Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.744
Filtrar
1.
J Pathol Clin Res ; 8(5): 458-469, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35762092

RESUMO

Programmed cell death-1 (PD-1) and its ligand (PD-L1) are significant mediators of immune suppression in the tumor microenvironment. We focused on the immunological impact of PD-1/PD-L1 signaling during tumor progression in colorectal carcinoma (CRC) and its association with resistance to neoadjuvant chemoradiotherapy (NCRT) in locally advanced rectal carcinoma (LAd-RC). Histopathological and immunohistochemical analyses of 100 CRC cases (including 34 RC) without NCRT and 109 NCRT-treated LAd-RC cases were performed. Membranous tumoral PD-L1 expression was identified in 9 of 100 (9%) CRC cases, including 1 of 34 (2.9%) RC cases, but PD-L1 immunopositivity was not associated with any clinicopathological factors, with the exception of deficient mismatch repair (dMMR) status. In contrast, stromal PD-L1+ immune cells, which frequently exhibited coexpression of PD-1 and CD8 markers, were significantly correlated with tumor vessel invasion, nuclear ß-catenin+ tumor budding cancer stem cell (CSC)-like features, and unfavorable prognosis. In the LAd-RC cases, stromal CD8+ (but not PD-L1+) immune cell infiltration in pretreatment-biopsied samples was significantly and positively associated with therapeutic efficacy. After NCRT, tumoral PD-L1 expression was observed in only 2 of 83 (2.4%) tumors, independent of dMMR status, whereas high stromal PD-L1+ and tumoral nuclear ß-catenin positivity were significantly linked to a poor response to NCRT and high tumor budding features. In addition, high stromal PD-L1 immunoreactivity was significantly associated with poorer overall survival. In conclusion, a combination of stromal PD-L1+ immune cells and nuclear ß-catenin+ tumor budding may contribute to tumor progression in CRC and resistance to NCRT in LAd-RC, through formation of niche-like lesions that exhibit immune resistance and CSC properties.


Assuntos
Antígeno B7-H1 , Resistencia a Medicamentos Antineoplásicos , Receptor de Morte Celular Programada 1 , Tolerância a Radiação , Neoplasias Retais , beta Catenina , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Núcleo Celular/genética , Núcleo Celular/imunologia , Quimiorradioterapia Adjuvante , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Terapia Neoadjuvante , Prognóstico , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Tolerância a Radiação/genética , Tolerância a Radiação/imunologia , Neoplasias Retais/genética , Neoplasias Retais/imunologia , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , beta Catenina/genética , beta Catenina/imunologia
2.
Protein Cell ; 13(2): 90-101, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34374004

RESUMO

The cyclic GMP-AMP (cGAMP) synthase (cGAS) has been identified as a cytosolic double stranded DNA sensor that plays a pivotal role in the type I interferon and inflammation responses via the STING-dependent signaling pathway. In the past several years, a growing body of evidence has revealed that cGAS is also localized in the nucleus where it is associated with distinct nuclear substructures such as nucleosomes, DNA replication forks, the double-stranded breaks, and centromeres, suggesting that cGAS may have other functions in addition to its role in DNA sensing. However, while the innate immune function of cGAS is well established, the non-canonical nuclear function of cGAS remains poorly understood. Here, we review our current understanding of the complex nature of nuclear cGAS and point to open questions on the novel roles and the mechanisms of action of this protein as a key regulator of cell nuclear function, beyond its well-established role in dsDNA sensing and innate immune response.


Assuntos
Núcleo Celular/imunologia , Imunidade Inata , Nucleotidiltransferases/imunologia , Transdução de Sinais/imunologia , Núcleo Celular/genética , Humanos , Nucleotidiltransferases/genética , Transdução de Sinais/genética
3.
Protein & Cell ; (12): 90-101, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929171

RESUMO

The cyclic GMP-AMP (cGAMP) synthase (cGAS) has been identified as a cytosolic double stranded DNA sensor that plays a pivotal role in the type I interferon and inflammation responses via the STING-dependent signaling pathway. In the past several years, a growing body of evidence has revealed that cGAS is also localized in the nucleus where it is associated with distinct nuclear substructures such as nucleosomes, DNA replication forks, the double-stranded breaks, and centromeres, suggesting that cGAS may have other functions in addition to its role in DNA sensing. However, while the innate immune function of cGAS is well established, the non-canonical nuclear function of cGAS remains poorly understood. Here, we review our current understanding of the complex nature of nuclear cGAS and point to open questions on the novel roles and the mechanisms of action of this protein as a key regulator of cell nuclear function, beyond its well-established role in dsDNA sensing and innate immune response.


Assuntos
Humanos , Núcleo Celular/imunologia , Imunidade Inata , Nucleotidiltransferases/imunologia , Transdução de Sinais/imunologia
4.
Front Immunol ; 12: 771065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938291

RESUMO

Unlike animals, plants do not have specialized immune cells and lack an adaptive immune system. Instead, plant cells rely on their unique innate immune system to defend against pathogens and coordinate beneficial interactions with commensal and symbiotic microbes. One of the major convergent points for plant immune signaling is the nucleus, where transcriptome reprogramming is initiated to orchestrate defense responses. Mechanisms that regulate selective transport of nuclear signaling cargo and chromatin activity at the nuclear boundary play a pivotal role in immune activation. This review summarizes the current knowledge of how nuclear membrane-associated core protein and protein complexes, including the nuclear pore complex, nuclear transport receptors, and the nucleoskeleton participate in plant innate immune activation and pathogen resistance. We also discuss the role of their functional counterparts in regulating innate immunity in animals and highlight potential common mechanisms that contribute to nuclear membrane-centered immune regulation in higher eukaryotes.


Assuntos
Imunidade Inata/imunologia , Membrana Nuclear/imunologia , Complexo de Proteínas Formadoras de Poros Nucleares/imunologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/imunologia , Plantas/imunologia , Transporte Ativo do Núcleo Celular/imunologia , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Modelos Imunológicos , Poro Nuclear/imunologia , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais/imunologia
5.
Front Immunol ; 12: 771277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868031

RESUMO

Histone H2A is a nuclear molecule tightly associated in the form of the nucleosome. Our previous studies have demonstrated the antibacterial property of piscine H2A variants against gram-negative bacteria Edwardsiella piscicida and Gram-positive bacteria Streptococcus agalactiae. In this study, we show the function and mechanism of piscine H2A in the negative regulation of RLR signaling pathway and host innate immune response against spring viremia of carp virus (SVCV) infection. SVCV infection significantly inhibits the expression of histone H2A during an early stage of infection, but induces the expression of histone H2A during the late stage of infection such as at 48 and 72 hpi. Under normal physiological conditions, histone H2A is nuclear-localized. However, SVCV infection promotes the migration of histone H2A from the nucleus to the cytoplasm. The in vivo studies revealed that histone H2A overexpression led to the increased expression of SVCV gene and decreased survival rate. The overexpression of histone H2A also significantly impaired the expression levels of those genes involved in RLR antiviral signaling pathway. Furthermore, histone H2A targeted TBK1 and IRF3 to promote their protein degradation via the lysosomal pathway and impair the formation of TBK1-IRF3 functional complex. Importantly, histone H2A completely abolished TBK1-mediated antiviral activity and enormously impaired the protein expression of IRF3, especially nuclear IRF3. Further analysis demonstrated that the inhibition of histone H2A nuclear/cytoplasmic trafficking could relieve the protein degradation of TBK1 and IRF3, and blocked the negative regulation of histone H2A on the SVCV infection. Collectively, our results suggest that histone H2A nuclear/cytoplasmic trafficking is essential for negative regulation of RLR signaling pathway and antiviral immune response in response to SVCV infection.


Assuntos
Histonas/imunologia , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/imunologia , Lisossomos/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Rhabdoviridae/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Linhagem Celular , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Citoplasma/imunologia , Citoplasma/metabolismo , Regulação da Expressão Gênica/imunologia , Histonas/genética , Histonas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Larva/imunologia , Larva/metabolismo , Larva/virologia , Lisossomos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/imunologia , Proteólise , Rhabdoviridae/fisiologia , Peixe-Zebra/metabolismo , Peixe-Zebra/virologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Commun Biol ; 4(1): 1292, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785771

RESUMO

Nipah virus (NiV) is a highly pathogenic emerging bat-borne Henipavirus that has caused numerous outbreaks with public health concerns. It is able to inhibit the host innate immune response. Since the NF-κB pathway plays a crucial role in the innate antiviral response as a major transcriptional regulator of inflammation, we postulated its implication in the still poorly understood NiV immunopathogenesis. We report here that NiV inhibits the canonical NF-κB pathway via its nonstructural W protein. Translocation of the W protein into the nucleus causes nuclear accumulation of the cellular scaffold protein 14-3-3 in both African green monkey and human cells infected by NiV. Excess of 14-3-3 in the nucleus was associated with a reduction of NF-κB p65 subunit phosphorylation and of its nuclear accumulation. Importantly, W-S449A substitution impairs the binding of the W protein to 14-3-3 and the subsequent suppression of NF-κB signaling, thus restoring the production of proinflammatory cytokines. Our data suggest that the W protein increases the steady-state level of 14-3-3 in the nucleus and consequently enhances 14-3-3-mediated negative feedback on the NF-κB pathway. These findings provide a mechanistic model of W-mediated disruption of the host inflammatory response, which could contribute to the high severity of NiV infection.


Assuntos
Imunidade Inata/fisiologia , Vírus Nipah/fisiologia , Transdução de Sinais/imunologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Núcleo Celular/imunologia , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , NF-kappa B , Vírus Nipah/genética
7.
J Immunol ; 207(11): 2699-2709, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34750204

RESUMO

IFN-γ-inducible protein 16 (IFI16) recognizes viral DNAs from both nucleus-replicating viruses and cytoplasm-replicating viruses. Isoform 2 of IFI16 (IFI16-iso2) with nuclear localization sequence (NLS) has been studied extensively as a well-known DNA sensor. However, the characteristics and functions of other IFI16 isoforms are almost unknown. Here, we find that IFI16-iso1, with exactly the same length as IFI16-iso2, lacks the NLS and locates in the cytoplasm. To distinguish the functions of IFI16-iso1 and IFI16-iso2, we have developed novel nuclear viral DNA mimics that can be recognized by the nuclear DNA sensors, including IFI16-iso2 and hnRNPA2B1. The hexanucleotide motif 5'-AGTGTT-3' DNA form of the nuclear localization sequence (DNLS) effectively drives cytoplasmic viral DNA nuclear translocation. These nuclear viral DNA mimics potently induce IFN-ß and antiviral IFN-stimulated genes in human A549 cells, HEK293T cells, and mouse macrophages. The subcellular location difference of IFI16 isoforms determines their differential functions in recognizing viral DNA and activating type I IFN-dependent antiviral immunity. IFI16-iso1 preferentially colocalizes with cytoplasmic HSV60mer and cytoplasm-replicating vaccinia virus (VACV), whereas IFI16-iso2 mainly colocalizes with nuclear HSV60-DNLS and nucleus-replicating HSV-1. Compared with IFI16-iso2, IFI16-iso1 induces more transcription of IFN-ß and IFN-stimulated genes, as well as stronger antiviral immunity upon HSV60mer transfection or VACV infection. IFI16-iso2, with the ability of nuclear-cytoplasmic shuttling, clears both invaded HSV type 1 and VACV significantly. However, IFI16-iso2 induces more type I IFN-dependent antiviral immunity than IFI16-iso1 upon HSV60-DNLS transfection or HSV type 1 infection. Our study has developed potent agonists for nuclear DNA sensors and also has demonstrated that IFI16 isoforms with cytoplasmic and nuclear locations play differential roles in innate immunity against DNA viruses.


Assuntos
Núcleo Celular/imunologia , Vírus de DNA/imunologia , Proteínas Nucleares/imunologia , Fosfoproteínas/imunologia , Células Cultivadas , Humanos , Isoformas de Proteínas/imunologia
8.
Front Immunol ; 12: 730102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675922

RESUMO

Introduction: The morphological patterns in indirect immunofluorescence assay on HEp-2 cells (HEp-2 IFA) reflect the autoantibodies in the sample. The International Consensus on ANA Patterns (ICAP) classifies 30 relevant patterns (AC-0 to AC-29). AC-4 (fine speckled nuclear pattern) is associated to anti-SS-A/Ro, anti-SS-B/La, and several autoantibodies. Anti-SS-A/Ro samples may contain antibodies to Ro60 and Ro52. A variation of AC-4 (herein designated AC-4a), characterized by myriad discrete nuclear speckles, was reported to be associated with anti-SS-A/Ro. The plain fine speckled pattern (herein designated AC-4b) seldom was associated with anti-SS-A/Ro. This study reports the experience of four expert laboratories on AC-4a and AC-4b. Methods: Anti-Ro60 monoclonal antibody A7 was used to investigate the HEp-2 IFA pattern. Records containing concomitant HEp-2 IFA and SS-A/Ro tests from Durand Laboratory, Argentina (n = 383) and Fleury Laboratory, Brazil (n = 144,471) were analyzed for associations between HEp-2 IFA patterns and disease-associated autoantibodies (DAA): double-stranded DNA, Scl-70, nucleosome, SS-B/La, Sm, and U1-RNP. A total of 381 samples from Dresden Technical University (TU-Dresden), Germany, were assayed for HEp-2 IFA and DAA. Results: Monoclonal A7 recognized Ro60 in Western blot and immunoprecipitation, and yielded the AC-4a pattern on HEp-2 IFA. Analyses from Durand Laboratory and Fleury Laboratory yielded compatible results: AC-4a was less frequent (8.9% and 2.7%, respectively) than AC-4b (26.1% and 24.2%) in HEp-2 IFA-positive samples. Reactivity to SS-A/Ro occurred in 67.6% and 96.3% of AC-4a-pattern samples against 23% and 6.8% of AC-4b pattern samples. Reciprocally, AC-4a occurred in 24% and 47.1% of anti-SS-A/Ro-positive samples, and in 3.8% and 0.1% of anti-SS-A/Ro-negative samples. Data from TU-Dresden show that the AC-4a pattern occurred in 69% of 169 anti-SS-A/Ro-monospecific samples (62% of all anti-SS-A/Ro-positive samples) and in 4% of anti-SS-A/Ro-negative samples, whereas anti-SS-A/Ro occurred in 98.3% of AC-4a samples and in 47.9% of AC-4b samples. In all laboratories, coexistence of anti-SS-B/La, but not other DAA, in anti-SS-A/Ro-positive samples did not disturb the AC-4a pattern. AC-4a was predominantly associated with anti-Ro60 antibodies. Conclusions: This study confirms the association of AC-4a pattern and anti-SS-A/Ro in opposition to the AC-4b pattern. The results of four international expert laboratories support the worldwide applicability of these AC-4 pattern variants and their incorporation into ICAP classification under codes AC-4a and AC-4b, respectively. The AC-4 pattern should be maintained as an umbrella pattern for cases in which one cannot discriminate AC-4a and AC-4b patterns. The acknowledgment of the AC-4a pattern should add value to HEp-2 IFA interpretation.


Assuntos
Anticorpos Antinucleares/análise , Autoantígenos/imunologia , Doenças Autoimunes/diagnóstico , Núcleo Celular/imunologia , Técnica Indireta de Fluorescência para Anticorpo , RNA Citoplasmático Pequeno/imunologia , Ribonucleoproteínas/imunologia , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Argentina , Doenças Autoimunes/imunologia , Brasil , Linhagem Celular , Consenso , Florida , Alemanha , Humanos , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
10.
EMBO J ; 40(16): e108293, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34250619

RESUMO

cGAS, an innate immune sensor of cellular stress, recognizes double-stranded DNA mislocalized in the cytosol upon infection, mitochondrial stress, DNA damage, or malignancy. Early models suggested that cytosolic localization of cGAS prevents autoreactivity to nuclear and mitochondrial self-DNA, but this paradigm has shifted in light of recent findings of cGAS as a predominantly nuclear protein tightly bound to chromatin. This has raised the question how nuclear cGAS is kept inactive while being surrounded by chromatin, and what function nuclear localization of cGAS may serve in the first place? Cryo-EM structures have revealed that cGAS interacts with nucleosomes, the minimal units of chromatin, mainly via histones H2A/H2B, and that these protein-protein interactions block cGAS from DNA binding and thus prevent autoreactivity. Here, we discuss the biological implications of nuclear cGAS and its interaction with chromatin, including various mechanisms for nuclear cGAS inhibition, release of chromatin-bound cGAS, regulation of different cGAS pools in the cell, and chromatin structure/chromatin protein effects on cGAS activation leading to cGAS-induced autoimmunity.


Assuntos
Nucleotidiltransferases/imunologia , Animais , Autoimunidade , Núcleo Celular/imunologia , Cromatina , Citosol/imunologia , DNA , Humanos
11.
PLoS One ; 16(6): e0253089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166398

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, infecting over 43 million people and claiming over 1 million lives, with these numbers increasing daily. Therefore, there is urgent need to understand the molecular mechanisms governing SARS-CoV-2 pathogenesis, immune evasion, and disease progression. Here, we show that SARS-CoV-2 can block IRF3 and NF-κB activation early during virus infection. We also identify that the SARS-CoV-2 viral proteins NSP1 and NSP13 can block interferon activation via distinct mechanisms. NSP1 antagonizes interferon signaling by suppressing host mRNA translation, while NSP13 downregulates interferon and NF-κB promoter signaling by limiting TBK1 and IRF3 activation, as phospho-TBK1 and phospho-IRF3 protein levels are reduced with increasing levels of NSP13 protein expression. NSP13 can also reduce NF-κB activation by both limiting NF-κB phosphorylation and nuclear translocation. Last, we also show that NSP13 binds to TBK1 and downregulates IFIT1 protein expression. Collectively, these data illustrate that SARS-CoV-2 bypasses multiple innate immune activation pathways through distinct mechanisms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , COVID-19/imunologia , Núcleo Celular/imunologia , Fator Regulador 3 de Interferon/imunologia , Proteínas de Ligação a RNA/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Proteínas não Estruturais Virais/imunologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , COVID-19/genética , Núcleo Celular/genética , Células HeLa , Humanos , Fator Regulador 3 de Interferon/genética , NF-kappa B/genética , NF-kappa B/imunologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , Transdução de Sinais/genética , Proteínas não Estruturais Virais/genética
12.
Immunity ; 54(4): 632-647.e9, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33667382

RESUMO

Aging is associated with DNA accumulation and increased homeostatic proliferation of circulating T cells. Although these attributes are associated with aging-related autoimmunity, their direct contributions remain unclear. Conventionally, KU complex, the regulatory subunit of DNA-dependent protein kinase (DNA-PK), together with the catalytic subunit of DNA-PK (DNA-PKcs), mediates DNA damage repair in the nucleus. Here, we found KU complex abundantly expressed in the cytoplasm, where it recognized accumulated cytoplasmic DNA in aged human and mouse CD4+ T cells. This process enhanced T cell activation and pathology of experimental autoimmune encephalomyelitis (EAE) in aged mice. Mechanistically, KU-mediated DNA sensing facilitated DNA-PKcs recruitment and phosphorylation of the kinase ZAK. This activated AKT and mTOR pathways, promoting CD4+ T cell proliferation and activation. We developed a specific ZAK inhibitor, which dampened EAE pathology in aged mice. Overall, these findings demonstrate a KU-mediated cytoplasmic DNA-sensing pathway in CD4+ T cells that potentiates aging-related autoimmunity.


Assuntos
Envelhecimento/imunologia , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Citoplasma/imunologia , Proteína Quinase Ativada por DNA/imunologia , DNA/imunologia , Inflamação/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/imunologia , Proliferação de Células/fisiologia , Reparo do DNA/imunologia , Células HEK293 , Humanos , Células Jurkat , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células U937
14.
Methods Mol Biol ; 2198: 159-168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822030

RESUMO

The lampbrush chromosomes found in the giant nucleus or germinal vesicle (GV) of amphibian oocytes provide unique opportunities for discrete closed and open chromatin structural domains to be directly observable by simple light microscopy. Moreover, the method described here for preparing spreads of lampbrush chromatin for immunostaining enables a straightforward approach to establishing the distributions of modified nucleotides within and between structurally and functionally distinctive chromatin domains.


Assuntos
Cromatina/imunologia , Imuno-Histoquímica/métodos , Oócitos/imunologia , Animais , Núcleo Celular/imunologia , Cromatina/genética , Cromossomos/imunologia , Citosina/química , Citosina/imunologia , Feminino , Oócitos/metabolismo , Répteis/embriologia , Répteis/imunologia , Xenopus laevis/genética
15.
Methods Mol Biol ; 2198: 255-268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822037

RESUMO

Male infertility is associated with several causes affecting the paternal nucleus such as DNA lesions (breaks, deletions, mutations, ...) or numerical chromosome anomalies. More recently, male infertility has also been associated with changes in the sperm epigenome, including modification in the topology of chromatin (Olszewska et al., Chromosome Research 16:875-890, 2008; Alladin et al., Syst Biol Reprod Med 59: 146-152, 2013) ref with number 1, 2. Indeed, the positioning of chromosomes in the sperm nucleus is nonrandom and defines chromosome territories (Champroux et al., Genes (Basel) 9:501, 2018) ref with number 3 whose optimal organization determines the success of embryonic development. In this context, the study of the spatial distribution of chromosomes in sperm cells could be relevant for clinical diagnosis. We describe here a in situ fluorescence hybridization (FISH) strategy coupled with a fluorescent immunocytochemistry approach followed by confocal analysis and reconstruction (2D/3D) as a powerful tool to analyze the location of chromosomes in the sperm nucleus using the mouse sperm as a model. Already, the two-dimensional (2D) analysis of FISH and immunofluorescence data reveal the location of chromosomes as well as the different markings on the spermatic nucleus. In addition, a good 3D rendering after Imaris software processing was obtained when Z-stacks of images were acquired over a defined volume (10 µm × 13 µm × 15 µm) with a sequential scanning mode to minimize bleed-through effects and avoid overlapping wavelengths.


Assuntos
Posicionamento Cromossômico/imunologia , Microscopia Confocal/métodos , Espermatozoides/imunologia , Aneuploidia , Animais , Núcleo Celular/imunologia , Cromatina , Aberrações Cromossômicas , Posicionamento Cromossômico/genética , Cromossomos/imunologia , Modelos Animais de Doenças , Imunofluorescência/métodos , Hibridização in Situ Fluorescente/métodos , Infertilidade Masculina/imunologia , Masculino , Camundongos , Espermatozoides/citologia
16.
FEBS J ; 288(2): 640-662, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386462

RESUMO

Nuclear factor 'κ-light-chain-enhancer' of activated B cells (NF-κB) signaling is a signaling pathway used by most immune cells to promote immunostimulatory functions. Recent studies have indicated that regulatory T cells (Treg) differentially integrate TCR-derived signals, thereby maintaining their suppressive features. However, the role of NF-κB signaling in the activation of human peripheral blood (PB) Treg has not been fully elucidated so far. We show that the activity of the master transcription factor forkhead box protein 3 (FOXP3) attenuates p65 phosphorylation and nuclear translocation of the NF-κB proteins p50, p65, and c-Rel following activation in human Treg. Using pharmacological and genetic inhibition of canonical NF-κB signaling in FOXP3-transgenic T cells and PB Treg from healthy donors as well as Treg from a patient with a primary NFKB1 haploinsufficiency, we validate that Treg activation and suppressive capacity is independent of NF-κB signaling. Additionally, repression of residual NF-κB signaling in Treg further enhances interleukin-10 (IL-10) production. Blockade of NF-κB signaling can be exploited for the generation of in vitro induced Treg (iTreg) with enhanced suppressive capacity and functional stability. In this respect, dual blockade of mammalian target of rapamycin (mTOR) and NF-κB signaling was accompanied by enhanced expression of the transcription factors FOXP1 and FOXP3 and demethylation of the Treg-specific demethylated region compared to iTreg generated under mTOR blockade alone. Thus, we provide first insights into the role of NF-κB signaling in human Treg. These findings could lead to strategies for the selective manipulation of Treg and the generation of improved iTreg for cellular therapy.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Haploinsuficiência/imunologia , Subunidade p50 de NF-kappa B/imunologia , Linfócitos T Reguladores/imunologia , Serina-Treonina Quinases TOR/imunologia , Fator de Transcrição RelA/imunologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/imunologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Ativação Linfocitária , Subunidade p50 de NF-kappa B/deficiência , Subunidade p50 de NF-kappa B/genética , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Transdução de Sinais , Sirolimo/farmacologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Tiazóis/farmacologia , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética
17.
Ann Clin Transl Neurol ; 7(11): 2231-2242, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33009713

RESUMO

OBJECTIVE: Identify the subcellular location and potential binding partners of two cerebellar degeneration-related proteins, CDR2L and CDR2, associated with anti-Yo-mediated paraneoplastic cerebellar degeneration. METHODS: Cancer cells, rat Purkinje neuron cultures, and human cerebellar sections were exposed to cerebrospinal fluid and serum from patients with paraneoplastic cerebellar degeneration with Yo antibodies and with several antibodies against CDR2L and CDR2. We used mass spectrometry-based proteomics, super-resolution microscopy, proximity ligation assay, and co-immunoprecipitation to verify the antibodies and to identify potential binding partners. RESULTS: We confirmed the CDR2L specificity of Yo antibodies by mass spectrometry-based proteomics and found that CDR2L localized to the cytoplasm and CDR2 to the nucleus. CDR2L co-localized with the 40S ribosomal protein S6, while CDR2 co-localized with the nuclear speckle proteins SON, eukaryotic initiation factor 4A-III, and serine/arginine-rich splicing factor 2. INTERPRETATION: We showed that Yo antibodies specifically bind to CDR2L in Purkinje neurons of PCD patients where they potentially interfere with the function of the ribosomal machinery resulting in disrupted mRNA translation and/or protein synthesis. Our findings demonstrating that CDR2L interacts with ribosomal proteins and CDR2 with nuclear speckle proteins is an important step toward understanding PCD pathogenesis.


Assuntos
Autoanticorpos , Autoantígenos , Núcleo Celular , Citoplasma , Proteínas do Tecido Nervoso , Degeneração Paraneoplásica Cerebelar , Biossíntese de Proteínas , Células de Purkinje , Animais , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Autoantígenos/imunologia , Autoantígenos/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Citoplasma/imunologia , Citoplasma/metabolismo , Humanos , Imunoprecipitação , Espectrometria de Massas , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Degeneração Paraneoplásica Cerebelar/imunologia , Degeneração Paraneoplásica Cerebelar/metabolismo , Biossíntese de Proteínas/fisiologia , Proteômica , Células de Purkinje/imunologia , Células de Purkinje/metabolismo , Ratos
18.
Platelets ; 31(8): 1085-1089, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32857624

RESUMO

Coronavirus disease 2019 (COVID-19) is a global public health emergency with many clinical facets, and new knowledge about its pathogenetic mechanisms is deemed necessary; among these, there are certainly coagulation disorders. In the history of medicine, autopsies and tissue sampling have played a fundamental role in order to understand the pathogenesis of emerging diseases, including infectious ones; compared to the past, histopathology can be now expanded by innovative techniques and modern technologies. For the first time in worldwide literature, we provide a detailed postmortem and biopsy report on the marked increase, up to 1 order of magnitude, of naked megakaryocyte nuclei in the bone marrow and lungs from serious COVID-19 patients. Most likely related to high interleukin-6 serum levels stimulating megakaryocytopoiesis, this phenomenon concurs to explain well the pulmonary abnormal immunothrombosis in these critically ill patients, all without molecular or electron microscopy signs of megakaryocyte infection.


Assuntos
Betacoronavirus/patogenicidade , Medula Óssea/patologia , Infecções por Coronavirus/patologia , Síndrome da Liberação de Citocina/patologia , Coagulação Intravascular Disseminada/patologia , Pulmão/patologia , Pneumonia Viral/patologia , Trombose/patologia , Adulto , Idoso , Autopsia , Betacoronavirus/imunologia , Medula Óssea/imunologia , Medula Óssea/virologia , COVID-19 , Núcleo Celular/imunologia , Núcleo Celular/patologia , Núcleo Celular/virologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Estado Terminal , Síndrome da Liberação de Citocina/complicações , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia , Coagulação Intravascular Disseminada/complicações , Coagulação Intravascular Disseminada/imunologia , Coagulação Intravascular Disseminada/virologia , Evolução Fatal , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interleucina-6/biossíntese , Interleucina-6/imunologia , Pulmão/imunologia , Pulmão/virologia , Masculino , Megacariócitos/imunologia , Megacariócitos/patologia , Megacariócitos/virologia , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Índice de Gravidade de Doença , Trombopoese/imunologia , Trombose/complicações , Trombose/imunologia , Trombose/virologia
19.
Drug Discov Today ; 25(10): 1775-1781, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32569833

RESUMO

Coronavirus 2019 (COVID-19; caused by Severe Acute Respiratory Syndrome Coronavirus 2; SARS-CoV-2) is a currently global health problem. Previous studies showed that blocking nucleocytoplasmic transport with exportin 1 (XPO1) inhibitors originally developed as anticancer drugs can quarantine key viral accessory proteins and genomic materials in the nucleus of host cell and reduce virus replication and immunopathogenicity. These observations support the concept of the inhibition of nuclear export as an effective strategy against an array of viruses, including influenza A, B, and SARS-CoV. Clinical studies using the XPO1 inhibitor selinexor as a therapy for COVID-19 infection are in progress.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Núcleo Celular/efeitos dos fármacos , Desenho de Fármacos , Carioferinas/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , SARS-CoV-2/patogenicidade , Transporte Ativo do Núcleo Celular , Animais , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Interações Hospedeiro-Patógeno , Humanos , Carioferinas/metabolismo , Terapia de Alvo Molecular , Receptores Citoplasmáticos e Nucleares/metabolismo , SARS-CoV-2/imunologia , Proteína Exportina 1
20.
J Exp Med ; 217(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32484502

RESUMO

Upon immunogenic challenge, lymph nodes become mechanically stiff as immune cells activate and proliferate within their encapsulated environments, and with resolution, they reestablish a soft baseline state. Here we show that sensing these mechanical changes in the microenvironment requires the mechanosensor YAP. YAP is induced upon activation and suppresses metabolic reprogramming of effector T cells. Unlike in other cell types in which YAP promotes proliferation, YAP in T cells suppresses proliferation in a stiffness-dependent manner by directly restricting the translocation of NFAT1 into the nucleus. YAP slows T cell responses in systemic viral infections and retards effector T cells in autoimmune diabetes. Our work reveals a paradigm whereby tissue mechanics fine-tune adaptive immune responses in health and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas de Ciclo Celular/imunologia , Proliferação de Células , Ativação Linfocitária , Mecanotransdução Celular/imunologia , Linfócitos T/imunologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Mecanotransdução Celular/genética , Camundongos , Camundongos Transgênicos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/imunologia , Viroses/genética , Viroses/imunologia , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...