Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Nat Commun ; 15(1): 2993, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582763

RESUMO

Bacteriophage therapy is a promising approach to address antimicrobial infections though questions remain regarding the impact of the immune response on clinical effectiveness. Here, we develop a mouse model to assess phage treatment using a cocktail of five phages from the Myoviridae and Siphoviridae families that target Vancomycin-Resistant Enterococcus gut colonization. Phage treatment significantly reduces fecal bacterial loads of Vancomycin-Resistant Enterococcus. We also characterize immune responses elicited following administration of the phage cocktail. While minimal innate responses are observed after phage administration, two rounds of treatment induces phage-specific neutralizing antibodies and accelerate phage clearance from tissues. Interestingly, the myophages in our cocktail induce a more robust neutralizing antibody response than the siphophages. This anti-phage immunity reduces the effectiveness of the phage cocktail in our murine model. Collectively, this study shows phage-specific immune responses may be an important consideration in the development of phage cocktails for therapeutic use.


Assuntos
Bacteriófagos , Enterococos Resistentes à Vancomicina , Humanos , Animais , Camundongos , Bacteriófagos/fisiologia , Vancomicina/farmacologia , Modelos Animais de Doenças , Myoviridae/fisiologia , Antibacterianos/farmacologia
2.
Microbiol Spectr ; 10(1): e0222021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107386

RESUMO

Application of lytic bacteriophages is a promising and alternative intervention technology to relieve antibiotic resistance pressure and control bacterial pathogens in the food industry. Despite the increase of produce-associated outbreaks caused by non-O157 Shiga toxin-producing E. coli (STEC) serogroups, the information of phage application on sprouts to mitigate these pathogens is lacking. Therefore, the objective of this study was to characterize a T4-like Escherichia phage vB_EcoM-Sa45lw (or Sa45lw) for the biocontrol potential of STEC O45 on mung bean seeds. Phage Sa45lw belongs to the Tequatrovirus genus under the Myoviridae family and displays a close evolutionary relationship with a STEC O157-infecting phage AR1. Sa45lw contains a long-tail fiber gene (gp37), sharing high genetic similarity with the counterpart of Escherichia phage KIT03, and a unique tail lysozyme (gp5) to distinguish its host range (STEC O157, O45, ATCC 13706, and Salmonella Montevideo and Thompson) from phage KIT03 (O157 and Salmonella enterica). No stx, antibiotic resistance, and lysogenic genes were found in the Sa45lw genome. The phage has a latent period of 27 min with an estimated burst size of 80 PFU/CFU and is stable at a wide range of pH (pH 3 to pH 10.5) and temperatures (-80°C to 50°C). Phage Sa45lw is particularly effective in reducing E. coli O45:H16 both in vitro (MOI = 10) by 5 log and upon application (MOI = 1,000) on the contaminated mung bean seeds for 15 min by 2 log at 25°C. These findings highlight the potential of phage application against non-O157 STEC on sprout seeds. IMPORTANCE Seeds contaminated with foodborne pathogens, such as Shiga toxin-producing E. coli, are the primary sources of contamination in produce and have contributed to numerous foodborne outbreaks. Antibiotic resistance has been a long-lasting issue that poses a threat to human health and the food industry. Therefore, developing novel antimicrobial interventions, such as bacteriophage application, is pivotal to combat these pathogens. This study characterized a lytic bacteriophage Sa45lw as an alternative antimicrobial agent to control pathogenic E. coli on the contaminated mung bean seeds. The phage exhibited antimicrobial effects against both pathogenic E. coli and Salmonella without containing virulent or lysogenic genes that could compromise the safety of phage application. In addition, after 15 min of phage treatment, Sa45lw mitigated E. coli O45:H16 on the contaminated mung bean seeds by a 2-log reduction at room temperature, demonstrating the biocontrol potential of non-O157 Shiga toxin-producing E. coli on sprout seeds.


Assuntos
Bacteriófagos/fisiologia , Contaminação de Alimentos/prevenção & controle , Conservação de Alimentos/métodos , Myoviridae/fisiologia , Sementes/microbiologia , Escherichia coli Shiga Toxigênica/virologia , Vigna/microbiologia , Bacteriófagos/classificação , Bacteriófagos/genética , Contaminação de Alimentos/análise , Filogenia , Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo
3.
Viruses ; 14(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35215834

RESUMO

Salmonella Typhimurium, a foodborne pathogen, is a major concern for food safety. Its MDR serovars of animal origin pose a serious threat to the human population. Phage therapy can be an alternative for the treatment of such MDR Salmonella serovars. In this study, we report on detailed genome analyses of a novel Salmonella phage (Salmonella-Phage-SSBI34) and evaluate its therapeutic potential. The phage was evaluated for latent time, burst size, host range, and bacterial growth reduction in liquid cultures. The phage stability was examined at various pH levels and temperatures. The genome analysis (141.095 Kb) indicated that its nucleotide sequence is novel, as it exhibited only 1-7% DNA coverage. The phage genome features 44% GC content, and 234 putative open reading frames were predicted. The genome was predicted to encode for 28 structural proteins and 40 enzymes related to nucleotide metabolism, DNA modification, and protein synthesis. Further, the genome features 11 tRNA genes for 10 different amino acids, indicating alternate codon usage, and hosts a unique hydrolase for bacterial lysis. This study provides new insights into the subfamily Vequintavirinae, of which SSBI34 may represent a new genus.


Assuntos
Myoviridae/genética , Fagos de Salmonella/genética , Salmonella typhimurium/virologia , Animais , Bacteriólise , Agentes de Controle Biológico , Genoma Viral , Especificidade de Hospedeiro , Myoviridae/classificação , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Fases de Leitura Aberta , Terapia por Fagos , Filogenia , Aves Domésticas/microbiologia , Infecções por Salmonella/terapia , Fagos de Salmonella/classificação , Fagos de Salmonella/isolamento & purificação , Fagos de Salmonella/fisiologia , Salmonella typhimurium/isolamento & purificação
4.
Viruses ; 14(2)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35215879

RESUMO

Salmonella and Escherichia coli (E. coli) food contamination could lead to serious foodborne diseases. The gradual increase in the incidence of foodborne disease invokes new and efficient methods to limit food pathogenic microorganism contamination. In this study, a polyvalent broad-spectrum Escherichia phage named Tequatrovirus EP01 was isolated from pig farm sewage. It could lyse both Salmonella Enteritidis (S. Enteritidis) and E. coli and exhibited broad host range. EP01 possessed a short latent period (10 min), a large burst size (80 PFU/cell), and moderate pH stability (4-10) and appropriate thermal tolerance (30-80 °C). Electron microscopy and genome sequence revealed that EP01 belonged to T4-like viruses genus, Myoviridae family. EP01 harbored 12 CDSs associated with receptor-binding proteins and lacked virulence genes and drug resistance genes. We tested the inhibitory effect of EP01 on S. Enteritidis, E. coli O157:H7, E. coli O114:K90 (B90), and E. coli O142:K86 (B) in liquid broth medium (LB). EP01 could significantly reduce the counts of all tested strains compared with phage-free groups. We further examined the effectiveness of EP01 in controlling bacterial contamination in two kinds of foods (meat and milk) contaminated with S. Enteritidis, E. coli O157:H7, E. coli O114:K90 (B90), and E. coli O142:K86 (B), respectively. EP01 significantly reduced the viable counts of all the tested bacteria (2.18-6.55 log10 CFU/sample, p < 0.05). A significant reduction of 6.55 log10 CFU/cm2 (p < 0.001) in bacterial counts on the surface of meat was observed with EP01 treatment. Addition of EP01 at MOI of 1 decreased the counts of bacteria by 4.3 log10 CFU/mL (p < 0.001) in milk. Generally, the inhibitory effect exhibited more stable at 4 °C than that at 28 °C, whereas the opposite results were observed in milk. The antibacterial effects were better at MOI of 1 than that at MOI of 0.001. These results suggests that phage EP01-based method is a promising strategy of controlling Salmonella and Escherichia coli pathogens to limit microbial food contamination.


Assuntos
Escherichia coli/virologia , Contaminação de Alimentos/prevenção & controle , Myoviridae/fisiologia , Salmonella enteritidis/virologia , Animais , Bacteriólise , Escherichia coli/crescimento & desenvolvimento , Microbiologia de Alimentos , Genoma Viral , Especificidade de Hospedeiro , Carne/microbiologia , Leite/microbiologia , Myoviridae/classificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Filogenia , Salmonella enteritidis/crescimento & desenvolvimento , Esgotos/virologia , Suínos
5.
Sci Rep ; 12(1): 495, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017610

RESUMO

Among food preservation methods, bacteriophage treatment can be a viable alternative method to overcome the drawbacks of traditional approaches. Bacteriophages are naturally occurring viruses that are highly specific to their hosts and have the capability to lyse bacterial cells, making them useful as biopreservation agents. This study aims to characterize and determine the application of bacteriophage isolated from Indonesian traditional Ready-to-Eat (RTE) food to control Enterotoxigenic Escherichia coli (ETEC) population in various foods. Phage DW-EC isolated from Indonesian traditional RTE food called dawet with ETEC as its host showed a positive result by the formation of plaques (clear zone) in the bacterial host lawn. Transmission electron microscopy (TEM) results also showed that DW-EC can be suspected to belong to the Myoviridae family. Molecular characterization and bioinformatic analysis showed that DW-EC exhibited characteristics as promising biocontrol agents in food samples. Genes related to the lytic cycle, such as lysozyme and tail fiber assembly protein, were annotated. There were also no signs of lysogenic genes among the annotation results. The resulting PHACTS data also indicated that DW-EC was leaning toward being exclusively lytic. DW-EC significantly reduced the ETEC population (P ≤ 0.05) in various food samples after two different incubation times (1 day and 6 days) in chicken meat (80.93%; 87.29%), fish meat (63.78%; 87.89%), cucumber (61.42%; 71.88%), tomato (56.24%; 74.51%), and lettuce (46.88%; 43.38%).


Assuntos
Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Escherichia coli Enterotoxigênica/virologia , Conservação de Alimentos/métodos , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Animais , Bacteriófagos/classificação , Bacteriófagos/genética , Galinhas , Escherichia coli Enterotoxigênica/fisiologia , Fast Foods/virologia , Peixes , Contaminação de Alimentos/prevenção & controle , Carne/microbiologia , Myoviridae/classificação , Myoviridae/genética , Verduras/microbiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Viruses ; 13(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34696356

RESUMO

In the present study, we evaluated the effect of spray-drying formulations and operating parameters of a laboratory-scale spray-dryer on the characteristics of spray-dried powders containing two Pseudomonas aeruginosa bacteriophages exhibiting different morphotypes: a podovirus (LUZ19) and a myovirus (14-1). We optimized the production process for bacteriophage-loaded powders, with an emphasis on long-term storage under ICH (international conference on harmonization) conditions. D-trehalose-/L-isoleucine-containing bacteriophage mixtures were spray-dried from aqueous solutions using a Büchi Mini Spray-dryer B-290 (Flawil, Switzerland). A response surface methodology was used for the optimization of the spray-drying process, with the following as-evaluated parameters: Inlet temperature, spray gas flow rate, and the D-trehalose/L-isoleucine ratio. The dried powders were characterized in terms of yield, residual moisture content, and bacteriophage lytic activity. L-isoleucine has demonstrated a positive impact on the activity of LUZ19, but a negative impact on 14-1. We observed a negligible impact of the inlet temperature and a positive correlation of the spray gas flow rate with bacteriophage activity. After optimization, we were able to obtain dry powder preparations of both bacteriophages, which were stable for a minimum of one year under different ICH storage conditions (up to and including 40 °C and 75% relative humidity).


Assuntos
Bacteriófagos , Dessecação/métodos , Myoviridae , Podoviridae , Pseudomonas aeruginosa/virologia , Bacteriófagos/fisiologia , Liofilização/métodos , Myoviridae/fisiologia , Podoviridae/fisiologia , Pós , Suíça , Temperatura
7.
Sci Rep ; 11(1): 19393, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588479

RESUMO

In recent years, the use of bacteriophages (or 'phages') against multidrug-resistant (MDR) bacteria including Pseudomonas aeruginosa has drawn considerable attention, globally. In this work, we report the isolation and detailed characterization of a highly lytic Pseudomonasphage DRL-P1 isolated from wastewater. Under TEM, DRL-P1 appeared as a member of the phage family Myoviridae. DRL-P1 featured rapid adsorption (~ 5 min), short-latency (~ 30 min), and large burst size (~ 100 PFU per infected cell). DRL-P1 can withstand a wide temperature range (4 °C to 40 °C) and pH (5.0 to 10.0) conditions. The 66,243 bp DRL-P1 genome (MN564818) encodes at least 93 ORFs, of which 36 were functionally annotated based on homology with similar phage proteins available in the databases. Comparative analyses of related genomes suggest an independent evolutionary history and discrete taxonomic position of DRL-P1 within genus Pbunavirus. No toxin or antibiotic resistance genes was identified. DRL-P1 is tolerant to lyophilization and encapsulation techniques and retained lytic activity even after 18 months of storage. We also demonstrated decontaminating potentials of DRL-P1 in vitro, on an artificially contaminated cover-slip model. To the best of our knowledge, this is the first Pbunavirus to be reported from India. Our study suggests DRL-P1 as a potential candidate for various applications.


Assuntos
Myoviridae , Fagos de Pseudomonas , Pseudomonas aeruginosa/virologia , Águas Residuárias , DNA Viral , Farmacorresistência Bacteriana Múltipla/genética , Genoma Viral , Myoviridae/classificação , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/isolamento & purificação , Fagos de Pseudomonas/fisiologia , Águas Residuárias/microbiologia , Águas Residuárias/virologia
8.
Viruses ; 13(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34452284

RESUMO

Kosakonia cowanii (syn. Enterobacter cowanii) is a highly competitive bacterium that lives with plant, insect, fish, bird, and human organisms. It is pathogenic on some plants and an opportunistic pathogen of human. Nine novel viruses that lyse plant pathogenic strains and/or human strains of K. cowanii were isolated, sequenced, and characterized. Kc166A is a novel kayfunavirus, Kc261 is a novel bonnellvirus, and Kc318 is a new cronosvirus (all Autographiviridae). Kc237 is a new sortsnevirus, but Kc166B and Kc283 are members of new genera within Podoviridae. Kc304 is a new winklervirus, and Kc263 and Kc305 are new myoviruses. The viruses differ in host specificity, plaque phenotype, and lysis kinetics. Some of them should be suitable also as pathogen control agents.


Assuntos
Bacteriólise , Bacteriófagos/fisiologia , Caudovirales/fisiologia , Enterobacteriaceae/virologia , Folhas de Planta/microbiologia , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Caudovirales/classificação , Caudovirales/genética , Caudovirales/isolamento & purificação , Enterobacteriaceae/fisiologia , Genoma Viral , Especificidade de Hospedeiro , Humanos , Myoviridae/classificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Filogenia , Doenças das Plantas/microbiologia , Microbiologia do Solo , Glycine max/microbiologia
9.
Science ; 373(6554)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326207

RESUMO

Bacteriophage predation selects for diverse antiphage systems that frequently cluster on mobilizable defense islands in bacterial genomes. However, molecular insight into the reciprocal dynamics of phage-bacterial adaptations in nature is lacking, particularly in clinical contexts where there is need to inform phage therapy efforts and to understand how phages drive pathogen evolution. Using time-shift experiments, we uncovered fluctuations in Vibrio cholerae's resistance to phages in clinical samples. We mapped phage resistance determinants to SXT integrative and conjugative elements (ICEs), which notoriously also confer antibiotic resistance. We found that SXT ICEs, which are widespread in γ-proteobacteria, invariably encode phage defense systems localized to a single hotspot of genetic exchange. We identified mechanisms that allow phage to counter SXT-mediated defense in clinical samples, and document the selection of a novel phage-encoded defense inhibitor. Phage infection stimulates high-frequency SXT ICE conjugation, leading to the concurrent dissemination of phage and antibiotic resistances.


Assuntos
Farmacorresistência Bacteriana/genética , Sequências Repetitivas Dispersas , Myoviridae/fisiologia , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/virologia , Bacteriólise , Cólera/microbiologia , Conjugação Genética , Epigênese Genética , Fezes/microbiologia , Fezes/virologia , Gammaproteobacteria/genética , Gammaproteobacteria/virologia , Genes Bacterianos , Genes Virais , Genoma Bacteriano , Genoma Viral , Especificidade de Hospedeiro , Humanos , Interações Microbianas , Myoviridae/genética , Myoviridae/isolamento & purificação , Vibrio cholerae/genética , Vibrio cholerae/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
J Virol ; 95(19): e0239120, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287047

RESUMO

The majority of previously described Staphylococcus aureus bacteriophages belong to three major groups, namely, P68-like podophages, Twort-like or K-like myophages, and a more diverse group of temperate siphophages. Here, we present the following three novel S. aureus "jumbo" phages: MarsHill, Madawaska, and Machias. These phages were isolated from swine production environments in the United States and represent a novel clade of S. aureus myophage. The average genome size for these phages is ∼269 kb with each genome encoding ∼263 predicted protein-coding genes. Phage genome organization and content are similar to those of known jumbo phages of Bacillus sp., including AR9 and vB_BpuM-BpSp. All three phages possess genes encoding complete virion and nonvirion RNA polymerases, multiple homing endonucleases, and a retron-like reverse transcriptase. Like AR9, all of these phages are presumed to have uracil-substituted DNA which interferes with DNA sequencing. These phages are also able to transduce host plasmids, which is significant as these phages were found circulating in swine production environments and can also infect human S. aureus isolates. IMPORTANCE This study describes the comparative genomics of the following three novel S. aureus jumbo phages: MarsHill, Madawaska, and Machias. These three S. aureus myophages represent an emerging class of S. aureus phage. These genomes contain abundant introns which show a pattern consistent with repeated acquisition rather than vertical inheritance, suggesting intron acquisition and loss are active processes in the evolution of these phages. These phages have presumably hypermodified DNA which inhibits sequencing by several different common platforms. Therefore, these phages also represent potential genomic diversity that has been missed due to the limitations of standard sequencing techniques. In particular, such hypermodified genomes may be missed by metagenomic studies due to their resistance to standard sequencing techniques. Phage MarsHill was found to be able to transduce host DNA at levels comparable to that found for other transducing S. aureus phages, making it a potential vector for horizontal gene transfer in the environment.


Assuntos
Genoma Viral , Myoviridae/genética , Fagos de Staphylococcus/genética , Staphylococcus aureus/virologia , Animais , DNA Viral/genética , RNA Polimerases Dirigidas por DNA/genética , Genômica , Íntrons , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Myoviridae/ultraestrutura , Análise de Sequência de DNA , Fagos de Staphylococcus/isolamento & purificação , Fagos de Staphylococcus/fisiologia , Fagos de Staphylococcus/ultraestrutura , Suínos , Transdução Genética , Proteínas Virais/genética
11.
APMIS ; 129(8): 461-469, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33950561

RESUMO

Enterobacter cloacae (E. cloacae) is an emerging nosocomial pathogen that had acquired antibiotic resistance against multiple classes of antibiotics. The current study was aimed to isolate and characterize lytic bacteriophage against E. cloacae. The bacteriophage EBP was isolated from a sewage water sample using E. cloacae as a host strain by double-layer agar technique. EBP was found stabile at a wide range of temperatures (25, 37, 60, and 80°C) and pH (5, 6, 7, 8, and 9) with antibacterial activity up to 24 h of infection. The latent period of EBP was 20 min with a burst size of 252 phages per cell. It showed a narrow host range and infected 12/21 (57%) isolates of E. cloacae tested. It has helical symmetry with a head size of 105 and 120 nm long tail with contractile sheath. The EBP has 179.1 kb long double-stranded DNA genome with 44.8% GC content. Majority of identified ORFs (187/281) were encoding putative proteins with unknown function. Necessary replication enzymes, structural proteins, and lytic enzymes were detected in the genome of EBP. Phylogenetic analysis revealed that EBP closely resembles with Coronobacter phage vB_CsaM_IeN, vB_CsaM_IeE, vB_CsaM_IeB, and Citrobacter phage Margaery. Based on electron microscopy and molecular characterization, EBP was classified as a Myoviridae phage.


Assuntos
Bacteriófagos/isolamento & purificação , Genoma Viral , Myoviridae/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , Enterobacter cloacae/virologia , Tamanho do Genoma , Especificidade de Hospedeiro , Myoviridae/classificação , Myoviridae/genética , Myoviridae/fisiologia , Filogenia , Esgotos/virologia
12.
BMC Microbiol ; 21(1): 57, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33607940

RESUMO

BACKGROUND: Staphylococcus aureus is the causative agent of chronic mastitis, and can form a biofilm that is difficult to completely remove once formed. Disinfectants are effective against S. aureus, but their activity is easily affected by environmental factors and they are corrosive to equipment and chemically toxic to livestock and humans. Therefore, we investigated the potential utility of a bacteriophage as a narrow-spectrum disinfectant against biofilms formed by S. aureus. In this study, we isolated and characterized bacteriophage vB_SauM_SDQ (abbreviated to SDQ) to determine its efficacy in removing S. aureus biofilms. RESULTS: SDQ belongs to the family Myoviridae and consists of a hexagonal head, long neck, and short tail. This phage can sterilize a 109 CFU/mL culture of S. aureus in 12 h and multiply itself 1000-fold in that time. Biofilms formed on polystyrene, milk, and mammary-gland tissue were significantly reduced after SDQ treatment. Fluorescence microscopy and scanning electron microscopy showed that SDQ destroyed the biofilm structure. Moreover, the titer of SDQ remained relatively high after the lysis of the bacteria and the removal of the biofilm, exerting a continuous bacteriostatic effect. SDQ also retained its full activity under conditions that mimic common environments, i.e., in the presence of nonionic detergents, tap water, or organic materials. A nonionic detergent (Triton X-100) enhanced the removal of biofilm by SDQ. CONCLUSIONS: Our results suggest that SDQ, a specific lytic S. aureus phage, can be used to control biofilm infections. SDQ maintains its full activity in the presence of nonionic detergents, tap water, metal chelators, and organic materials, and can be used in combination with detergents. We propose this phage as a narrow-spectrum disinfectant against S. aureus, to augment or supplement the use of broad-spectrum disinfectants in the prevention and control of the mastitis and dairy industry contamination caused by S. aureus.


Assuntos
Biofilmes , Mastite/veterinária , Myoviridae/isolamento & purificação , Infecções Estafilocócicas/prevenção & controle , Fagos de Staphylococcus/isolamento & purificação , Staphylococcus aureus/virologia , Animais , Bovinos , Indústria de Laticínios , Desinfetantes , Feminino , Mastite/microbiologia , Mastite/prevenção & controle , Mastite/terapia , Microscopia Eletrônica de Varredura , Myoviridae/genética , Myoviridae/fisiologia , Terapia por Fagos , Esgotos/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/fisiologia
13.
Viruses ; 14(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062209

RESUMO

Klebsiella pneumoniae is a human pathogen that worsens the prognosis of many immunocompromised patients. Here, we annotated and compared the genomes of two lytic phages that infect clinical strains of K. pneumoniae (vB_KpnM-VAC13 and vB_KpnM-VAC66) and phenotypically characterized vB_KpnM-VAC66 (time of adsorption of 12 min, burst size of 31.49 ± 0.61 PFU/infected cell, and a host range of 20.8% of the tested strains). Transmission electronic microscopy showed that vB_KpnM-VAC66 belongs to the Myoviridae family. The genomic analysis of the phage vB_KpnM-VAC66 revealed that its genome encoded 289 proteins. When compared to the genome of vB_KpnM-VAC13, they showed a nucleotide similarity of 97.56%, with a 93% of query cover, and the phylogenetic study performed with other Tevenvirinae phages showed a close common ancestor. However, there were 21 coding sequences which differed. Interestingly, the main differences were that vB_KpnM-VAC66 encoded 10 more homing endonucleases than vB_KpnM-VAC13, and that the nucleotidic and amino-acid sequences of the L-shaped tail fiber protein were highly dissimilar, leading to different three-dimensional protein predictions. Both phages differed significantly in their host range. These viruses may be useful in the development of alternative therapies to antibiotics or as a co-therapy increasing its antimicrobial potential, especially when addressing multidrug resistant (MDR) pathogens.


Assuntos
Genoma Viral , Klebsiella pneumoniae/virologia , Myoviridae/genética , Myoviridae/fisiologia , Bacteriólise , Genes Virais , Especificidade de Hospedeiro , Humanos , Infecções por Klebsiella/terapia , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/fisiologia , Terapia por Fagos , Fenótipo , Filogenia , Proteínas Virais/genética , Sequenciamento Completo do Genoma
14.
Viruses ; 14(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35062236

RESUMO

Respiratory infections caused by multidrug-resistant Acinetobacter baumannii are difficult to treat and associated with high mortality among critically ill hospitalized patients. Bacteriophages (phages) eliminate pathogens with high host specificity and efficacy. However, the lack of appropriate preclinical experimental models hampers the progress of clinical development of phages as therapeutic agents. Therefore, we tested the efficacy of a purified lytic phage, vB_AbaM_Acibel004, against multidrug-resistant A. baumannii clinical isolate RUH 2037 infection in immunocompetent mice and a human lung tissue model. Sham- and A. baumannii-infected mice received a single-dose of phage or buffer via intratracheal aerosolization. Group-specific differences in bacterial burden, immune and clinical responses were compared. Phage-treated mice not only recovered faster from infection-associated hypothermia but also had lower pulmonary bacterial burden, lower lung permeability, and cytokine release. Histopathological examination revealed less inflammation with unaffected inflammatory cellular recruitment. No phage-specific adverse events were noted. Additionally, the bactericidal effect of the purified phage on A. baumannii was confirmed after single-dose treatment in an ex vivo human lung infection model. Taken together, our data suggest that the investigated phage has significant potential to treat multidrug-resistant A. baumannii infections and further support the development of appropriate methods for preclinical evaluation of antibacterial efficacy of phages.


Assuntos
Infecções por Acinetobacter/terapia , Acinetobacter baumannii , Myoviridae/fisiologia , Terapia por Fagos , Pneumonia Bacteriana/terapia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/virologia , Animais , Antibacterianos/farmacologia , Citocinas/metabolismo , Farmacorresistência Bacteriana Múltipla , Feminino , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia por Fagos/efeitos adversos , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia
15.
Food Microbiol ; 92: 103586, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950171

RESUMO

Salmonella is one of the most common agents of foodborne disease worldwide. As natural alternatives to traditional antimicrobial agents, bacteriophages (phages) are emerging as highly effective biocontrol agents against Salmonella and other foodborne bacteria. Due to the high diversity within the Salmonella genus and emergence of drug resistant strains, improved efforts are necessary to find broad range and strictly lytic Salmonella phages for use in food biocontrol. Here, we describe the isolation and characterization of two Salmonella phages: ST-W77 isolated on S. Typhimurium and SE-W109 isolated on S. Enteritidis with extraordinary Salmonella specificity. Whole genome sequencing identified ST-W77 as a Myovirus within the Viunalikevirus genus and SE-W109 as a Siphovirus within the Jerseylikevirus genus. Infectivity studies using a panel of S. Typhimurium cell wall mutants revealed both phages require the lipopolysaccharide O-antigen, with SE-W109 also recognizing the flagella, during infection of Salmonella. A combination of both phages was capable of prolonged (one-week) antibacterial activity when added to milk or chicken meat contaminated with Salmonella. Due to their broad host ranges, strictly lytic lifestyles and lack of lysogeny-related genes or virulence genes in their genomes, ST-W77 and SE-W109 are ideal phages for further development as Salmonella biocontrol agents for food production.


Assuntos
Myoviridae/isolamento & purificação , Fagos de Salmonella/isolamento & purificação , Siphoviridae/isolamento & purificação , Animais , Galinhas , Microbiologia de Alimentos , Genoma Viral , Especificidade de Hospedeiro , Carne/microbiologia , Leite/microbiologia , Myoviridae/classificação , Myoviridae/genética , Myoviridae/fisiologia , Fagos de Salmonella/classificação , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia , Salmonella typhimurium/virologia , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/fisiologia , Tailândia , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
Arch Virol ; 165(11): 2641-2646, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32813047

RESUMO

We performed an in-depth computational image analysis of the baseplate-tail complex of the M4 vibriophage and identified seven major densities in its baseplate, which notably share structural similarities with baseplate modules of a number of other bacteriophages belonging to different species. Employing computational analysis, we explained the helical organization of the sheath protein, wrapping the tail tube. Based on the results obtained in this work along with the proteomics information published previously, we are able to decipher the plausible roles assigned to the different components of the M4 baseplate during infection of the host.


Assuntos
Capsídeo/ultraestrutura , Genoma Viral , Myoviridae/classificação , Myoviridae/ultraestrutura , Vibrio cholerae O1/virologia , Montagem de Vírus , Genômica , Imageamento Tridimensional , Myoviridae/fisiologia , Filogenia
17.
BMC Microbiol ; 20(1): 141, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487015

RESUMO

BACKGROUND: Aeromonas hydrophila is an important water-borne pathogen that leads to a great economic loss in aquaculture. Along with the abuse of antibiotics, drug-resistant strains rise rapidly. In addition, the biofilms formed by this bacterium limited the antibacterial effect of antibiotics. Bacteriophages have been attracting increasing attention as a potential alternative to antibiotics against bacterial infections. RESULTS: Five phages against pathogenic A. hydrophila, named N21, W3, G65, Y71 and Y81, were isolated. Morphological analysis by transmission electron microscopy revealed that phages N21, W3 and G65 belong to the family Myoviridae, while Y71 and Y81 belong to the Podoviridae. These phages were found to have broad host spectra, short latent periods and normal burst sizes. They were sensitive to high temperature but had a wide adaptability to the pH. In addition, the phages G65 and Y81 showed considerable bacterial killing effect and potential in preventing formation of A. hydrophila biofilm; and the phages G65, W3 and N21 were able to scavenge mature biofilm effectively. Phage treatments applied to the pathogenic A. hydrophila in mice model resulted in a significantly decreased bacterial loads in tissues. CONCLUSIONS: Five A. hydrophila phages were isolated with broad host ranges, low latent periods, and wide pH and thermal tolerance. And the phages exhibited varying abilities in controlling A. hydrophila infection. This work presents promising data supporting the future use of phage therapy.


Assuntos
Aeromonas hydrophila/patogenicidade , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Infecções por Bactérias Gram-Negativas/terapia , Aeromonas hydrophila/virologia , Animais , Carga Bacteriana , Bacteriófagos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Infecções por Bactérias Gram-Negativas/microbiologia , Temperatura Alta , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Eletrônica de Transmissão , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Terapia por Fagos , Podoviridae/isolamento & purificação , Podoviridae/fisiologia
18.
Arch Virol ; 165(7): 1675-1678, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32356184

RESUMO

Aeromonas hydrophila is an important finfish pathogen, besides being an opportunistic human pathogen. In the present study, the genomes of three A. hydrophila-specific phages, CF8, PS1, and PS2, were isolated, characterized and sequenced. Transmission electron microscopy showed that all three phages had typical Myoviridae morphology. The linear dsDNA genomes of CF8, PS1, and PS2 were 238,150 bp, 237,367 bp, and 240,447 bp in length, with a GC content of 42.2%, 38.8%, and 38.8%, respectively. The low sequence similarity (67.6% - 69.8% identity with 27.0% - 29.0% query coverage) to other phage genomes in the NCBI database indicated the novel nature of the CF8, PS1, and PS2 genomes. A total of 244, 247, and 250 open reading frames (ORFs) were predicted in the CF8, PS1, and PS2 genome, respectively. During the annotation process, functional predictions were made for 28-31 ORFs, while the rest were classified as "hypothetical proteins" with yet unknown functions. Genes for tRNAs were also detected in all phage genomes. As all three phages in the present study had a very narrow host range with lytic activity against only one strain of A. hydrophila, these phages could be good candidates for phage typing applications. Moreover, the endolysin- and lytic-transglycosylase-encoding genes could be used for recombinant cloning and expression of anti-microbial proteins.


Assuntos
Aeromonas hydrophila/virologia , Bacteriófagos/genética , Genoma Viral , Myoviridae/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Composição de Bases , Sequência de Bases , Especificidade de Hospedeiro , Myoviridae/classificação , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Fases de Leitura Aberta , Filogenia
19.
J Med Microbiol ; 69(2): 309-323, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32011231

RESUMO

Introduction. Bacteriophage therapy can be developed to target emerging diarrhoeal pathogens, but doing so in the absence of microbiome disruption, which occurs with antibiotic treatment, has not been established.Aim. Identify a therapeutic bacteriophage that kills diarrhoeagenic enteroaggregative Escherichia coli (EAEC) while leaving the human microbiome intact.Methodology. Phages from wastewater in Portland, OR, USA were screened for bacteriolytic activity by overlay assay. One isolated phage, PDX, was classified by electron microscopy and genome sequencing. A mouse model of infection determined whether the phage was therapeutic against EAEC. 16S metagenomic analysis of anaerobic cultures determined whether a normal human microbiome was altered by treatment.Results. Escherichia virus PDX, a member of the strictly lytic family Myoviridae, killed a case-associated EAEC isolate from a child in rural Tennessee in a dose-dependent manner, and killed EAEC isolates from Columbian children. A single dose of PDX (multiplicity of infection: 100) 1 day post-infection reduced EAEC recovered from mouse faeces. PDX also killed EAEC when cultured anaerobically in the presence of human faecal bacteria. While the addition of EAEC reduced the ß-diversity of the human microbiota, that of the cultures with either faeces alone, faeces with EAEC and PDX, or with just PDX phage was not different statistically.Conclusion. PDX killed EAEC isolate EN1E-0007 in vivo and in vitro, while not altering the diversity of normal human microbiota in anaerobic culture, and thus could be part of an effective therapy for children in developing countries and those suffering from EAEC-mediated traveller's diarrhoea without causing dysbiosis.


Assuntos
Bacteriófagos/fisiologia , Infecções por Escherichia coli/terapia , Escherichia coli/virologia , Myoviridae/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Disbiose/microbiologia , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Myoviridae/classificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Filogenia
20.
J Food Sci ; 85(3): 526-534, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32043599

RESUMO

Chicken breast meat is considered as the main source of Salmonella infection in humans. The aim of this study was to isolate lytic bacteriophages specific for Salmonella enterica serovars Enteritidis and examine their efficacy in a cocktail for the biocontrol of Salmonella spp. in raw chicken breast meat. Four lytic phages belonging to the Myoviridae and Siphoviridae families were isolated from a river proximate to a duck farm. They exhibited broad lytic activities against 11 strains of S. Enteritidis, 11 strains of S. Typhimurium, and one each of S. Paratyphi A, S. San Diego, and S. Typhi. The phages were determined to be stable, exhibited similar degrees of resistance to heat and pH, and had latent periods ranging from 5 to 30 min. In addition, the phage particles were 100% adsorbed within 18 to 40 min. Viable cell counts of bacteria were significantly reduced in raw chicken breast samples (P < 0.05) when treated with a cocktail of all four bacteriophages at 4 °C for 7 days (multiplicities of infection were from 104 to 106 ). These results indicate the potential efficacy of the bacteriophage cocktail as a biological agent against S. Enteritidis in raw chicken breast meat. PRACTICAL APPLICATION: Our findings demonstrate that the phages could be effective in reducing the viability of Salmonella spp. bacteria in chicken breast meat. Therefore, the phage cocktail is a potential bactericidal agent for the biocontrol of Salmonella spp. in raw chicken breast meat and could be used use in various poultry industries in the future.


Assuntos
Conservação de Alimentos/métodos , Carne/microbiologia , Myoviridae/isolamento & purificação , Fagos de Salmonella/isolamento & purificação , Salmonella enteritidis/virologia , Siphoviridae/isolamento & purificação , Animais , Galinhas , Patos , Microbiologia de Alimentos , Conservação de Alimentos/instrumentação , Myoviridae/classificação , Myoviridae/genética , Myoviridae/fisiologia , Fagos de Salmonella/classificação , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia , Salmonella enteritidis/crescimento & desenvolvimento , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...