Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Insect Sci ; 28(3): 627-638, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32558234

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a major pest native to the Americas that has recently invaded the Old World. Point mutations in the target-site proteins acetylcholinesterase-1 (ace-1), voltage-gated sodium channel (VGSC) and ryanodine receptor (RyR) have been identified in S. frugiperda as major resistance mechanisms to organophosphate, pyrethroid and diamide insecticides respectively. Mutations in the adenosine triphosphate-binding cassette transporter C2 gene (ABCC2) have also been identified to confer resistance to Cry1F protein. In this study, we applied a whole-genome sequencing (WGS) approach to identify point mutations in the target-site genes in 150 FAW individuals collected from China, Malawi, Uganda and Brazil. This approach revealed three amino acid substitutions (A201S, G227A and F290V) of S. frugiperda ace-1, which are known to be associated with organophosphate resistance. The Brazilian population had all three ace-1 point mutations and the 227A allele (mean frequency = 0.54) was the most common. Populations from China, Malawi and Uganda harbored two of the three ace-1 point mutations (A201S and F290V) with the 290V allele (0.47-0.58) as the dominant allele. Point mutations in VGSC (T929I, L932F and L1014F) and RyR (I4790M and G4946E) were not detected in any of the 150 individuals. A novel 12-bp insertion mutation in exon 15 of the ABCC2 gene was identified in some of the Brazilian individuals but absent in the invasive populations. Our results not only demonstrate robustness of the WGS-based genomic approach for detection of resistance mutations, but also provide insights for improvement of resistance management tactics in S. frugiperda.


Assuntos
Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Spodoptera , Acetilcolinesterase/genética , Animais , Diamida/farmacologia , Genes de Insetos , Genoma de Inseto , Organofosfatos/farmacologia , Mutação Puntual/genética , Mutação Puntual/fisiologia , Piretrinas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Canais de Sódio Disparados por Voltagem/genética , Sequenciamento Completo do Genoma
2.
Biomolecules ; 10(11)2020 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202679

RESUMO

The Gram-negative bacterium Yersinia pestis causes plague, a fatal flea-borne anthropozoonosis, which can progress to aerosol-transmitted pneumonia. Y. pestis overcomes the innate immunity of its host thanks to many pathogenicity factors, including plasminogen activator, Pla. This factor is a broad-spectrum outer membrane protease also acting as adhesin and invasin. Y. pestis uses Pla adhesion and proteolytic capacity to manipulate the fibrinolytic cascade and immune system to produce bacteremia necessary for pathogen transmission via fleabite or aerosols. Because of microevolution, Y. pestis invasiveness has increased significantly after a single amino-acid substitution (I259T) in Pla of one of the oldest Y. pestis phylogenetic groups. This mutation caused a better ability to activate plasminogen. In paradox with its fibrinolytic activity, Pla cleaves and inactivates the tissue factor pathway inhibitor (TFPI), a key inhibitor of the coagulation cascade. This function in the plague remains enigmatic. Pla (or pla) had been used as a specific marker of Y. pestis, but its solitary detection is no longer valid as this gene is present in other species of Enterobacteriaceae. Though recovering hosts generate anti-Pla antibodies, Pla is not a good subunit vaccine. However, its deletion increases the safety of attenuated Y. pestis strains, providing a means to generate a safe live plague vaccine.


Assuntos
Ativadores de Plasminogênio/metabolismo , Mapas de Interação de Proteínas/fisiologia , Yersinia pestis/metabolismo , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Humanos , Peste/genética , Peste/metabolismo , Peste/prevenção & controle , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/genética , Vacina contra a Peste/metabolismo , Ativadores de Plasminogênio/química , Ativadores de Plasminogênio/genética , Mutação Puntual/fisiologia , Estrutura Secundária de Proteína , Yersinia pestis/classificação , Yersinia pestis/genética
4.
FASEB J ; 34(6): 7675-7686, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304340

RESUMO

Mutations in mitochondrial transfer RNA (mt-tRNA) genes are responsible for a wide range of syndromes, for which no effective treatment is available. We previously reported that transfection of the nucleotide sequence encoding for the 16-residue ß32_33 peptide from mitochondrial leucyl-tRNA synthetase ameliorates the cell phenotype caused by the mitochondrial tRNA mutations. In this work, we demonstrated that both the ß32_33 peptide linked with the known (L)-Phe-(D)-Arg-(L)-Phe-(L)-Lys (FrFK) mitochondrial penetrating sequence and, strikingly, the ß32_33 peptide per se, are able to penetrate both the plasma and mitochondrial membranes and exert the rescuing activity when exogenously administered to cells bearing the mutations m.3243A > G and m.8344A > G. These mutations are responsible for the most common and severe mt-tRNA-related diseases. In addition, we dissected the molecular determinants of constructs activity by showing that both the order of amino acids along the sequence and presence of positive charges are essential determinants of the peptide activity in cells and mt-tRNA structures stabilization in vitro. In view of future in vivo studies, this information may be required to design of ß32_33 peptide-mimetic derivatives. The ß32_33 and FrFK-ß32_33 peptides are, therefore, promising molecules for the development of therapeutic agents against diseases caused by the mt-tRNA point mutations.


Assuntos
Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Membranas Mitocondriais/metabolismo , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/metabolismo , Linhagem Celular , Humanos , Mutação Puntual/fisiologia
5.
Parkinsonism Relat Disord ; 65: 139-145, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31178336

RESUMO

BACKGROUND AND OBJECTIVE: In 2004 we described the E46K mutation in alpha-synuclein gene (E46K-SNCA), a rare point mutation causing an aggressive Lewy body disease with early prominent non-motor features and small fiber denervation of myocardium. Considering the potential interest of the skin as a target for the development of biomarkers in Parkinson's Disease (PD), in this work we aimed to evaluate structural and functional integrity of small autonomic nerve fibers and phosphorylated alpha-synuclein (p-synuclein) deposition in the skin of E46K-SNCA carriers as compared to those observed in parkin gene mutation (PARK2) carriers and healthy controls. PATIENTS AND METHODS: We studied 7 E46K-SNCA carriers (3 dementia with Lewy bodies, 2 pure autonomic failure, 1 PD and 1 asymptomatic), 2 PARK2 carriers and 2 healthy controls to quantify intraepidermal nerve fiber density and p-synuclein deposition with cervical skin punch biopsies (immunohistochemistry against anti PGP9.5/UCHL-1, TH and p-synuclein) and sudomotor function with electrochemical skin conductance (ESC) (SudoScan). RESULTS: All E46K-SNCA carriers had moderate to severe p-synuclein deposits and small fiber neurodegeneration in different epidermal and dermal structures including nerve fascicles and glands, especially in carriers with Pure Autonomic Failure, while p-synuclein aggregates where absent in healthy controls and in one of two PARK2 carriers. The severity of the latter skin abnormalities in E46K-SNCA were correlated with sudomotor dysfunction (lower ESC) in hands (p = 0.035). INTERPRETATION: These results together with our previous findings support the relevance of E46K-SNCA mutation as a suitable model to study small fiber neuropathy in Lewy body diseases.


Assuntos
Heterozigoto , Mutação Puntual/fisiologia , Pele/metabolismo , Neuropatia de Pequenas Fibras/metabolismo , alfa-Sinucleína/metabolismo , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação/fisiologia , Pele/patologia , Neuropatia de Pequenas Fibras/diagnóstico , Neuropatia de Pequenas Fibras/genética , alfa-Sinucleína/genética
6.
Nat Commun ; 10(1): 1884, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015495

RESUMO

DNA methyltransferases (DNMTs) deposit DNA methylation, which regulates gene expression and is essential for mammalian development. Histone post-translational modifications modulate the recruitment and activity of DNMTs. The PWWP domains of DNMT3A and DNMT3B are posited to interact with histone 3 lysine 36 trimethylation (H3K36me3); however, the functionality of this interaction for DNMT3A remains untested in vivo. Here we present a mouse model carrying a D329A point mutation in the DNMT3A PWWP domain. The mutation causes dominant postnatal growth retardation. At the molecular level, it results in progressive DNA hypermethylation across domains marked by H3K27me3 and bivalent chromatin, and de-repression of developmental regulatory genes in adult hypothalamus. Evaluation of non-CpG methylation, a marker of de novo methylation, further demonstrates the altered recruitment and activity of DNMT3AD329A at bivalent domains. This work provides key molecular insights into the function of the DNMT3A-PWWP domain and role of DNMT3A in regulating postnatal growth.


Assuntos
Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Transtornos do Crescimento/genética , Animais , Animais Recém-Nascidos , DNA Metiltransferase 3A , Modelos Animais de Doenças , Feminino , Mutação com Ganho de Função/fisiologia , Transtornos do Crescimento/patologia , Histonas/metabolismo , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação Puntual/fisiologia , Ligação Proteica/genética , Domínios Proteicos/genética , Processamento de Proteína Pós-Traducional/fisiologia
7.
Mol Cell Proteomics ; 17(12): 2518-2533, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30228193

RESUMO

Understanding cellular processes requires the determination of dynamic changes in the concentration of genetically nonmodified, endogenous proteins, which, to date, is commonly accomplished by end-point assays in vitro Molecular probes such as fluorescently labeled nanobodies (chromobodies, CBs) are powerful tools to visualize the dynamic subcellular localization of endogenous proteins in living cells. Here, we employed the dependence of intracellular levels of chromobodies on the amount of their endogenous antigens, a phenomenon, which we termed antigen-mediated CB stabilization (AMCBS), for simultaneous monitoring of time-resolved changes in the concentration and localization of native proteins. To improve the dynamic range of AMCBS we generated turnover-accelerated CBs and demonstrated their application in visualization and quantification of fast reversible changes in antigen concentration upon compound treatment by quantitative live-cell imaging. We expect that this broadly applicable strategy will enable unprecedented insights into the dynamic regulation of proteins, e.g. during cellular signaling, cell differentiation, or upon drug action.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Antígenos/metabolismo , Anticorpos de Domínio Único/metabolismo , Anticorpos/metabolismo , Imunofluorescência , Células HeLa , Humanos , Lisossomos/metabolismo , Mutação Puntual/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteólise , Ubiquitina/metabolismo , beta Catenina/metabolismo
8.
J Biosci Bioeng ; 126(1): 23-29, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29452934

RESUMO

EnkT is a novel ATP-binding cassette (ABC) transporter responsible for secretion of four bacteriocins, enterocins NKR-5-3A, C, D, and Z (Ent53A, C, D, and Z), produced by Enterococcus faecium NKR-5-3. It is generally recognized that the secretion of a bacteriocin requires a dedicated ABC transporter, although molecular mechanisms of this secretion are yet to be revealed. In order to characterize the unique ability of EnkT to secrete multiple bacteriocins, the role of N-terminal leader peptides of bacteriocin precursors was evaluated using Ent53C precursor as a model. The 18-amino acid leader peptide of Ent53C (Lc) was modified by site-directed mutagenesis to generate various point mutations, truncations, or extensions, and substitutions with other leader peptides. The impact of these Lc mutations on Ent53C secretion was evaluated using a quantitative antimicrobial activity assay. We observed that Ent53C production increased with Ala substitution of the highly conserved C-terminal double glycine residues that are recognized as the cleavage site. In contrast, Ent53C antimicrobial activity decreased, with decrease in the length of the putative α-helix-forming region of Lc. Furthermore, EnkT recognized and transported Ent53C of the transformants possessing heterologous leader peptides of enterocin A, pediocin PA-1, brochocins A and B, and lactococcins Qα and Qß. These results indicated that EnkT shows significant tolerance towards the sequence and length of leader peptides, to secrete multiple bacteriocins. This further demonstrates the functional diversity of bacteriocin ABC transporters and the importance of leader peptides as their recognition motif.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Bacteriocinas/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Transporte Biológico/genética , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Mutagênese Sítio-Dirigida , Mutação Puntual/fisiologia , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Via Secretória/genética
9.
J Med Chem ; 61(4): 1730-1736, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29378414

RESUMO

We report the chemical synthesis of scorpion toxin Cn2, a potent and highly selective activator of the human voltage-gated sodium channel NaV1.6. In an attempt to decouple channel activation from channel binding, we also synthesized the first analogue of this toxin, Cn2[E15R]. This mutation caused uncoupling of the toxin's excitatory and depressant activities, effectively resulting in a NaV1.6 inhibitor. In agreement with the in vitro observations, Cn2[E15R] is antinociceptive in mouse models of NaV1.6-mediated pain.


Assuntos
Analgésicos/síntese química , Canal de Sódio Disparado por Voltagem NAV1.6/efeitos dos fármacos , Mutação Puntual , Venenos de Escorpião/química , Toxinas Biológicas/síntese química , Animais , Humanos , Camundongos , Proteínas Mutantes/farmacologia , Dor/tratamento farmacológico , Mutação Puntual/fisiologia , Escorpiões , Toxinas Biológicas/genética
10.
J Neurosci ; 37(15): 4181-4199, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28314816

RESUMO

The atypical vesicular glutamate transporter type 3 (VGLUT3) is expressed by subpopulations of neurons using acetylcholine, GABA, or serotonin as neurotransmitters. In addition, VGLUT3 is expressed in the inner hair cells of the auditory system. A mutation (p.A211V) in the gene that encodes VGLUT3 is responsible for progressive deafness in two unrelated families. In this study, we investigated the consequences of the p.A211V mutation in cell cultures and in the CNS of a mutant mouse. The mutation substantially decreased VGLUT3 expression (-70%). We measured VGLUT3-p.A211V activity by vesicular uptake in BON cells, electrophysiological recording of isolated neurons, and its ability to stimulate serotonergic accumulation in cortical synaptic vesicles. Despite a marked loss of expression, the activity of the mutated isoform was only minimally altered. Furthermore, mutant mice displayed none of the behavioral alterations that have previously been reported in VGLUT3 knock-out mice. Finally, we used stimulated emission depletion microscopy to analyze how the mutation altered VGLUT3 distribution within the terminals of mice expressing the mutated isoform. The mutation appeared to reduce the expression of the VGLUT3 transporter by simultaneously decreasing the number of VGLUT3-positive synaptic vesicles and the amount of VGLUT3 per synapses. These observations suggested that VGLUT3 global activity is not linearly correlated with VGLUT3 expression. Furthermore, our data unraveled a nonuniform distribution of VGLUT3 in synaptic vesicles. Identifying the mechanisms responsible for this complex vesicular sorting will be critical to understand VGLUT's involvement in normal and pathological conditions.SIGNIFICANCE STATEMENT VGLUT3 is an atypical member of the vesicular glutamate transporter family. A point mutation of VGLUT3 (VGLUT3-p.A211V) responsible for a progressive loss of hearing has been identified in humans. We observed that this mutation dramatically reduces VGLUT3 expression in terminals (∼70%) without altering its function. Furthermore, using stimulated emission depletion microscopy, we found that reducing the expression levels of VGLUT3 diminished the number of VGLUT3-positive vesicles at synapses. These unexpected findings challenge the vision of a uniform distribution of synaptic vesicles at synapses. Therefore, the overall activity of VGLUT3 is not proportional to the level of VGLUT3 expression. These data will be key in interpreting the role of VGLUTs in human pathologies.


Assuntos
Encéfalo/metabolismo , Mutação Puntual/fisiologia , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória
11.
Clin Appl Thromb Hemost ; 23(3): 266-273, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26400660

RESUMO

BACKGROUND: The incidence of neonatal hypoxic-ischemic encephalopathy (HIE) is reportedly high in countries with limited resources. Its pathogenesis is multifactorial. A role for thrombophilia has been described in different patterns of preterm and full-term perinatal brain injury. AIM: This study aims to identify risk factors associated with neonatal HIE and also to determine the contributions of genetic thrombophilia in the development of neonatal HIE. METHODS: Sixty-seven neonates with HIE and 67 controls were enrolled in the study. Clinical history and examination were undertaken. Patients and controls were tested for the presence of factor V G1691A and prothrombin G20210A mutations. In addition, protein S, protein C, and antithrombin III levels were assessed. RESULTS: Parental consanguinity and performing emergency cesarean section (CS) were significant risk factors for neonatal HIE (odds ratio [OR] 6.5, 95% confidence interval [CI] 2.6-15.3, P < .001, OR 12.6, 95% CI 2.52-63.3, P = .002, respectively). No significant difference was found regarding maternal age and parity. About 33% of cases and 6% of controls were found to have at least 1 thrombophilic factor ( P < .001). Factor V G1691A mutation significantly increased the risk of neonatal HIE (OR 4.5, 95% CI 1.4-14.5, P = .012), while prothrombin G 20210A mutation and protein C deficiency were not. CONCLUSION: Parental consanguinity, emergency CS, and factor V mutation may contribute to the higher risk of developing neonatal HIE.


Assuntos
Fator V/fisiologia , Hipóxia-Isquemia Encefálica/etiologia , Protrombina/genética , Trombofilia/complicações , Proteínas Sanguíneas/fisiologia , Estudos de Casos e Controles , Cesárea , Consanguinidade , Humanos , Recém-Nascido , Mutação Puntual/fisiologia , Fatores de Risco
12.
Clin Exp Dermatol ; 41(4): 372-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26940370

RESUMO

BACKGROUND: Recessive dystrophic epidermolysis bullosa (RDEB) is a rare heritable blistering skin condition caused by loss-of-function mutations in the COL7A1 gene. Incongruent gene transmission is occasionally reported in recessive diseases, and its underlying mechanism is often uniparental disomy (UPD). AIM: To understand the genetic basis of incongruent gene transmission in a Chinese family with RDEB, in which a discrepancy of COL7A1 genotyping was encountered during our mutation analysis. METHODS: We used a pCAS2 minigene-based in vitro splicing assay to confirm the pathogenicity of the splicing variant we identified in the proband. Next, a combination of genetic tools, including whole-genome SNP array analysis and multiplex ligation-dependent probe amplification copy number analysis, was used to unravel the cause of the discrepancy in the COL7A1 genotyping. RESULTS: Sanger sequencing identified a novel, single-peak mutation, c.4980+5G>C, in COL7A1 in the proband, which was heterozygous in his father and wild type in his mother. In vitro splicing assay showed that c.4980+5G>C was pathogenic and led to skipping of COL7A1 exon 53. SNP array analysis and multiplex ligation-dependent probe amplification of the proband's DNA revealed a maternally derived, de novo, interstitial deletion on chromosome 3p21.31, which removed COL7A1 and 15 flanking genes, excluding the possibility of UPD. CONCLUSION: Our findings favour an exceptionally rare event, namely a de novo COL7A1 microdeletion in concurrence with an inherited mutation in trans. This study should aid molecular diagnosis and genetic counselling of RDEB and possibly other recessive diseases in which genotyping discrepancy is encountered.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Genes Recessivos/genética , Mutação Puntual/genética , Mutação Puntual/fisiologia , Adulto , Povo Asiático , Análise Mutacional de DNA , Hemizigoto , Humanos , Masculino , Linhagem
13.
PLoS Comput Biol ; 11(11): e1004556, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26529612

RESUMO

There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.


Assuntos
Biologia Computacional/métodos , Estabilidade Enzimática/genética , Mutação Puntual/fisiologia , Engenharia de Proteínas/métodos , Simulação por Computador , Bases de Dados Genéticas , Liases/química , Liases/genética , Liases/metabolismo , Modelos Moleculares , Mutação Puntual/genética , Temperatura
15.
Proteins ; 83(11): 2077-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26369793

RESUMO

The Mutation-Minimization Method (MuMi) to study the local response of proteins to point mutations has been introduced here. The heat shock protein Hsp70 as the test system since it displays features that have been studied in great detail has been used here. It has many conserved residues, serves several different functions on each of its domains, and displays interdomain allostery. For the analysis of spatial arrangement of residues within the protein, the network properties of the wild type (WT) protein as well as its all single alanine residue mutants using MuMi has been investigated. The measures to express the amount of change from the WT structure upon mutation and compare these deviations to find potential critical sites have been proposed. The functional significance of the potential sites to the parameter that uncovers them has been mapped. It was found that sites directly involved in binding were sensitive to mutations and were characterized by large displacements. On the other hand, sites that steer large conformational changes typically had increased reachability upon alanine mutations occurring elsewhere in the protein. Finally, residues that control communication within and between domains reside on the largest number of paths connecting pairs of residues in the protein.


Assuntos
Proteínas de Choque Térmico HSP70/química , Mutação Puntual/fisiologia , Simulação por Computador , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Modelos Moleculares , Mutação Puntual/genética
16.
J Med Genet ; 52(9): 595-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26025001

RESUMO

BACKGROUND: We previously reported that the low-frequency, loss-of-function variant p.R270H in FFAR4 encoding the lipid sensor GPR120 was associated with obesity. Gpr120-deficient mice develop obesity and both impaired fasting glucose and glucose intolerance under a high-fat diet. We aimed to assess the contribution of p.R270H to type 2 diabetes (T2D) risk and the variation of glucose-related traits. METHODS: We genotyped p.R270H in 8996 non-diabetic individuals (among whom 4523 had an oral glucose tolerance test (OGTT)) and in a T2D case-control study including 4725 cases and 4339 controls. The regression models were adjusted for age, sex and body mass index (BMI). RESULTS: We found a significant association between p.R270H and increased fasting glucose levels (ß=0.092±0.05 mmol/L; p=4.13×10(-4)). Furthermore, p.R270H nominally contributed to decreased homeostasis model of pancreatic ß-cell function (HOMA-B; ß=-0.090±0.06; p=6.01×10(-3)). Despite a high statistical power, we did not find any significant association between p.R270H and T2D risk or the variation of fasting insulin levels, the homeostasis model of insulin resistance or OGTT-derived indices. CONCLUSIONS: These results suggest that the low-frequency p.R270H variant which inhibits GPR120 activity might influence fasting glucose levels in a normal physiological range. This study does not exclude that other coding mutations in FFAR4 with stronger functional effect than p.R270H may be associated with T2D.


Assuntos
Glicemia/genética , Diabetes Mellitus Tipo 2/genética , Mutação Puntual/fisiologia , Receptores Acoplados a Proteínas G/genética , Estudos de Casos e Controles , Jejum , Feminino , Frequência do Gene , Teste de Tolerância a Glucose , Humanos , Masculino
17.
Eur J Pharmacol ; 760: 64-71, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25895636

RESUMO

In this study, we used spilt luciferase complementation assay strategy in order to further elucidate the main role of WD-40 repeats of Apaf-1 molecules in apoptosome formation. In the presence of ATP and cytochrome c, Apaf-1 monomers oligomerize and provide a platform for the activation of procaspase-9 and subsequently procaspase-3/7. For a detailed biochemical and structural investigation of Apaf-1 function and apoptosome formation, several studies have been made in recent years. However, many questions related to in vivo evaluation of this phenomenon have been persisting to answer. Some of the most important of these questions are related to WD-40 repeats at the carboxy terminus of Apaf-1 and its function in apoptosome complex formation and caspase activation. When truncated Apaf-1 molecules conjugated with luciferase fragments place in close proximity, light signal emits and real time evaluation of protein-protein interactions becomes possible. Here, we observed, for the first time, the autoassembly of truncated Apaf-1 molecules disappeared after several hours without any caspase-3/7 activation. However, we observed that, truncated Apaf-1 molecules can activate caspase-3/7 upon the induction of apoptosis via doxorubicin. Moreover, oscillation in luciferase activity upon complementation was revealed which implicates the dynamism of apoptosome formation.


Assuntos
Apoptossomas/genética , Apoptossomas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Relógios Biológicos/fisiologia , Apoptose/fisiologia , Células HEK293 , Humanos , Mutação Puntual/fisiologia , Ligação Proteica/fisiologia
18.
Mol Pharmacol ; 87(2): 240-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25425625

RESUMO

Neuronal voltage-gated N-type (Cav2.2) calcium channels are expressed throughout the nervous system and regulate neurotransmitter release and hence synaptic transmission. They are predominantly modulated via G protein-coupled receptor activated pathways, and the well characterized Gßγ subunits inhibit Cav2.2 currents. Analgesic α-conotoxin Vc1.1, a peptide from predatory marine cone snail venom, inhibits Cav2.2 channels by activating pertussis toxin-sensitive Gi/o proteins via the GABAB receptor (GABA(B)R) and potently suppresses pain in rat models. Using a heterologous GABA(B)R expression system, electrophysiology, and mutagenesis, we showed α-conotoxin Vc1.1 modulates Cav2.2 via a different pathway from that of the GABA(B)R agonists GABA and baclofen. In contrast to GABA and baclofen, Vc1.1 changes Cav2.2 channel kinetics by increasing the rate of activation and shifting its half-maximum inactivation to a more hyperpolarized potential. We then systematically truncated the GABA(B)(1a) C terminus and discovered that removing the proximal carboxyl terminus of the GABA(B)(1a) subunit significantly reduced Vc1.1 inhibition of Cav2.2 currents. We propose a novel mechanism by which Vc1.1 activates GABA(B)R and requires the GABA(B)(1a) proximal carboxyl terminus domain to inhibit Cav2.2 channels. These findings provide important insights into how GABA(B)Rs mediate Cav2.2 channel inhibition and alter nociceptive transmission.


Assuntos
Bloqueadores dos Canais de Cálcio/metabolismo , Canais de Cálcio Tipo N/metabolismo , Conotoxinas/metabolismo , Receptores de GABA-B/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/genética , Conotoxinas/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mutação Puntual/fisiologia , Ratos
19.
Nat Commun ; 5: 5410, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25394415

RESUMO

KRAS, NRAS or HRAS genes are mutated to encode an active oncogenic protein in a quarter of human cancers. Redox-dependent reactions can also lead to Ras activation in a manner dependent upon the thiol residue of cysteine 118 (C118). Here, to investigate the effect of mutating this residue on tumorigenesis, we introduce a C118S mutation into the endogenous murine Kras allele and expose the resultant mice to the carcinogen urethane, which induces Kras mutation-positive lung tumours. We report that Kras(+/C118S) and Kras(C118S/C118S) mice develop fewer lung tumours. Although the Kras(C118S) allele does not appear to affect tumorigenesis when the remaining Kras allele is conditionally oncogenic, there is a moderate imbalance of oncogenic mutations favouring the native Kras allele in tumours from Kras(+/C118S) mice treated with urethane. We conclude that the Kras(C118S) allele impedes urethane-induced lung tumorigenesis.


Assuntos
Carcinogênese/genética , Mutação Puntual/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Alelos , Animais , Carcinógenos/farmacologia , Feminino , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida/métodos , Mutação Puntual/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Uretana/farmacologia
20.
J Biotechnol ; 187: 116-23, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25093933

RESUMO

The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences.


Assuntos
Ácido Acético/toxicidade , Histonas/genética , Mutação Puntual/genética , Mutação Puntual/fisiologia , Saccharomyces cerevisiae , Sequência de Aminoácidos , Biotecnologia , Etanol/análise , Etanol/metabolismo , Fermentação/genética , Histonas/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...