabolism genes linked to the physical defense of the cell wall. Furthermore, type III polyketide synthase was the most abundant biosynthetic gene cluster (BGC) in M. beccarii. BGCs were not conserved in Musaceae genomes. CONCLUSIONS: The genome assembly of M. beccarii is the first chromosome-scale genome assembly in the Callimusa section in Musa, which provides an important genetic resource that aids our understanding of the evolution of Musaceae genomes and enhances our knowledge of the pangenome.


Assuntos
Musa , Musaceae , Musa/genética , Musaceae/genética , Genoma de Planta , Cromossomos , DNA Ribossômico , Filogenia
7.
Sci Rep ; 10(1): 15312, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943659

RESUMO

Ensete ventricosum (Musaceae, enset) is an Ethiopian food security crop. To realize the potential of enset for rural livelihoods, further knowledge of enset diversity, genetics and genomics is required to support breeding programs and conservation. This study was conducted to explore the enset genome to develop molecular markers, genomics resources, and characterize enset landraces while giving insight into the organization of the genome. We identified 233 microsatellites (simple sequence repeats, SSRs) per Mbp in the enset genome, representing 0.28% of the genome. Mono- and di-nucleotide repeats motifs were found in a higher proportion than other classes of SSR-motifs. In total, 154,586 non-redundant enset microsatellite markers (EMM) were identified and 40 selected for primer development. Marker validation by PCR and low-cost agarose gel electrophoresis revealed that 92.5% were polymorphic, showing a high PIC (Polymorphism Information Content; 0.87) and expected heterozygosity (He = 0.79-0.82). In silico analysis of genomes of closely related species showed 46.86% of the markers were transferable among enset species and 1.90% were transferable to Musa. The SSRs are robust (with basic PCR methods and agarose gel electrophoresis), informative, and applicable in measuring enset diversity, genotyping, selection and potentially breeding. Enset SSRs are available in a web-based database at https://enset-project.org/EnMom@base.html (or https://enset.aau.edu.et/index.html , downloadable from Figshare).


Assuntos
Biomarcadores/metabolismo , Genoma de Planta/genética , Repetições de Microssatélites/genética , Musaceae/genética , Genômica/métodos , Internet , Polimorfismo Genético/genética
8.
New Phytol ; 210(4): 1453-65, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26832306

RESUMO

Tropical Southeast Asia, which harbors most of the Musaceae biodiversity, is one of the most species-rich regions in the world. Its high degree of endemism is shaped by the region's tectonic and climatic history, with large differences between northern Indo-Burma and the Malayan Archipelago. Here, we aim to find a link between the diversification and biogeography of Musaceae and geological history of the Southeast Asian subcontinent. The Musaceae family (including five Ensete, 45 Musa and one Musella species) was dated using a large phylogenetic framework encompassing 163 species from all Zingiberales families. Evolutionary patterns within Musaceae were inferred using ancestral area reconstruction and diversification rate analyses. All three Musaceae genera - Ensete, Musa and Musella - originated in northern Indo-Burma during the early Eocene. Musa species dispersed from 'northwest to southeast' into Southeast Asia with only few back-dispersals towards northern Indo-Burma. Musaceae colonization events of the Malayan Archipelago subcontinent are clearly linked to the geological and climatic history of the region. Musa species were only able to colonize the region east of Wallace's line after the availability of emergent land from the late Miocene onwards.


Assuntos
Biodiversidade , Musa/genética , Musaceae/genética , Sudeste Asiático , Evolução Biológica , Clima , Geografia , Musa/fisiologia , Musaceae/fisiologia , Filogenia , Dispersão Vegetal , Análise de Sequência de DNA
9.
BMC Genet ; 16: 98, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26243662

RESUMO

BACKGROUND: Enset (Ensete ventricosum (Welw.) Cheesman; Musaceae) is a multipurpose drought-tolerant food security crop with high conservation and improvement concern in Ethiopia, where it supplements the human calorie requirements of around 20 million people. The crop also has an enormous potential in other regions of Sub-Saharan Africa, where it is known only as a wild plant. Despite its potential, genetic and genomic studies supporting breeding programs and conservation efforts are very limited. Molecular methods would substantially improve current conventional approaches. Here we report the development of the first set of SSR markers from enset, their cross-transferability to Musa spp., and their application in genetic diversity, relationship and structure assessments in wild and cultivated enset germplasm. RESULTS: SSR markers specific to E. ventricosum were developed through pyrosequencing of an enriched genomic library. Primer pairs were designed for 217 microsatellites with a repeat size > 20 bp from 900 candidates. Primers were validated in parallel by in silico and in vitro PCR approaches. A total of 67 primer pairs successfully amplified specific loci and 59 showed polymorphism. A subset of 34 polymorphic SSR markers were used to study 70 both wild and cultivated enset accessions. A large number of alleles were detected along with a moderate to high level of genetic diversity. AMOVA revealed that intra-population allelic variations contributed more to genetic diversity than inter-population variations. UPGMA based phylogenetic analysis and Discriminant Analysis of Principal Components show that wild enset is clearly separated from cultivated enset and is more closely related to the out-group Musa spp. No cluster pattern associated with the geographical regions, where this crop is grown, was observed for enset landraces. Our results reaffirm the long tradition of extensive seed-sucker exchange between enset cultivating communities in Southern Ethiopia. CONCLUSION: The first set of genomic SSR markers were developed in enset. A large proportion of these markers were polymorphic and some were also transferable to related species of the genus Musa. This study demonstrated the usefulness of the markers in assessing genetic diversity and structure in enset germplasm, and provides potentially useful information for developing conservation and breeding strategies in enset.


Assuntos
Abastecimento de Alimentos , Variação Genética , Repetições de Microssatélites/genética , Musaceae/genética , Alelos , Sequência de Bases , Etiópia , Loci Gênicos , Marcadores Genéticos , Genética Populacional , Genômica , Humanos , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Alinhamento de Sequência
10.
PLoS One ; 9(6): e98918, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24932725

RESUMO

BACKGROUND: The banana family (Musaceae) includes genetically a diverse group of species and their diploid and polyploid hybrids that are widely cultivated in the tropics. In spite of their socio-economic importance, the knowledge of Musaceae genomes is basically limited to draft genome assemblies of two species, Musa acuminata and M. balbisiana. Here we aimed to complement this information by analyzing repetitive genome fractions of six species selected to represent various phylogenetic groups within the family. RESULTS: Low-pass sequencing of M. acuminata, M. ornata, M. textilis, M. beccarii, M. balbisiana, and Ensete gilletii genomes was performed using a 454/Roche platform. Sequence reads were subjected to analysis of their overall intra- and inter-specific similarities and, all major repeat families were quantified using graph-based clustering. Maximus/SIRE and Angela lineages of Ty1/copia long terminal repeat (LTR) retrotransposons and the chromovirus lineage of Ty3/gypsy elements were found to make up most of highly repetitive DNA in all species (14-34.5% of the genome). However, there were quantitative differences and sequence variations detected for classified repeat families as well as for the bulk of total repetitive DNA. These differences were most pronounced between species from different taxonomic sections of the Musaceae family, whereas pairs of closely related species (M. acuminata/M. ornata and M. beccarii/M. textilis) shared similar populations of repetitive elements. CONCLUSIONS: This study provided the first insight into the composition and sequence variation of repetitive parts of Musaceae genomes. It allowed identification of repetitive sequences specific for a single species or a group of species that can be utilized as molecular markers in breeding programs and generated computational resources that will be instrumental in repeat masking and annotation in future genome assembly projects.


Assuntos
Biologia Computacional/métodos , DNA de Plantas/genética , Genoma de Planta , Musaceae/classificação , Musaceae/genética , Sequências Repetitivas de Ácido Nucleico , DNA de Plantas/análise , Evolução Molecular , Variação Genética , Filogenia , Análise de Sequência de DNA
11.
Genet Mol Res ; 11(3): 2094-8, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22911593

RESUMO

We assembled 31,308 publicly available Musa EST sequences into 21,129 unigenes; 4944 of them contained 5416 SSR motifs. In all, 238 unigenes flanking SSRs were randomly selected for primer design and then tested for amplification in Musella lasiocarpa. Seventy-eight primer pairs were found to be transferable to this species, and 49 displayed polymorphism. A set of 34 polymorphic SSR markers was analyzed in 24 individuals from four wild M. lasiocarpa populations. The mean number of alleles per locus was 3.0, ranging from 2 to 7. The observed and expected heterozygosities per marker ranged from 0.087 to 0.875 (mean 0.503) and from 0.294 to 0.788 (mean 0.544), respectively. These markers will be of practical use for genetic diversity and quantitative trait loci analysis of M. lasiocarpa.


Assuntos
Etiquetas de Sequências Expressas , Repetições de Microssatélites/genética , Musa/genética , Musaceae/genética , Transformação Genética
12.
BMC Evol Biol ; 11: 103, 2011 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-21496296

RESUMO

BACKGROUND: The classification of the Musaceae (banana) family species and their phylogenetic inter-relationships remain controversial, in part due to limited nucleotide information to complement the morphological and physiological characters. In this work the evolutionary relationships within the Musaceae family were studied using 13 species and DNA sequences obtained from a set of 19 unlinked nuclear genes. RESULTS: The 19 gene sequences represented a sample of ~16 kb of genome sequence (~73% intronic). The sequence data were also used to obtain estimates for the divergence times of the Musaceae genera and Musa sections. Nucleotide variation within the sample confirmed the close relationship of Australimusa and Callimusa sections and showed that Eumusa and Rhodochlamys sections are not reciprocally monophyletic, which supports the previous claims for the merger between the two latter sections. Divergence time analysis supported the previous dating of the Musaceae crown age to the Cretaceous/Tertiary boundary (~ 69 Mya), and the evolution of Musa to ~50 Mya. The first estimates for the divergence times of the four Musa sections were also obtained. CONCLUSIONS: The gene sequence-based phylogeny presented here provides a substantial insight into the course of speciation within the Musaceae. An understanding of the main phylogenetic relationships between banana species will help to fine-tune the taxonomy of Musaceae.


Assuntos
Classificação/métodos , Musaceae/classificação , Filogenia , Análise de Sequência de DNA/métodos , Evolução Molecular , Musa/classificação , Musa/genética , Musaceae/genética
13.
PLoS One ; 6(3): e17863, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21445344

RESUMO

Genes coding for 45S ribosomal RNA are organized in tandem arrays of up to several thousand copies and contain 18S, 5.8S and 26S rRNA units separated by internal transcribed spacers ITS1 and ITS2. While the rRNA units are evolutionary conserved, ITS show high level of interspecific divergence and have been used frequently in genetic diversity and phylogenetic studies. In this work we report on the structure and diversity of the ITS region in 87 representatives of the family Musaceae. We provide the first detailed information on ITS sequence diversity in the genus Musa and describe the presence of more than one type of ITS sequence within individual species. Both Sanger sequencing of amplified ITS regions and whole genome 454 sequencing lead to similar phylogenetic inferences. We show that it is necessary to identify putative pseudogenic ITS sequences, which may have negative effect on phylogenetic reconstruction at lower taxonomic levels. Phylogenetic reconstruction based on ITS sequence showed that the genus Musa is divided into two distinct clades--Callimusa and Australimusa and Eumusa and Rhodochlamys. Most of the intraspecific banana hybrids analyzed contain conserved parental ITS sequences, indicating incomplete concerted evolution of rDNA loci. Independent evolution of parental rDNA in hybrids enables determination of genomic constitution of hybrids using ITS. The observation of only one type of ITS sequence in some of the presumed interspecific hybrid clones warrants further study to confirm their hybrid origin and to unravel processes leading to evolution of their genomes.


Assuntos
Musaceae/genética , Filogenia , Especificidade da Espécie
14.
Mol Phylogenet Evol ; 57(1): 1-10, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20601004

RESUMO

Musaceae is a small paleotropical family. Three genera have been recognised within this family although the generic delimitations remain controversial. Most species of the family (around 65 species) have been placed under the genus Musa and its infrageneric classification has long been disputed. In this study, we obtained nuclear ribosomal ITS and chloroplast (atpB-rbcL, rps16, and trnL-F) DNA sequences of 36 species (42 accessions of ingroups representing three genera) together with 10 accessions of ingroups retrieved from GenBank database and 4 accessions of outgroups, to construct the phylogeny of the family, with a special reference to the infrageneric classification of the genus Musa. Our phylogenetic analyses elaborated previous results in supporting the monophyly of the family and suggested that Musella and Ensete may be congeneric or at least closely related, but refuted the previous infrageneric classification of Musa. None of the five sections of Musa previously defined based on morphology was recovered as monophyletic group in the molecular phylogeny. Two infrageneric clades were identified, which corresponded well to the basic chromosome numbers of x=11 and 10/9/7, respectively: the former clade comprises species from the sections Musa and Rhodochlamys while the latter contains sections of Callimusa, Australimusa, and Ingentimusa.


Assuntos
Musaceae/classificação , Musaceae/genética , Filogenia , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Musa/classificação , Musa/genética , Alinhamento de Sequência , Análise de Sequência de DNA
15.
Cytogenet Genome Res ; 109(1-3): 50-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15753558

RESUMO

Nuclear DNA content and genomic distributions of 5S and 45S rDNA were examined in nineteen diploid accessions of the genus Musa representing its four sections Eumusa, Rhodochlamys, Callimusa and Australimusa, and in Ensete gilletii, which was the outgroup in this study. In the Eumusa (x = 11), 2C DNA content ranged from 1.130 to 1.377 pg, M. balbisiana having the lowest DNA content of all sections. M. beccarii (x = 9), a representative of Callimusa, had the highest 2C nuclear DNA content (1.561 pg). Species belonging to Rhodochlamys (x = 11) and Australimusa (x = 10) had 2C DNA contents ranging from 1.191 to 1.299 pg and from 1.435 to 1.547 pg, respectively. E. gilletii (x = 9) had 2C DNA content of 1.210 pg. The number of 5S rDNA loci in Musa varied from 4 to 8 per diploid cell. While different numbers of 5S rDNA loci were observed within Eumusa and Rhodochlamys, four 5S rDNA loci were observed in all accessions of Australimusa. M. beccarii (Callimusa) and E. gilletii contained 5S rRNA gene clusters on five and six chromosomes, respectively. The number of 45S rDNA loci was conserved within individual sections. Hierarchical cluster analysis of genome size, number of chromosomes and 45S rDNA sites suggested a close relationship between Rhodochlamys and Eumusa; Australimusa was clearly separated as were M. beccarii and E. gilletii. Within the Eumusa-Rhodochlamys group, M. balbisiana, M. schizocarpa and M. ornata formed distinct subgroups, clearly separated from the accessions of M. acuminata, M. mannii, M. laterita and M. velutina, which formed a tight subgroup. The results expand the knowledge of genome size and genomic distribution of ribosomal DNA in Musa and Ensete. They aid in clarification of the taxonomical classification of Musa and show a need to supplement the analyses on the DNA sequence level with cytogenetic studies.


Assuntos
DNA de Plantas/genética , DNA Ribossômico/genética , Musa/classificação , Musa/genética , Musaceae/classificação , Musaceae/genética , Núcleo Celular/genética , Genoma de Planta , Geografia , RNA de Plantas/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...