Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 588
Filtrar
1.
Sci Rep ; 14(1): 9369, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653774

RESUMO

Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.


Assuntos
Sistema Digestório , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Substâncias Macromoleculares , Carbamazepina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Bivalves/efeitos dos fármacos , Bivalves/química
2.
Sci Total Environ ; 926: 172125, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38565353

RESUMO

Despite both microplastics (MPs) and harmful algae blooms (HABs) may pose a severe threat to the immunity of marine bivalves, the toxification mechanism underlying is far from being fully understood. In addition, owing to the prevalence and sudden occurrence characteristics of MPs and HABs, respectively, bivalves with MP-exposure experience may face acute challenge of harmful algae under realistic scenarios. However, little is known about the impacts and underlying mechanisms of MP-exposure experience on the susceptibility of immunity to HABs in bivalve mollusks. Taking polystyrene MPs and diarrhetic shellfish toxin-producing Prorocentrum lima as representatives, the impacts of MP-exposure on immunity vulnerability to HABs were investigated in the thick-shell mussel, Mytilus coruscus. Our results revealed evident immunotoxicity of MPs and P. lima to the mussel, as evidenced by significantly impaired total count, phagocytic activity, and cell viability of haemocytes, which may result from the induction of oxidative stress, aggravation of haemocyte apoptosis, and shortage in cellular energy supply. Moreover, marked disruptions of immunity, antioxidant system, apoptosis regulation, and metabolism upon MPs and P. lima exposure were illustrated by gene expression and comparative metabolomic analyses. Furthermore, the mussels that experienced MP-exposure were shown to be more vulnerable to P. lima, indicated by greater degree of deleterious effects on abovementioned parameters detected. In general, our findings emphasize the threat of MPs and HABs to bivalve species, which deserves close attention and more investigation.


Assuntos
Toxinas Marinhas , Mytilus , Animais , Toxinas Marinhas/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Mytilus/metabolismo , Frutos do Mar
3.
Viruses ; 16(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543768

RESUMO

LTR-retrotransposons are transposable elements characterized by the presence of long terminal repeats (LTRs) directly flanking an internal coding region. They share genome organization and replication strategies with retroviruses. Steamer-like Element-1 (MchSLE-1) is an LTR-retrotransposon identified in the genome of the Chilean blue mussel Mytilus chilensis. MchSLE-1 is transcribed; however, whether its RNA is also translated and the mechanism underlying such translation remain to be elucidated. Here, we characterize the MchSLE-1 translation mechanism. We found that the MchSLE-1 5' and 3'LTRs command transcription of sense and antisense RNAs, respectively. Using luciferase reporters commanded by the untranslated regions (UTRs) of MchSLE-1, we found that in vitro 5'UTR sense is unable to initiate translation, whereas the antisense 5'UTR initiates translation even when the eIF4E-eIF4G interaction was disrupted, suggesting the presence of an internal ribosomal entry site (IRES). The antisense 5'UTR IRES activity was tested using bicistronic reporters. The antisense 5'UTR has IRES activity only when the mRNA is transcribed in the nucleus, suggesting that nuclear RNA-binding proteins are required to modulate its activity. Indeed, heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as an IRES trans-acting factor (ITAF) of the MchSLE-1 IRES. To our knowledge, this is the first report describing an IRES in an antisense mRNA derived from a mussel LTR-retrotransposon.


Assuntos
Sítios Internos de Entrada Ribossomal , Mytilus , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítios Internos de Entrada Ribossomal/genética , Retroelementos/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Regiões 5' não Traduzidas , Mytilus/genética , Mytilus/metabolismo , Biossíntese de Proteínas
4.
Chemosphere ; 355: 141777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527634

RESUMO

With the wide use of nanomaterials in daily life, nano-titanium dioxide (nano-TiO2) presents potential ecological risks to marine ecosystems, which can be exacerbated by ocean warming (OW). However, most previous studies have only centered around waterborne exposure, while there is a scarcity of studies concentrating on the impact of trophic transfer exposure on organisms. We investigated the differences in toxic effects of 100 µg/L nano-TiO2 on mussels via two pathways (waterborne and foodborne) under normal (24 °C) and warming (28 °C) conditions. Single nano-TiO2 exposure (waterborne and foodborne) elevated the superoxide dismutase (SOD) and catalase (CAT) activities as well as the content of glutathione (GSH), indicating activated antioxidatant response in the intestine. However, depressed antioxidant enzymes and accumulated peroxide products (LPO and protein carbonyl content, PCC) demonstrated that warming in combination with nano-TiO2 broke the prooxidant-antioxidant homeostasis of mussels. Our findings also indicated that nano-TiO2 and high temperature exhibited adverse impacts on amylase (AMS), trypsin (PS), and trehalase (THL). Additionally, activated immune function (lysozyme) comes at the cost of energy expenditure of protein (decreased protein concentration). The hydrodynamic diameter of nano-TiO2 at 24 °C (1693-2261 nm) was lower than that at 28 °C (2666-3086 nm). Bioaccumulation results (range from 0.022 to 0.432 µg/g) suggested that foodborne induced higher Ti contents in intestine than waterborne. In general, the combined effects of nano-TiO2 and warming demonstrated a more pronounced extent of interactive effects and severe damage to antioxidant, digestive, and immune parameters in mussel intestine. The toxicological impact of nano-TiO2 was intensified through trophic transfer. The toxic effects of nano-TiO2 are non-negligible and can be exerted together through both water- and foodborne exposure routes, which deserves further investigation.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Mytilus/metabolismo , Antioxidantes/metabolismo , Água/metabolismo , Ecossistema , Carbonilação Proteica , Temperatura , Intestinos , Poluentes Químicos da Água/metabolismo , Titânio/farmacologia
5.
Chemosphere ; 352: 141445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354862

RESUMO

Organic and nanoparticle pollutants are the main environmental problems affecting marine species, which have received great attention. However, the combined effect of pollutants on marine life in the presence of predators needs to be clarified. In this study, the effects of pentachlorophenol (PCP) and titanium dioxide nanoparticles (nano-TiO2) on the energy metabolism of mussels (Mytilus coruscus) in the presence of predators were assessed through cellular energy allocation (CEA) approach. Mussels were exposed to PCP (0, 1, and 10 µg/L), nano-TiO2 (1 mg/L, 25 and 100 nm), and predators (Portunus trituberculatus presence/absence) for 14 days. Exposure to high concentrations of PCP (10 µg/L) with small particle size nano-TiO2 (25 nm) decreased cellular energy stores (carbohydrates, lipids, and proteins) and increased cellular energy demand (measured as the activity of the mitochondrial electron transport system, ETS). During the first 7 days, energy was supplied mainly through the consumption of carbohydrates, while lipids are mobilized to participate after 7 days. The presence of predators caused a further decrease in energy stores. These findings demonstrate that PCP, nano-TiO2 and predators have a negative impact on energy metabolism at the cellular level. Carbohydrates are not able to meet the metabolic demand, lipids need to be consumed, and energy metabolism was also mediated by the involvement of proteins. Overall, our results suggest that PCP, nano-TiO2 and predators disrupt the cellular energy metabolism of mussels through reduced cellular energy allocation, small particles and predators drive mussels to exert energetic metabolic adjustments for detoxification reactions when toxic contaminants are present.


Assuntos
Poluentes Ambientais , Mytilus , Nanopartículas , Pentaclorofenol , Poluentes Químicos da Água , Animais , Pentaclorofenol/metabolismo , Mytilus/metabolismo , Nanopartículas/toxicidade , Metabolismo Energético , Poluentes Ambientais/metabolismo , Carboidratos , Lipídeos , Titânio/farmacologia , Poluentes Químicos da Água/metabolismo
6.
Environ Sci Pollut Res Int ; 31(11): 16819-16831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324158

RESUMO

Succinate dehydrogenase inhibitor fungicides (SDHIs) are frequently detected in the marine environment. However, studies on the toxicity of SDHIs to marine organisms, Mytilus coruscus (M. coruscus), are poorly reported. Therefore, the antioxidant activities and metabolomic response of four SDHIs, namely, boscalid (BC), thifluzamide (TF), fluopyram (FO), and bixafen (BIX), to (M. coruscus), were comprehensively investigated. The antioxidant activity of BC and TF was significantly increased (p<0.05), whereas those of FO and BIX were significantly decreased. Furthermore, metabolite discriminations among M. coruscus to four SDHIs were illustrated by an untargeted metabolomics approach. A total of 52, 50, 93, and 129 differential metabolites were obtained for BC, TF, FO, and BIX. KEGG of the different metabolites show that the four SDHIs had differential effects on the metabolic pathways of M. coruscus. The current study demonstrated four SDHIs triggered glucose metabolism, lipid metabolism, tricarboxylic acid cycle, and oxidative phosphorylation processes and caused the disruption of nutrient and energy conversion processes in mussels. Finally, five biomarkers were screened by analyzing common differential metabolites that emerged from the four SDHI exposures, which could be used for risk assessment of marine ecosystem exposure to SDHIs. Our results demonstrated the use of metabolomics to understand the potential mechanisms of toxicity of four SDHIs to mussels and to identify potential targets for future targeted risk assessment.


Assuntos
Benzamidas , Compostos de Bifenilo , Fungicidas Industriais , Mytilus , Niacinamida/análogos & derivados , Piridinas , Animais , Fungicidas Industriais/toxicidade , Succinato Desidrogenase/metabolismo , Antioxidantes , Mytilus/metabolismo , Ácido Succínico , Ecossistema , Succinatos
7.
Microsc Res Tech ; 87(5): 1092-1110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251430

RESUMO

In recent years, the presence of pharmaceuticals and microplastics (MPs) in aquatic ecosystems has raised concerns about their environmental impact. This study explores the combined effects of caffeine, a common pharmaceutical pollutant, and MPs on the marine mussel Mytilus galloprovincialis. Caffeine, at concentrations of 20.0 µg L-1, and MPs (1 mg L-1, 35-50 µm size range), was used to mimic real-world exposure scenarios. Two hundred M. galloprovincialis specimens were divided into four groups: caffeine, MPs, Mix (caffeine + MPs), and Control. After a two-week acclimation period, the mollusks were subjected to these pollutants in oxygen-aerated aquariums under controlled conditions for 14 days. Histopathological assessments were performed to evaluate gill morphology. Cellular volume regulation and digestive gland cell viability were also analyzed. Exposure to caffeine and MPs induced significant morphological changes in M. galloprovincialis gills, including cilia loss, ciliary disk damage, and cellular alterations. The chitinous rod supporting filaments also suffered damage, potentially due to MP interactions, leading to hemocyte infiltration and filament integrity compromise. Hemocytic aggregation suggested an inflammatory response to caffeine. In addition, viability assessments of digestive gland cells revealed potential damage to cell membranes and function, with impaired cell volume regulation, particularly in the Mix group, raising concerns about nutrient metabolism disruption and organ function compromise. These findings underscore the vulnerability of M. galloprovincialis to environmental pollutants and emphasize the need for monitoring and mitigation efforts. RESEARCH HIGHLIGHTS: The synergy of caffeine and microplastics (MPs) in aquatic ecosystems warrants investigation. MPs and caffeine could affect gill morphology of Mytilus galloprovincialis. Caffeine-exposed cells had lower viability than the control group in the NR retention test. MPs and mix-exposed cells struggled to recover their volume.


Assuntos
Poluentes Ambientais , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Plásticos/farmacologia , Cafeína/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
8.
Environ Pollut ; 344: 123327, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190878

RESUMO

The definition of microplastics (MPs) is nowadays too generic from a biological perspective, since different characteristics of these particles might influence their effects. To provide experimental evidence that size is an important factor to be considered, Mediterranean mussels Mytilus galloprovincialis were exposed to five size classes of polyethylene fragments (PE-MPs, 20-50 µm, 50-100 µm, 100-250 µm, 250-500 µm, 500-1000 µm). After 10 days of exposure, MPs ingestion and mechanistic relationships between particles size and cellular effects were analysed through a wide panel of biological alterations, including immune system responses, cholinergic function, antioxidant system, lipid metabolism and peroxidation. Results were further elaborated through a Weight of Evidence approach, summarizing the overall biological significance of obtained results in a hazard index based on the number and magnitude of variations and their toxicological relevance. PE-MPs 500-1000 µm were identified as the less biologically reactive size class due to the limited ingestion of particles coupled with the lack of biological effects, followed by PE-MPs 250-500 µm, which slightly altered the cholinergic function and lysosomal membranes. Conversely, PE-MPs smaller than 250 µm provoked a more consistent onset of biological alterations in terms of immune system composition and functioning, redox homeostasis, and lipid metabolism. The overall findings of this study highlight the importance of considering the size of particles for monitoring and risk assessment of MPs, introducing a more integrated evaluation of plastic pollution that, beside particles concentration, should adequately weigh those characteristics triggering the onset of biological effects.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Microplásticos/análise , Plásticos/análise , Mytilus/metabolismo , Polietileno/metabolismo , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Poluentes Químicos da Água/análise
9.
Pestic Biochem Physiol ; 198: 105714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225063

RESUMO

The rise in the utilization of pesticides within industrial and agricultural practices has been linked to the occurrence of these substances in aquatic environments. The objective of this work was to evaluate the uptake and adverse impacts of Diuron (Di) and Triclosan (TCS) on the mussel species Mytilus galloprovincialis. To accomplish this, the accumulation and toxicity of these pesticides were gauged following a brief period of exposure spanning 14 days, during which the mussels were subjected to two concentrations (50 and 100 µg/L) of each substance that are ecologically relevant. Chemical analysis of Di and TCS within gills and digestive gland showed that these pesticides could be accumulated in mussel's tissues. In addition, Di and TCS are preferably accumulated in digestive gland. Measured biomarkers included physiological parameters (filtration FC and respiration RC capacity), antioxidant enzyme activities (superoxide dismutase and catalase), oxidative damage indicator (Malondialdheyde concentration) and neurotoxicity level (acetylcholinesterase activity) were evaluated in gills and digestive glands. Both pesticides were capable of altering the physiology of this species by reducing the FC and RC in concentration and chemical dependent manner. Both pesticides induced also an oxidative imbalance causing oxidative stress. The high considered concentration exceeded the antioxidant defense capacity of the mussel and lead to membrane lipid peroxidation that resulted in cell damage. Finally, the two pesticides tested were capable of interacting with the neuromuscular barrier leading to neurotoxicity in mussel's tissues by inhibiting acetylcholinesterase. The ecotoxicological effect depended on the concentration and the chemical nature of the contaminant. Obtained results revealed also that the Di may exert toxic effects on M. galloprovincialis even at relatively low concentrations compared to TCS. In conclusion, this study presents innovative insights into the possible risks posed by Diuron (Di) and Triclosan (TCS) to the marine ecosystem. Moreover, it contributes essential data to the toxicological database necessary for developing proactive environmental protection measures.


Assuntos
Mytilus , Praguicidas , Triclosan , Poluentes Químicos da Água , Animais , Mytilus/metabolismo , Antioxidantes/farmacologia , Triclosan/toxicidade , Acetilcolinesterase/metabolismo , Diurona/toxicidade , Ecossistema , Estresse Oxidativo , Biomarcadores/metabolismo , Praguicidas/farmacologia , Poluentes Químicos da Água/toxicidade
10.
Chemosphere ; 351: 141168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215828

RESUMO

The threat of climate change, which includes shifts in salinity and temperature, has generated a global concern for marine organisms. These changes directly impact them and may alter their susceptibility to contaminants, such as terbium (Tb), found in electronic waste. This study assessed how decreased and increased salinity, as well as increased temperature, modulates Tb effects in Mytilus galloprovincialis mussels. After an exposure period of 28 days, Tb bioaccumulation and biochemical changes were evaluated. Results indicated no significant modulation of salinity and temperature on Tb accumulation, suggesting detoxification mechanisms and adaptations. Further analysis showed that Tb exposure alone caused antioxidant inhibition and neurotoxicity. When exposed to decreased salinity, these Tb-exposed organisms activated defense mechanisms, a response indicative of osmotic stress. Moreover, increased salinity also led to increased oxidative stress and metabolic activity in Tb-exposed organisms. Additionally, Tb-exposed organisms responded to elevated temperature with altered biochemical activities indicative of damage and stress response. Such responses suggested that Tb effects were masked by osmotic and heat stress. This study provides valuable insights into the interactions between temperature, salinity, and contaminants such as Tb, impacting marine organisms. Understanding these relationships is crucial for mitigating climate change and electronic waste effects on marine ecosystems.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Temperatura , Térbio/metabolismo , Térbio/farmacologia , Salinidade , Ecossistema , Poluentes Químicos da Água/análise , Estresse Oxidativo , Mytilus/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37898360

RESUMO

Broadcast-spawning marine mussels rely on high sperm motility for successful fertilization in the dynamic seawater environment. Mitochondria are typically considered the primary source of ATP generation via oxidative phosphorylation (OXPHOS); however, the ATP generation pathways of mussel sperm have not been fully characterized. To better understand the importance of both OXPHOS and glycolysis for mussel sperm function, we conducted experiments inhibiting these pathways in sperm from Mytilus edulis. Our results indicate that oligomycin, an inhibitor of the mitochondrial ATP synthase, immediately decreased sperm motility rate, velocity, and ATP content, while 2-deoxy-d-glucose, a glycolysis inhibitor, had no effect. The OXPHOS inhibitor rotenone also partially reduced sperm motility rate and velocity. Interestingly, no evidence was found for the inhibitors' effects on the content of energy-rich compounds (lipids, carbohydrates, and proteins) in the mussels' sperm, indicating only modest energy demand to fuel sperm motility. Based on these findings, we conclude that OXPHOS is the primary energy source for sperm motility in marine mussels. Our study sheds light on the intricacies of mussel sperm physiology and highlights the importance of understanding the energy requirements for successful fertilization in broadcast-spawning marine invertebrates.


Assuntos
Mytilus edulis , Mytilus , Masculino , Animais , Fosforilação Oxidativa , Motilidade dos Espermatozoides/fisiologia , Mytilus edulis/metabolismo , Sêmen/metabolismo , Glicólise/fisiologia , Espermatozoides , Trifosfato de Adenosina/metabolismo , Mytilus/metabolismo
12.
Chemosphere ; 350: 141079, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160957

RESUMO

The antipsychotic chlorpromazine (Cpz) has raised concern as a pharmaceutical effluent due to its wide medical applications. Moreover, its potent pro-oxidant properties and impact on the cell viability of the marine mollusc Mytilus galloprovincialis, even at low concentrations (ng/L), have been noted. Based on this evidence, in this study, we investigated the physiological effects of Cpz on M. galloprovincialis, to elucidate its fate within the organism, in terms of bioaccumulation, biotransformation, byssus changes and stress responses of the cellular thiolome. Histological and indicators of vitality analyses were also performed to better evaluate the influence of the drug on the morphology and cell viability of the digestive gland. To this end, two different concentrations of Cpz (Cpz I (12 ng/L or 37 pM) and Cpz II (12 µg/L or 37 nM)) were administered to mussels over 14 days. Cpz accumulation in the digestive gland significantly increased with water concentration (BCF of Cpz I and Cpz II). Biochemical analyses indicated lysosomal dysfunction, reflected in elevated total Cathepsin D activity and compromised lysosomal membrane stability. Stress-related and metal-buffering proteins (GST and metallothionein) responded to both Cpz concentrations. Cpz I induced phase I biotransformation activity (CYP450-dependent EROD), while Cpz II triggered caspase-3 activation, indicative of detoxification overload. Histological analysis revealed digestive gland atrophy, epithelial thinning, haemocyte infiltration, and brown cell presence. Byssus analysis showed significant alterations. In conclusion, our study underscores Cpz-induced physiological and histological changes in M. galloprovincialis, posing potential implications for mussel health and confirming the utilisation of this mussel as an indication of Cpz ecotoxicity.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Mytilus/metabolismo , Clorpromazina/toxicidade , Metais/metabolismo , Biotransformação , Poluentes Químicos da Água/metabolismo , Biomarcadores/metabolismo
13.
Mar Pollut Bull ; 197: 115763, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956494

RESUMO

The concentration of pharmaceuticals in coastal waters is tending towards increasing due to a shift of the human population into coastal zones. In parallel, the number of prescriptions of antidepressants, mainly selective serotonin reuptake inhibitors (SSRI), is constantly growing. Most of the SSRI is metabolised into active compounds; for instance, norfluoxetine (NFLU) is the main active metabolite of fluoxetine. In this study, we tested the bioaccumulation and depuration of NFLU in Mytilus trossulus at two environmentally relevant concentrations (100 and 500 ng/L, after six days of exposure and five days of depuration at 10 °C). The concentration of NFLU in the mussels' tissue seems not to be directly proportional to the exposure concentration. The levels of NFLU in the mussels' tissues after the depuration period were comparable to the levels detected at the end of exposure. This indicates that NFLU is not efficiently removed by the mussels and points to a potential risk for consumers of such marine organisms.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Humanos , Fluoxetina , Poluentes Químicos da Água/análise , Mytilus/metabolismo , Alimentos Marinhos/análise
14.
Environ Sci Pollut Res Int ; 30(54): 116120-116133, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910362

RESUMO

Electrical and electronic equipment reaching the end of its useful life is currently being disposed of at such an alarmingly high pace that raises environmental concerns. Together with other potentially dangerous compounds, electronic waste contains the rare-earth element gadolinium (Gd), which has already been reported in aquatic systems. Additionally, the vulnerability of aquatic species to this element may also be modified when climate change related factors, like increase in temperature, are taken into consideration. Thus, the present study aimed to evaluate the toxicity of Gd under a scenario of increased temperature in Mytilus galloprovincialis mussels. A multi-biomarker approach and Gd bioaccumulation were assessed in mussels exposed for 28 days to 0 and 10 µg/L of Gd at two temperatures (control - 17 °C; increased - 22 °C). Results confirmed that temperature had a strong influence on the bioaccumulation of Gd. Moreover, mussels exposed to Gd alone reduced their metabolism, possibly to prevent further accumulation, and despite catalase and glutathione S-transferases were activated, cellular damage seen as increased lipid peroxidation was not avoided. Under enhanced temperature, cellular damage in Gd-exposed mussels was even greater, as defense mechanisms were not activated, possibly due to heat stress. In fact, with increased temperature alone, organisms experienced a general metabolic depression, particularly evidenced in defense enzymes, similar to the results obtained under Gd-exposure. Overall, this study underlines the importance of conducting environmental risk assessment taking into consideration anticipated climate change scenarios and exposures to emerging contaminants at relevant environmental concentrations.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Aquecimento Global , Gadolínio , Mytilus/metabolismo , Poluentes Químicos da Água/análise , Estresse Oxidativo , Biomarcadores/metabolismo
15.
Environ Sci Pollut Res Int ; 30(56): 118332-118340, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910376

RESUMO

The metallic pyrithiones are used as antifouling paints for marine vehicles against fouling organisms. However, they are dissolved in marine water and have negative impacts on marine non-target organisms. This study evaluated the adverse effects of sodium pyrithione (NaPT) on Mytilus galloprovincialis using total hemocyte counts (THCs), oxidative stress and antioxidant parameters, and histopathological observations. Mussels were exposed to 0.1 and 1 µg/L NaPT for 96 h. The THC values of the NaPT-exposed mussels significantly decreased (p < 0.05). Lipid peroxidation and advanced oxidative protein products of digestive gland and gill tissues were decreased but only the digestive gland tissues of 0.1 µg/L NaPT values were significantly decreased compared to control groups (p < 0.05). Histological alterations were observed in the gill and the digestive gland tissues revealing malformations and hyperplasia of gill lamella; degenerations and loss of tubules of digestive gland after exposure to NaPT for 96 h. As a result, biocidal sodium pyrithione has adverse effects on the mussels even in short-term exposures and low concentrations.


Assuntos
Incrustação Biológica , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/metabolismo , Organismos Aquáticos/metabolismo , Incrustação Biológica/prevenção & controle , Estresse Oxidativo , Sódio/metabolismo , Poluentes Químicos da Água/análise , Biomarcadores/metabolismo
16.
Aquat Toxicol ; 264: 106736, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37913686

RESUMO

Plastic is undoubtedly the most useful and versatile polymeric material that man has developed in the last two centuries Despite the societal benefits, plastic is now a serious global issue because it is persistent and may bioaccumulate into aquatic biota as microplastics (MPs). This study was designed to evaluate the daily uptake and cellular effects due to a short-term (up to 72 h) exposure to 3 µm red polystyrene MPs (50 beads/mL) in the gills of the Mediterranean mussel Mytilus galloprovincialis, chosen as model species for its ecological and commercial relevance. After measuring the daily uptake of MPs and detecting their presence within the branchial epithelium at all the exposure time-points (T24, T48, T72), some cleaning mechanisms were observed by neutral and acid mucous secretions at mussel gills. The protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, allowed to comprehensively explore the time-dependent metabolic disorders triggered by MPs in mussel gills over the short-term trial. Specifically, the clear clustering between MP-treated mussel gills and those from control, together with the grouping for experimental time-points as depicted by the Principal Component Analysis (PCA), were due to changes in the amino acids and energy metabolism, disturbances in the osmoregulatory processes, as well as in the cholinergic neurotransmission. Moreover, as evidenced by enzymatic assays, even the oxidative defense systems and lipid metabolism were hampered by MP exposure. Overall, these findings provides the first insights into the early time-dependent mechanisms of toxicity of polystyrene MPs in marine mussels, and underline the potential environment and human health risk posed by MPs contamination.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Brânquias/metabolismo , Microplásticos/metabolismo , Mytilus/metabolismo , Plásticos , Poliestirenos/metabolismo , Poluentes Químicos da Água/toxicidade
17.
Mar Pollut Bull ; 195: 115544, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717494

RESUMO

The objective of this work was to discover a biochemical pathway to explain the transfer of cadmium, a toxic element, from seawater to cultured mussels. Understanding the intricacies of this transfer is crucial for global mussel crops, as it has the potential to mitigate risks to human health and prevent economic losses in the industry. We focused our investigation on Yal Bay, a typical area with intense mussel aquaculture activity (16,000 t y-1) in the inland sea of southern Chile. Seasonal samples of blue mussels (Mytilus chilensis) were collected and analyzed from September 2014 to December 2015 at two integrated depths (0-5 m and 5-10 m). Diurnal and nocturnal seston, seawater, benthic sediments and decanted suspensions from the water column were recorded. Our findings indicate that nocturnal seston satisfactorily explains the presence of cadmium in Mytilus chilensis aquaculture throughout its annual temporal distribution (Spearman rs = 0.63, p = 0.002).


Assuntos
Mytilus edulis , Mytilus , Animais , Humanos , Mytilus/metabolismo , Cádmio/metabolismo , Aquicultura , Água do Mar
18.
Environ Sci Pollut Res Int ; 30(48): 106342-106354, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37726635

RESUMO

The broadly utilized biocide triclosan (TCS) is continuously discharged in water compartments worldwide, where it is detected at concentrations of ng-µg/L. Given its lipophilicity and bioaccumulation, TCS is considered potentially harmful to human and environmental health and also as a potential endocrine disruptor (ED) in different species. In aquatic organisms, TCS can induce a variety of effects: however, little information is available on its possible impact on invertebrate development. Early larval stages of the marine bivalve Mytilus galloprovincialis have been shown to be sensitive to environmental concentrations of a number of emerging contaminants, including EDs. In this work, the effects of TCS were first evaluated in the 48 h larval assay in a wide concentration range (0.001-1,000 µg/L). TCS significantly affected normal development of D-veligers (LOEC = 0.1 µg/L; EC50 = 236.1 µg/L). At selected concentrations, the mechanism of action of TCS was investigated. TCS modulated transcription of different genes involved in shell mineralization, endocrine signaling, ceramide metabolism, and biotransformation, depending on larval stage (24 and 48 h post-fertilization-hpf) and concentration (1 and 10 µg/L). At 48 hpf and 10 µg/L TCS, calcein staining revealed alterations in CaCO3 deposition, and polarized light microscopy showed the absence of shell birefringence due to the mineralized phase. Observations by scanning electron microscopy highlighted a variety of defects in shell formation from concentrations as low as 0.1 µg/L. The results indicate that TCS, at environmental exposure levels, can act as a developmental disruptor in early mussel larvae mainly by interfering with the processes of biomineralization.


Assuntos
Desinfetantes , Mytilus , Triclosan , Poluentes Químicos da Água , Animais , Humanos , Triclosan/toxicidade , Triclosan/metabolismo , Desinfetantes/toxicidade , Mytilus/metabolismo , Larva , Poluentes Químicos da Água/metabolismo
19.
Environ Pollut ; 336: 122454, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37640221

RESUMO

North Atlantic and Arctic Oceans contain large amount of undiscovered oil and gas reserves. Therefore threat of oil spills and its hazardous ecological consequences are of great importance to the marine environment. Although mussels (Mytilus sp.) respond clearly to contaminants, biomarkers have shown variability linked to biological and environmental changes. In order to help avoiding misinterpretation of biological responses the aim of this study was to reveal the effect of natural variability in the responsiveness to pollution of a battery of cell and tissue-level biomarkers in mussels. Mussels were collected in relatively non-impacted and potentially impacted sites at ports and the vicinity of a waste water treatment plant in Trondheim and Tromsø in autumn of 2016. Although the battery of biomarkers used herein proved to be useful to discriminate impacted and non-impacted mussel populations, some confounding factors altering the biological responses were identified. Geographical/latitudinal factors seemed to be critical regarding the reproductive cycle, reserve material storage and the prevalence of parasites such as Gymnophallus cf. Bursicola trematodes. Mussels from the reference site in Tromsø displayed general stress responses at different levels, which could be influenced by the pathogenic effect of the Gymnophallus cf. Bursicola trematode and by a more advanced gametogenic developmental stage compared to the mussels from Trondheim, which could lead to misinterpretation of the reasons behind the measured stress levels in those mussels. Despite these confounding effects, the use of integrative tools such as IBR index helped to discriminate mussel populations from chemically impacted and non-impacted sites. Overall, this work serves as an anchor point both as a reference of the baseline level values of the analyzed endpoints in the studied geographical area and time of the year, and as an indication of the potential extent of the environmental confounding factors in monitoring programs causing stress on the analyzed mussel populations.


Assuntos
Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Mytilus edulis/metabolismo , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Mytilus/metabolismo , Noruega , Biomarcadores/metabolismo
20.
Environ Pollut ; 334: 122176, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437757

RESUMO

Microalgae and blue mussels are known to accumulate undesirable substances from the environment, including arsenic (As). Microalgae can biotransform inorganic As (iAs) to organoarsenic species, which can be transferred to blue mussels. Knowledge on As uptake, biotransformation, and trophic transfer is important with regards to feed and food safety since As species have varying toxicities. In the current work, experiments were conducted in two parts: (1) exposure of the microalgae Diacronema lutheri to 5 and 10 µg/L As(V) in seawater for 4 days, and (2) dietary As exposure where blue mussels (Mytilus edulis L.) were fed with D. lutheri exposed to 5 and 10 µg/L As(V), or by aquatic exposure to 5 µg/L As(V) in seawater, for a total of 25 days. The results showed that D. lutheri can take up As from seawater and transform it to methylated As species and arsenosugars (AsSug). However, exposure to 10 µg/L As(V) resulted in accumulation of iAs in D. lutheri and lower production of methylated As species, which may suggest that detoxification mechanisms were overwhelmed. Blue mussels exposed to As via the diet and seawater showed no accumulation of As. Use of linear mixed models revealed that the blue mussels were gradually losing As instead, which may be due to As concentration differences in the mussels' natural environment and the experimental setup. Both D. lutheri and blue mussels contained notable proportions of simple methylated As species and AsSug. Arsenobetaine (AB) was not detected in D. lutheri but present in minor fraction in mussels. The findings suggest that low-trophic marine organisms mainly contain methylated As species and AsSug. The use of low-trophic marine organisms as feed ingredients requires further studies since AsSug are regarded as potentially toxic, which may introduce new risks to feed and food safety.


Assuntos
Arsênio , Microalgas , Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Arsênio/toxicidade , Arsênio/análise , Mytilus edulis/metabolismo , Microalgas/metabolismo , Cadeia Alimentar , Organismos Aquáticos/metabolismo , Poluentes Químicos da Água/análise , Mytilus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...