Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 234, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951769

RESUMO

BACKGROUND: Klebsiella aerogenes is an opportunistic pathogen that causes a wide variety of infections. Due to the rising problem of antibiotic resistance, novel antibiotics and strategies to combat bacterial infections are needed. Host-specific bacteriophages are natural enemies of bacteria and can be used in phage therapy as an alternative form of treatment against bacterial infections. Jumbo phages are defined as phages with genomes larger than 200 kb. Relatively few studies have been done on jumbo phages compared to smaller phages. RESULTS: A novel phage, fENko-Kae01, was isolated from a commercial phage cocktail. Genomic analysis revealed that fENko-Kae01 is a lytic jumbo phage with a 360 kb genome encoding 578 predicted genes. No highly similar phage genomes were identified and fENko-Kae01 may be a completely new genus representative. No known genes associated with lysogenic life cycle, bacterial virulence, or antibiotic resistance were identified. The phage had myovirus morphology and a narrow host range. Phage resistant bacterial mutants emerged under phage selection. Whole genome sequencing revealed that the biogenesis of the flagellum was affected in four mutants and the lack of functional flagellum was confirmed in motility assays. Furthermore, phage fENKo-Kae01 failed to adsorb on the non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSIONS: fENko-Kae01 is a novel jumbo bacteriophage that is considered safe for phage therapy. fENko-Kae01 uses the flagellum as the phage-binding receptor and may represent a completely novel genus.


Assuntos
Bacteriófagos , Enterobacter aerogenes , Flagelos , Genoma Viral , Especificidade de Hospedeiro , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Flagelos/virologia , Flagelos/genética , Enterobacter aerogenes/virologia , Enterobacter aerogenes/genética , Sequenciamento Completo do Genoma , Myoviridae/genética , Myoviridae/isolamento & purificação , Myoviridae/classificação , Myoviridae/fisiologia
2.
Microb Pathog ; 193: 106789, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972365

RESUMO

Urinary tract infections (UTIs) by Uropathogenic Escherichia coli (UPEC) are a significant health concern, especially due to the increasing prevalence of antibiotic resistance. This study focuses on isolating and characterizing bacteriophages specific to UPEC strains isolated from UTI samples. The isolated phages were assessed for their ability to target and lyse UPEC in vitro, focusing on their efficacy in disrupting biofilms, a key virulence factor contributing to UTI recurrence and antibiotic resistance. The morphological structure observed by TEM belongs to Myoviridae, the phage exhibited icosahedral symmetry with a long non-constricting tail, the approximate measurement of the phage head was 39 nm in diameter, and the phage tail was 105.317 nm in length. One-step growth experiments showed that the latent period was approximately 20 min, followed by a rise period of 40 min, and a growth plateau was reached within 20 min and the burst size observed was 26 phages/infected bacterial cells. These phages were capable of killing cells within the biofilms, leading to a reduction in living cell counts after a single treatment. This study highlights the potential of phages to play a significant role in disrupting, inactivating, and destroying Uropathogenic Escherichia coli (UPEC) biofilms. Such findings could be instrumental in developing treatment strategies that complement antibiotics and disinfectants. The phage-antibiotic synergistic activity was compared to have the possibility to facilitate the advancement of focused and enduring alternatives to traditional antibiotic therapies for UTIs.


Assuntos
Antibacterianos , Bacteriófagos , Biofilmes , Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/virologia , Antibacterianos/farmacologia , Humanos , Infecções por Escherichia coli/microbiologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Terapia por Fagos , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana
3.
BMC Microbiol ; 24(1): 211, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877452

RESUMO

BACKGROUND: This study investigates the effectiveness of the bacteriophage KZag1 against drug-resistant Klebsiella pneumoniae, aiming to assess its potential as a therapeutic agent. The novelty lies in the characterization of KZag1, a Myovirus with specific efficacy against multidrug-resistant K. pneumoniae strains. This highlights the significance of exploring alternative strategies, particularly phage therapy, in addressing biofilm-associated infections. METHODS: KZag1, characterized by a typical Myovirus structure with a 75 ± 5 nm diameter icosahedral head and a 15 ± 5 nm short tail, was evaluated in experimental trials against 15 strains of K. pneumoniae. The infection cycle duration was determined to be 50 min, resulting in an estimated burst size of approximately 83 plaque-forming units per colony-forming unit (PFU/CFU). Stability assessments were conducted within a pH range of 4 to 12 and temperatures ranging from 45°C to 60°C. Biofilm biomass reduction was observed, particularly at a multiplicity of infection (MOI) of 10. RESULTS: KZag1 demonstrated infection efficacy against 12 out of 15 tested K. pneumoniae strains. The phage exhibited stability across a broad pH range and at elevated temperatures. Notably, treatment with KZag1 significantly reduced K. pneumoniae biofilm biomass, emphasizing its potential in combating biofilm formation. Genomic analysis revealed a complete genome of 157,089 base pairs with a GC content of 46.38%, encompassing 203 open reading frames (ORFs) and a cysteine-specific tRNA sequence. Comparison with phage GP4 highlighted similarities, with KZag1 having a longer genome by approximately 4829 base pairs and a higher GC content by approximately 0.93%. Phylogenetic analysis classified KZag1 within the Myoviridae family. CONCLUSION: The efficacy of KZag1 against K. pneumoniae biofilm suggests its potential as a therapeutic candidate, especially for drug-resistant infections. Further clinical research is warranted to explore its synergy with other treatments, elucidate genomic traits, compare with Myoviridae phages, and understand its host interactions. These findings underscore the promising role of KZag1 in addressing drug-resistant bacterial infections.


Assuntos
Bacteriófagos , Biofilmes , Genoma Viral , Klebsiella pneumoniae , Klebsiella pneumoniae/virologia , Klebsiella pneumoniae/genética , Biofilmes/crescimento & desenvolvimento , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Myoviridae/genética , Myoviridae/fisiologia , Myoviridae/classificação , Farmacorresistência Bacteriana Múltipla/genética , Filogenia , DNA Viral/genética , Composição de Bases , Terapia por Fagos
4.
J Virol ; 98(7): e0066724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38829140

RESUMO

We report the discovery of a satellite-helper phage system with a novel type of dependence on a tail donor. The Acinetobacter baumannii satellite podovirus Aci01-2-Phanie (short name Phanie) uses a phage phi29-like DNA replication and packaging mode. Its linear 11,885 bp dsDNA genome bears 171 bp inverted terminal repeats (ITR). Phanie is related to phage DU-PP-III from Pectobacterium and to members of the Astrithrvirus from Salmonella enterica. Together, they form a new clade of phages with 27% to 30% identity over the whole genome. Detailed 3D protein structure prediction and mass spectrometry analyses demonstrate that Phanie encodes its capsid structural genes and genes necessary to form a short tail. However, our study reveals that Phanie virions are non-infectious unless they associate with the contractile tail of an unrelated phage, Aci01-1, to produce chimeric myoviruses. Following the coinfection of Phanie with myovirus Aci01-1, hybrid viral particles composed of Phanie capsids and Aci01-1 contractile tails are assembled together with Phanie and Aci01-1 particles.IMPORTANCEThere are few reported cases of satellite-helper phage interactions but many more may be yet undiscovered. Here we describe a new mode of satellite phage dependence on a helper phage. Phanie, like phage phi29, replicates its linear dsDNA by a protein primed-mechanism and protects it inside podovirus-like particles. However, these particles are defective, requiring the acquisition of the tail from a myovirus helper for production of infectious virions. The formation of chimeras between a phi29-like podovirus and a helper contractile tail reveals an unexpected association between very different bacterial viruses.


Assuntos
Bacteriófagos , Myoviridae , Podoviridae , Replicação Viral , Acinetobacter/virologia , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Replicação Viral/fisiologia , Podoviridae/classificação , Podoviridae/fisiologia , Podoviridae/ultraestrutura , Myoviridae/fisiologia , Myoviridae/ultraestrutura , Proteínas Virais/química , Estrutura Terciária de Proteína , Modelos Moleculares
5.
BMC Infect Dis ; 24(1): 497, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755537

RESUMO

BACKGROUND: In recent years, there has been a growing interest in phage therapy as an effective therapeutic tool against colibacillosis caused by avian pathogenic Escherichia coli (APEC) which resulted from the increasing number of multidrug resistant (MDR) APEC strains. METHODS: In the present study, we reported the characterization of a new lytic bacteriophage (Escherichia phage AG- MK-2022. Basu) isolated from poultry slaughterhouse wastewater. In addition, the in vitro bacteriolytic activity of the newly isolated phage (Escherichia phage AG- MK-2022. Basu) and the Escherichia phage VaT-2019a isolate PE17 (GenBank: MK353636.1) were assessed against MDR- APEC strains (n = 100) isolated from broiler chickens with clinical signs of colibacillosis. RESULTS: Escherichia phage AG- MK-2022. Basu belongs to the Myoviridae family and exhibits a broad host range. Furthermore, the phage showed stability under a wide range of temperatures, pH values and different concentrations of NaCl. Genome analysis of the Escherichia phage AG- MK-2022. Basu revealed that the phage possesses no antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and any E. coli virulence associated genes. In vitro bacterial challenge tests demonstrated that two phages, the Escherichia phage VaT-2019a isolate PE17 and the Escherichia phage AG- MK-2022. Basu exhibited high bactericidal activity against APEC strains and lysed 95% of the tested APEC strains. CONCLUSIONS: The current study findings indicate that both phages could be suggested as safe biocontrol agents and alternatives to antibiotics for controlling MDR-APEC strains isolated from broilers.


Assuntos
Galinhas , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Terapia por Fagos , Doenças das Aves Domésticas , Animais , Escherichia coli/virologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Galinhas/microbiologia , Doenças das Aves Domésticas/microbiologia , Colífagos/genética , Colífagos/fisiologia , Especificidade de Hospedeiro , Genoma Viral , Águas Residuárias/microbiologia , Águas Residuárias/virologia , Myoviridae/genética , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Myoviridae/classificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/isolamento & purificação
6.
Nat Commun ; 15(1): 2993, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582763

RESUMO

Bacteriophage therapy is a promising approach to address antimicrobial infections though questions remain regarding the impact of the immune response on clinical effectiveness. Here, we develop a mouse model to assess phage treatment using a cocktail of five phages from the Myoviridae and Siphoviridae families that target Vancomycin-Resistant Enterococcus gut colonization. Phage treatment significantly reduces fecal bacterial loads of Vancomycin-Resistant Enterococcus. We also characterize immune responses elicited following administration of the phage cocktail. While minimal innate responses are observed after phage administration, two rounds of treatment induces phage-specific neutralizing antibodies and accelerate phage clearance from tissues. Interestingly, the myophages in our cocktail induce a more robust neutralizing antibody response than the siphophages. This anti-phage immunity reduces the effectiveness of the phage cocktail in our murine model. Collectively, this study shows phage-specific immune responses may be an important consideration in the development of phage cocktails for therapeutic use.


Assuntos
Bacteriófagos , Enterococos Resistentes à Vancomicina , Humanos , Animais , Camundongos , Bacteriófagos/fisiologia , Vancomicina/farmacologia , Modelos Animais de Doenças , Myoviridae/fisiologia , Antibacterianos/farmacologia
7.
J Glob Antimicrob Resist ; 37: 179-184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561142

RESUMO

OBJECTIVES: This study aimed to isolate a phage capable of lysing carbapenem-resistant Klebsiella pneumoniae (CRKP) and to analyse its biological characteristics and whole-genome sequence. METHODS: The phage was isolated and purified from the sewage. Transmission electron microscopy (TEM) was employed to observe the bacteriophage's morphology. Phenotypic characterization of the bacteriophages was determined. The genomic information was analysed. Evolutionary relationships were established through comparative genomics, proteomics, and phylogenetic analysis. RESULTS: The isolation of a virulent phage, named Klebsiella phage vB_KpnM_KpVB3, was notable for forming 6-7 mm transparent circular zones, each surrounded by a distinct halo. The phage had a head diameter of ca. 30 nm and a tail length of ca. 20 nm, being identified as a member of the Myoviridae family and the Caudovirales order. The optimal multiplicity of infection (MOI) was 0.00001, with an incubation period of 20 minutes and a lysis period of 60 minutes, and the number of released phages after lysis was 133±35 PFU/cell. The phage was relatively stable at temperatures ranging from 10°C to 40°C and at pH values ranging from 3 to 11. Its lytic efficiency against CRKP was 30.30%. It has been shown to be able to destroy the biofilm of host bacteria. The bacteriophage genome consists of double-stranded DNA (dsDNA) with a total length of 48,394 base pairs, a GC content of 48.99%, and 78 open reading frames (ORFs). CONCLUSION: The study resulted in the isolation vB_KpnM_KpVB3, a phage demonstrating potential therapeutic efficacy against infections caused by CRKP.


Assuntos
Bacteriófagos , Genoma Viral , Klebsiella pneumoniae , Filogenia , Klebsiella pneumoniae/virologia , Klebsiella pneumoniae/efeitos dos fármacos , Bacteriófagos/isolamento & purificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/classificação , Carbapenêmicos/farmacologia , Myoviridae/genética , Myoviridae/isolamento & purificação , Myoviridae/classificação , Myoviridae/fisiologia , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/virologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Sequenciamento Completo do Genoma , Esgotos/virologia , Esgotos/microbiologia , Microscopia Eletrônica de Transmissão , Antibacterianos/farmacologia , Infecções por Klebsiella/microbiologia , Caudovirales/genética , Caudovirales/isolamento & purificação , Caudovirales/classificação , Caudovirales/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA