Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.091
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2321260121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38722807

RESUMO

Protein capsids are a widespread form of compartmentalization in nature. Icosahedral symmetry is ubiquitous in capsids derived from spherical viruses, as this geometry maximizes the internal volume that can be enclosed within. Despite the strong preference for icosahedral symmetry, we show that simple point mutations in a virus-like capsid can drive the assembly of unique symmetry-reduced structures. Starting with the encapsulin from Myxococcus xanthus, a 180-mer bacterial capsid that adopts the well-studied viral HK97 fold, we use mass photometry and native charge detection mass spectrometry to identify a triple histidine point mutant that forms smaller dimorphic assemblies. Using cryoelectron microscopy, we determine the structures of a precedented 60-mer icosahedral assembly and an unexpected 36-mer tetrahedron that features significant geometric rearrangements around a new interaction surface between capsid protomers. We subsequently find that the tetrahedral assembly can be generated by triple-point mutation to various amino acids and that even a single histidine point mutation is sufficient to form tetrahedra. These findings represent a unique example of tetrahedral geometry when surveying all characterized encapsulins, HK97-like capsids, or indeed any virus-derived capsids reported in the Protein Data Bank, revealing the surprising plasticity of capsid self-assembly that can be accessed through minimal changes in the protein sequence.


Assuntos
Proteínas do Capsídeo , Capsídeo , Microscopia Crioeletrônica , Mutação Puntual , Capsídeo/metabolismo , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Modelos Moleculares
2.
J Math Biol ; 89(1): 2, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739209

RESUMO

We study traveling wave solutions for a reaction-diffusion model, introduced in the article Calvez et al. (Regime switching on the propagation speed of travelling waves of some size-structured myxobacteriapopulation models, 2023), describing the spread of the social bacterium Myxococcus xanthus. This model describes the spatial dynamics of two different cluster sizes: isolated bacteria and paired bacteria. Two isolated bacteria can coagulate to form a cluster of two bacteria and conversely, a pair of bacteria can fragment into two isolated bacteria. Coagulation and fragmentation are assumed to occur at a certain rate denoted by k. In this article we study theoretically the limit of fast coagulation fragmentation corresponding mathematically to the limit when the value of the parameter k tends to + ∞ . For this regime, we demonstrate the existence and uniqueness of a transition between pulled and pushed fronts for a certain critical ratio θ ⋆ between the diffusion coefficient of isolated bacteria and the diffusion coefficient of paired bacteria. When the ratio is below θ ⋆ , the critical front speed is constant and corresponds to the linear speed. Conversely, when the ratio is above the critical threshold, the critical spreading speed becomes strictly greater than the linear speed.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Myxococcus xanthus , Myxococcus xanthus/fisiologia , Simulação por Computador , Difusão
3.
Protein Sci ; 33(5): e4981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591662

RESUMO

Translesion DNA synthesis pathways are necessary to ensure bacterial replication in the presence of DNA damage. Translesion DNA synthesis carried out by the PolV mutasome is well-studied in Escherichia coli, but ~one third of bacteria use a functionally homologous protein complex, consisting of ImuA, ImuB, and ImuC (also called DnaE2). Numerous in vivo studies have shown that all three proteins are required for translesion DNA synthesis and that ImuC is the error-prone polymerase, but the roles of ImuA and ImuB are unclear. Here we carry out biochemical characterization of ImuA and a truncation of ImuB from Myxococcus xanthus. We find that ImuA is an ATPase, with ATPase activity enhanced in the presence of DNA. The ATPase activity is likely regulated by the C-terminus, as loss of the ImuA C-terminus results in DNA-independent ATP hydrolysis. We also find that ImuA binds a variety of DNA substrates, with DNA binding affinity affected by the addition of ADP or adenylyl-imidodiphosphate. An ImuB truncation also binds DNA, with lower affinity than ImuA. In the absence of DNA, ImuA directly binds ImuB with moderate affinity. Finally, we show that ImuA and ImuB self-interact, but that ImuA is predominantly a monomer, while truncated ImuB is a trimer in vitro. Together, with our findings and the current literature in the field, we suggest a model for translesion DNA synthesis, where a trimeric ImuB would provide sufficient binding sites for DNA, the ß-clamp, ImuC, and ImuA, and where ImuA ATPase activity may regulate assembly and disassembly of the translesion DNA synthesis complex.


Assuntos
Myxococcus xanthus , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Síntese de DNA Translesão , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/genética , Replicação do DNA
4.
Proc Natl Acad Sci U S A ; 121(17): e2321989121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625941

RESUMO

Type IVa pili (T4aP) are ubiquitous cell surface filaments important for surface motility, adhesion to surfaces, DNA uptake, biofilm formation, and virulence. T4aP are built from thousands of copies of the major pilin subunit and tipped by a complex composed of minor pilins and in some systems also the PilY1 adhesin. While major pilins of structurally characterized T4aP have lengths of <165 residues, the major pilin PilA of Myxococcus xanthus is unusually large with 208 residues. All major pilins have a conserved N-terminal domain and a variable C-terminal domain, and the additional residues of PilA are due to a larger C-terminal domain. We solved the structure of the M. xanthus T4aP (T4aPMx) at a resolution of 3.0 Å using cryo-EM. The T4aPMx follows the structural blueprint of other T4aP with the pilus core comprised of the interacting N-terminal α1-helices, while the globular domains decorate the T4aP surface. The atomic model of PilA built into this map shows that the large C-terminal domain has more extensive intersubunit contacts than major pilins in other T4aP. As expected from these greater contacts, the bending and axial stiffness of the T4aPMx is significantly higher than that of other T4aP and supports T4aP-dependent motility on surfaces of different stiffnesses. Notably, T4aPMx variants with interrupted intersubunit interfaces had decreased bending stiffness, pilus length, and strongly reduced motility. These observations support an evolutionary scenario whereby the large major pilin enables the formation of a rigid T4aP that expands the environmental conditions in which the T4aP system functions.


Assuntos
Proteínas de Fímbrias , Myxococcus xanthus , Proteínas de Fímbrias/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Fímbrias Bacterianas/metabolismo , Estrutura Secundária de Proteína , Virulência
5.
Mol Microbiol ; 121(5): 1002-1020, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38525557

RESUMO

Upon starvation, rod-shaped Myxococcus xanthus bacteria form mounds and then differentiate into round, stress-resistant spores. Little is known about the regulation of late-acting operons important for spore formation. C-signaling has been proposed to activate FruA, which binds DNA cooperatively with MrpC to stimulate transcription of developmental genes. We report that this model can explain regulation of the fadIJ operon involved in spore metabolism, but not that of the spore coat biogenesis operons exoA-I, exoL-P, and nfsA-H. Rather, a mutation in fruA increased the transcript levels from these operons early in development, suggesting negative regulation by FruA, and a mutation in mrpC affected transcript levels from each operon differently. FruA bound to all four promoter regions in vitro, but strikingly each promoter region was unique in terms of whether or not MrpC and/or the DNA-binding domain of Nla6 bound, and in terms of cooperative binding. Furthermore, the DevI component of a CRISPR-Cas system is a negative regulator of all four operons, based on transcript measurements. Our results demonstrate complex regulation of sporulation genes by three transcription factors and a CRISPR-Cas component, which we propose produces spores suited to withstand starvation and environmental insults.


Assuntos
Proteínas de Bactérias , Sistemas CRISPR-Cas , Regulação Bacteriana da Expressão Gênica , Myxococcus xanthus , Óperon , Regiões Promotoras Genéticas , Esporos Bacterianos , Fatores de Transcrição , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Óperon/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Mutação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
6.
J Biol Chem ; 300(4): 107197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508314

RESUMO

Cell polarity oscillations in Myxococcus xanthus motility are driven by a prokaryotic small Ras-like GTPase, mutual gliding protein A (MglA), which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GTPase activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. With an aim to dissect the asymmetric role of the two MglB protomers in the dual GAP and GEF activities, we generated a functional MglAB complex by coexpressing MglB with a linked construct of MglA and MglB. This strategy enabled us to generate mutations of individual MglB protomers (MglB1 or MglB2 linked to MglA) and delineate their role in GEF and GAP activities. We establish that the C-terminal helix of MglB1, but not MglB2, stimulates nucleotide exchange through a site away from the nucleotide-binding pocket, confirming an allosteric mechanism. Interaction between the N-terminal ß-strand of MglB1 and ß0 of MglA is essential for the optimal GEF activity of MglB. Specific residues of MglB2, which interact with Switch-I of MglA, partially contribute to its GAP activity. Thus, the role of the MglB2 protomer in the GAP activity of MglB is limited to restricting the conformation of MglA active site loops. The direct demonstration of the allosteric mechanism of GEF action provides us new insights into the regulation of small Ras-like GTPases, a feature potentially present in many uncharacterized GEFs.


Assuntos
Proteínas de Bactérias , Proteínas Ativadoras de GTPase , Myxococcus xanthus , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/enzimologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Multimerização Proteica , Ativação Enzimática
7.
Genome Biol Evol ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526062

RESUMO

Intrinsic rates of genetic mutation have diverged greatly across taxa and exhibit statistical associations with several other parameters and features. These include effective population size (Ne), genome size, and gametic multicellularity, with the latter being associated with both increased mutation rates and decreased effective population sizes. However, data sufficient to test for possible relationships between microbial multicellularity and mutation rate (µ) are lacking. Here, we report estimates of two key population-genetic parameters, Ne and µ, for Myxococcus xanthus, a bacterial model organism for the study of aggregative multicellular development, predation, and social swarming. To estimate µ, we conducted an ∼400-day mutation accumulation experiment with 46 lineages subjected to regular single colony bottlenecks prior to clonal regrowth. Upon conclusion, we sequenced one clonal-isolate genome per lineage. Given collective evolution for 85,323 generations across all lines, we calculate a per base-pair mutation rate of ∼5.5 × 10-10 per site per generation, one of the highest mutation rates among free-living eubacteria. Given our estimate of µ, we derived Ne at ∼107 from neutral diversity at four-fold degenerate sites across two dozen M. xanthus natural isolates. This estimate is below average for eubacteria and strengthens an already clear negative correlation between µ and Ne in prokaryotes. The higher and lower than average mutation rate and Ne for M. xanthus, respectively, amplify the question of whether any features of its multicellular life cycle-such as group-size reduction during fruiting-body development-or its highly structured spatial distribution have significantly influenced how these parameters have evolved.


Assuntos
Taxa de Mutação , Myxococcus xanthus , Myxococcus xanthus/genética , Densidade Demográfica , Genoma Bacteriano
8.
PLoS Biol ; 22(1): e3002454, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261596

RESUMO

Ecological variation influences the character of many biotic interactions, but examples of predator-prey reversal mediated by abiotic context are few. We show that the temperature at which prey grow before interacting with a bacterial predator can determine the very direction of predation, reversing predator and prey identities. While Pseudomonas fluorescens reared at 32°C was extensively killed by the generalist predator Myxococcus xanthus, P. fluorescens reared at 22°C became the predator, slaughtering M. xanthus to extinction and growing on its remains. Beyond M. xanthus, diffusible molecules in P. fluorescens supernatant also killed 2 other phylogenetically distant species among several examined. Our results suggest that the sign of lethal microbial antagonisms may often change across abiotic gradients in natural microbial communities, with important ecological and evolutionary implications. They also suggest that a larger proportion of microbial warfare results in predation-the killing and consumption of organisms-than is generally recognized.


Assuntos
Microbiota , Myxococcus xanthus , Animais , Comportamento Predatório , Antibiose , Evolução Biológica
9.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958645

RESUMO

The co-culturing of microorganisms is a well-known strategy to study microbial interactions in the laboratory. This approach facilitates the identification of new signals and molecules produced by one species that affects other species' behavior. In this work, we have studied the effects of the interaction of nine Streptomyces species (S. albidoflavus, S. ambofaciens, S. argillaceus, S. griseus, S. lividans, S. olivaceus, S. parvulus, S. peucetius, and S. rochei) with the predator bacteria Myxococcus xanthus, five of which (S. albidoflavus, S. griseus, S. lividans, S. olivaceus, and S. argillaceus) induce mound formation of M. xanthus on complex media (Casitone Yeast extract (CYE) and Casitone tris (CTT); media on which M. xanthus does not form these aggregates under normal culture conditions. An in-depth study on S. griseus-M. xanthus interactions (the Streptomyces strain producing the strongest effect) has allowed the identification of two siderophores produced by S. griseus, demethylenenocardamine and nocardamine, responsible for this grouping effect over M. xanthus. Experiments using pure commercial nocardamine and different concentrations of FeSO4 show that iron depletion is responsible for the behavior of M. xanthus. Additionally, it was found that molecules, smaller than 3 kDa, produced by S. peucetius can induce the production of DK-xanthenes by M. xanthus.


Assuntos
Myxococcus xanthus , Myxococcus , Streptomyces , Interações Microbianas , Ferro
10.
STAR Protoc ; 4(4): 102657, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883223

RESUMO

Protein-protein interactions are foundational for many cellular processes. Such interactions are especially challenging to identify if they are transient or depend on environmental conditions. This protocol details steps to identify stable and transient protein interactomes in the bacterium Myxococcus xanthus using biotin ligase miniTurbo-based proximity labeling. We include instructions for optimizing the expression of control proteins, in vivo biotin labeling of bacteria grown on a surface or in suspension culture, enrichment of biotinylated proteins, and sample processing for proteomic analysis. For complete details on the use and execution of this protocol, please refer to Branon et al. (2018).1.


Assuntos
Biotina , Myxococcus xanthus , Biotina/metabolismo , Myxococcus xanthus/metabolismo , Proteômica/métodos
11.
mBio ; 14(5): e0159323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754549

RESUMO

IMPORTANCE: Type IVa pili (T4aP) are widespread bacterial cell surface structures with important functions in motility, surface adhesion, biofilm formation, and virulence. Different bacteria have adapted different piliation patterns. To address how these patterns are established, we focused on the bipolar localization of the T4aP machine in the model organism Myxococcus xanthus by studying the localization of the PilQ secretin, the first component of this machine that assembles at the poles. Based on experiments using a combination of fluorescence microscopy, biochemistry, and computational structural analysis, we propose that PilQ, and specifically its AMIN domains, binds septal and polar peptidoglycan, thereby enabling polar Tgl localization, which then stimulates PilQ multimerization in the outer membrane. We also propose that the presence and absence of AMIN domains in T4aP secretins contribute to the different piliation patterns across bacteria.


Assuntos
Proteínas de Fímbrias , Myxococcus xanthus , Proteínas de Fímbrias/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Fímbrias Bacterianas/metabolismo
12.
mSystems ; 8(5): e0042523, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37747885

RESUMO

IMPORTANCE: Understanding the processes behind bacterial biofilm formation, maintenance, and dispersal is essential for addressing their effects on health and ecology. Within these multicellular communities, various cues can trigger differentiation into distinct cell types, allowing cells to adapt to their specific local environment. The soil bacterium Myxococcus xanthus forms biofilms in response to starvation, marked by cells aggregating into mounds. Some aggregates persist as spore-filled fruiting bodies, while others disperse after initial formation for unknown reasons. Here, we use a combination of cell tracking analysis and computational simulations to identify behaviors at the cellular level that contribute to aggregate dispersal. Our results suggest that cells in aggregates actively determine whether to disperse or persist and undergo a transition to sporulation based on a self-produced cue related to the aggregate size. Identifying these cues is an important step in understanding and potentially manipulating bacterial cell-fate decisions.


Assuntos
Myxococcus xanthus , Esporos Bacterianos , Esporos Bacterianos/fisiologia , Biofilmes , Diferenciação Celular
13.
Nat Commun ; 14(1): 5357, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660104

RESUMO

Peptidoglycan (PG) defines cell shape and protects bacteria against osmotic stress. The growth and integrity of PG require coordinated actions between synthases that insert new PG strands and hydrolases that generate openings to allow the insertion. However, the mechanisms of their coordination remain elusive. Moenomycin that inhibits a family of PG synthases known as Class-A penicillin-binding proteins (aPBPs), collapses rod shape despite aPBPs being non-essential for rod-like morphology in the bacterium Myxococcus xanthus. Here, we demonstrate that inhibited PBP1a2, an aPBP, accelerates the degradation of cell poles by DacB, a hydrolytic PG peptidase. Moenomycin promotes the binding between DacB and PG and thus reduces the mobility of DacB through PBP1a2. Conversely, DacB also regulates the distribution and dynamics of aPBPs. Our findings clarify the action of moenomycin and suggest that disrupting the coordination between PG synthases and hydrolases could be more lethal than eliminating individual enzymes.


Assuntos
Bambermicinas , Myxococcus xanthus , Peptidoglicano , Óxido Nítrico Sintase , Peptídeo Hidrolases , Parede Celular , Proteínas de Ligação às Penicilinas/genética
14.
Nat Commun ; 14(1): 5588, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696789

RESUMO

Many species, such as fish schools or bird flocks, rely on collective motion to forage, prey, or escape predators. Likewise, Myxococcus xanthus forages and moves collectively to prey and feed on other bacterial species. These activities require two distinct motility machines enabling adventurous (A) and social (S) gliding, however when and how these mechanisms are used has remained elusive. Here, we address this long-standing question by applying multiscale semantic cell tracking during predation. We show that: (1) foragers and swarms can comprise A- and S-motile cells, with single cells exchanging frequently between these groups; (2) A-motility is critical to ensure the directional movement of both foragers and swarms; (3) the combined action of A- and S-motile cells within swarms leads to increased predation efficiencies. These results challenge the notion that A- and S-motilities are exclusive to foragers and swarms, and show that these machines act synergistically to enhance predation efficiency.


Assuntos
Myxococcus xanthus , Comportamento Predatório , Animais , Rastreamento de Células , Comportamento Cooperativo , Movimento (Física)
15.
J Bacteriol ; 205(9): e0022123, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695853

RESUMO

The regulation of biofilm and motile states as alternate bacterial lifestyles has been studied extensively in flagellated bacteria, where the second messenger cyclic-di-GMP (cdG) plays a crucial role. However, much less is known about the mechanisms of such regulation in motile bacteria without flagella. The bacterial type IV pilus (T4P) serves as a motility apparatus that enables Myxococcus xanthus to move on solid surfaces. PilB, the T4P assembly ATPase, is, therefore, required for T4P-dependent motility in M. xanthus. Interestingly, T4P is also involved in the regulation of exopolysaccharide as the biofilm matrix material in this bacterium. A newly discovered cdG-binding domain, MshEN, is conserved in the N-terminus of PilB (PilBN) in M. xanthus and other bacteria. This suggests that cdG may bind to PilB to control the respective outputs that regulate biofilm development and T4P-powered motility. In this study, we aimed to validate M. xanthus PilB as a cdG effector protein. We performed a systematic mutational analysis of its cdG-binding domain to investigate its relationship with motility, piliation, and biofilm formation. Excluding those resulting in low levels of PilB protein, all other substitution mutations in PilBN resulted in pilB mutants with distinct and differential phenotypes in piliation and biofilm levels in M. xanthus. This suggests that the PilBN domain plays dual roles in modulating motility and biofilm levels, and these two functions of PilB can be dependent on and independent of each other in M. xanthus. IMPORTANCE The regulation of motility and biofilm by cyclic-di-GMP in flagellated bacteria has been extensively investigated. However, our knowledge regarding this regulation in motile bacteria without flagella remains limited. Here, we aimed to address this gap by investigating a non-flagellated bacterium with motility powered by bacterial type-IV pilus (T4P). Previous studies hinted at the possibility of Myxococcus xanthus PilB, the T4P assembly ATPase, serving as a cyclic-di-GMP effector involved in regulating both motility and biofilm. Our findings strongly support the hypothesis that PilB directly interacts with cyclic-di-GMP to act as a potential switch to promote biofilm formation or T4P-dependent motility. These results shed light on the bifurcation of PilB functions and its pivotal role in coordinating biofilm formation and T4P-mediated motility.


Assuntos
Myxococcus xanthus , Myxococcus xanthus/genética , GMP Cíclico , Adenosina Trifosfatases , Biofilmes
16.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37494115

RESUMO

Myxobacteria are social microbial predators that use cell-cell contacts to identify bacterial or fungal prey and to differentiate kin relatives to initiate cellular responses. For prey killing, they assemble Tad-like and type III-like secretion systems at contact sites. For kin discrimination (KD), they assemble outer membrane exchange complexes composed of the TraA and TraB receptors at contacts sites. A type VI secretion system and Rhs proteins also mediate KD. Following cellular recognition, these systems deliver appropriate effectors into target cells. For prey, this leads to cell death and lysis for nutrient consumption by myxobacteria. In KD, a panel of effectors are delivered, and if adjacent cells are clonal cells, resistance ensues because they express a cognate panel of immunity factors; while nonkin lack complete immunity and are intoxicated. This review compares and contrasts recent findings from these systems in myxobacteria.


Assuntos
Myxococcales , Myxococcus xanthus , Animais , Myxococcales/genética , Comportamento Predatório , Myxococcus xanthus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
Nat Commun ; 14(1): 4056, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422455

RESUMO

During cell migration, front-rear polarity is spatiotemporally regulated; however, the underlying design of regulatory interactions varies. In rod-shaped Myxococcus xanthus cells, a spatial toggle switch dynamically regulates front-rear polarity. The polarity module establishes front-rear polarity by guaranteeing front pole-localization of the small GTPase MglA. Conversely, the Frz chemosensory system, by acting on the polarity module, causes polarity inversions. MglA localization depends on the RomR/RomX GEF and MglB/RomY GAP complexes that localize asymmetrically to the poles by unknown mechanisms. Here, we show that RomR and the MglB and MglC roadblock domain proteins generate a positive feedback by forming a RomR/MglC/MglB complex, thereby establishing the rear pole with high GAP activity that is non-permissive to MglA. MglA at the front engages in negative feedback that breaks the RomR/MglC/MglB positive feedback allosterically, thus ensuring low GAP activity at this pole. These findings unravel the design principles of a system for switchable front-rear polarity.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Myxococcus xanthus , Myxococcus xanthus/metabolismo , Proteínas de Bactérias/metabolismo , Movimento Celular/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Polaridade Celular/fisiologia
18.
Phys Rev Lett ; 130(21): 218402, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295076

RESUMO

The bacterium Myxococcus xanthus produces multicellular droplets called fruiting bodies when starved. These structures form initially through the active dewetting of a vegetative biofilm into surface-associated droplets. This motility-driven aggregation is succeeded by a primitive developmental process in which cells in the droplets mature into nonmotile spores. Here, we use atomic force microscopy to probe the mechanics of these droplets throughout their formation. Using a combination of time- and frequency-domain rheological experiments, we characterize and develop a simple model of the linear viscoelasticity of these aggregates. We then use this model to quantify how cellular behaviors predominant at different developmental times-motility during the dewetting phase and cellular sporulation during later development-manifest as decreased droplet viscosity and increased elasticity, respectively.


Assuntos
Myxococcus xanthus , Esporos Bacterianos , Proteínas de Bactérias
19.
Nat Commun ; 14(1): 3825, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380708

RESUMO

Cell division is spatiotemporally precisely regulated, but the underlying mechanisms are incompletely understood. In the social bacterium Myxococcus xanthus, the PomX/PomY/PomZ proteins form a single megadalton-sized complex that directly positions and stimulates cytokinetic ring formation by the tubulin homolog FtsZ. Here, we study the structure and mechanism of this complex in vitro and in vivo. We demonstrate that PomY forms liquid-like biomolecular condensates by phase separation, while PomX self-assembles into filaments generating a single large cellular structure. The PomX structure enriches PomY, thereby guaranteeing the formation of precisely one PomY condensate per cell through surface-assisted condensation. In vitro, PomY condensates selectively enrich FtsZ and nucleate GTP-dependent FtsZ polymerization and bundle FtsZ filaments, suggesting a cell division site positioning mechanism in which the single PomY condensate enriches FtsZ to guide FtsZ-ring formation and division. This mechanism shares features with microtubule nucleation by biomolecular condensates in eukaryotes, supporting this mechanism's ancient origin.


Assuntos
Myxococcus xanthus , Tubulina (Proteína) , Condensados Biomoleculares , Polimerização , Divisão Celular
20.
PLoS Genet ; 19(6): e1010819, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37339150

RESUMO

C-di-GMP is a bacterial second messenger that regulates diverse processes in response to environmental or cellular cues. The nucleoid-associated protein (NAP) CdbA in Myxococcus xanthus binds c-di-GMP and DNA in a mutually exclusive manner in vitro. CdbA is essential for viability, and CdbA depletion causes defects in chromosome organization, leading to a block in cell division and, ultimately, cell death. Most NAPs are not essential; therefore, to explore the paradoxical cdbA essentiality, we isolated suppressor mutations that restored cell viability without CdbA. Most mutations mapped to cdbS, which encodes a stand-alone c-di-GMP binding PilZ domain protein, and caused loss-of-function of cdbS. Cells lacking CdbA and CdbS or only CdbS were fully viable and had no defects in chromosome organization. CdbA depletion caused post-transcriptional upregulation of CdbS accumulation, and this CdbS over-accumulation was sufficient to disrupt chromosome organization and cause cell death. CdbA depletion also caused increased accumulation of CsdK1 and CsdK2, two unusual PilZ-DnaK chaperones. During CdbA depletion, CsdK1 and CsdK2, in turn, enabled the increased accumulation and toxicity of CdbS, likely by stabilizing CdbS. Moreover, we demonstrate that heat stress, possibly involving an increased cellular c-di-GMP concentration, induced the CdbA/CsdK1/CsdK2/CdbS system, causing a CsdK1- and CsdK2-dependent increase in CdbS accumulation. Thereby this system accelerates heat stress-induced chromosome mis-organization and cell death. Collectively, this work describes a unique system that contributes to regulated cell death in M. xanthus and suggests a link between c-di-GMP signaling and regulated cell death in bacteria.


Assuntos
Proteínas de Bactérias , Myxococcus xanthus , Proteínas de Bactérias/metabolismo , Myxococcus xanthus/genética , Proteínas de Transporte/genética , Chaperonas Moleculares/genética , Morte Celular , Cromossomos/metabolismo , GMP Cíclico/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...