Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 688
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163834

RESUMO

Fusarium graminearum, the main causal agent of Fusarium Head Blight (FHB), is one of the most damaging pathogens in wheat. Because of the complex organization of wheat resistance to FHB, this pathosystem represents a relevant model to elucidate the molecular mechanisms underlying plant susceptibility and to identify their main drivers, the pathogen's effectors. Although the F. graminearum catalog of effectors has been well characterized at the genome scale, in planta studies are needed to confirm their effective accumulation in host tissues and to identify their role during the infection process. Taking advantage of the genetic variability from both species, a RNAseq-based profiling of gene expression was performed during an infection time course using an aggressive F. graminearum strain facing five wheat cultivars of contrasting susceptibility as well as using three strains of contrasting aggressiveness infecting a single susceptible host. Genes coding for secreted proteins and exhibiting significant expression changes along infection progress were selected to identify the effector gene candidates. During its interaction with the five wheat cultivars, 476 effector genes were expressed by the aggressive strain, among which 91% were found in all the infected hosts. Considering three different strains infecting a single susceptible host, 761 effector genes were identified, among which 90% were systematically expressed in the three strains. We revealed a robust F. graminearum core effectome of 357 genes expressed in all the hosts and by all the strains that exhibited conserved expression patterns over time. Several wheat compartments were predicted to be targeted by these putative effectors including apoplast, nucleus, chloroplast and mitochondria. Taken together, our results shed light on a highly conserved parasite strategy. They led to the identification of reliable key fungal genes putatively involved in wheat susceptibility to F. graminearum, and provided valuable information about their putative targets.


Assuntos
Proteínas Fúngicas/genética , Fusarium/patogenicidade , Doenças das Plantas/genética , Triticum/crescimento & desenvolvimento , Núcleo Celular/microbiologia , Cloroplastos/microbiologia , Resistência à Doença , Fusarium/classificação , Fusarium/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Mitocôndrias/microbiologia , Doenças das Plantas/microbiologia , Análise de Sequência de RNA , Distribuição Tecidual , Triticum/classificação , Triticum/microbiologia
2.
J Assist Reprod Genet ; 39(1): 97-106, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34993708

RESUMO

PURPOSE: To study the morphometric and morphokinetic profiles of pronuclei (PN) between male and female human zygotes. METHOD(S): This retrospective cohort study included 94 consecutive autologous single day 5 transfer cycles leading to a singleton live birth. All oocytes were placed in the EmbryoScope + incubator post-sperm injection with all annotations performed retrospectively by one embryologist (L-SO). Timing parameters included 2nd polar body extrusion (tPB2), sperm-originated PN (tSPNa) or oocyte-originated PN (tOPNa) appearance, and PN fading (tPNF). Morphometrics were evaluated at 8 (stage 1), 4 (stage 2), and 0 h before PNF (stage 3), measuring PN area (um2), PN juxtaposition, and nucleolar precursor bodies (NPB) arrangement. RESULTS: Male zygotes had longer time intervals of tPB2_tSPNa than female zygotes (4.8 ± 0.2 vs 4.2 ± 0.1 h, OR = 1.442, 95% CI 1.009-2.061, p = 0.044). SPN increased in size from stage 1 through 2 to 3 (435.3 ± 7.2, 506.7 ± 8.0, and 556.3 ± 8.9 um2, p = 0.000) and OPN did similarly (399.0 ± 6.1, 464.3 ± 6.7, and 513.8 ± 6.5 um2, p = 0.000), with SPN being significantly larger than OPN at each stage (p < 0.05 respectively). More male than female zygotes reached central PN juxtaposition at stage 1 (76.7% vs 51.0%, p = 0.010), stage 2 (97.7% vs 86.3%, p = 0.048), and stage 3 (97.7% vs 86.3%, p = 0.048). More OPN showed aligned NPBs than in SPN at stage 1 only (44.7% vs 28.7%, p = 0.023). CONCLUSION(S): Embryos with different sexes display different morphokinetic and morphometric features at the zygotic stage. Embryo selection using such parameters may lead to unbalanced sex ratio in resulting offspring.


Assuntos
Oócitos/citologia , Espermatozoides/citologia , Zigoto/citologia , Adulto , Blastômeros/citologia , Blastômeros/microbiologia , Blastômeros/fisiologia , Núcleo Celular/microbiologia , Feminino , Humanos , Modelos Logísticos , Masculino , Oócitos/microbiologia , Estudos Retrospectivos , Espermatozoides/microbiologia , Imagem com Lapso de Tempo/métodos , Zigoto/microbiologia
3.
Cell Microbiol ; 23(6): e13320, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33600054

RESUMO

Bacterial pathogens can subvert host responses by producing effector proteins that directly target the nucleus of eukaryotic cells in animals and plants. Nuclear-targeting proteins are categorised as either: "nucleomodulins," which have epigenetic-modulating activities; or "cyclomodulins," which specifically interfere with the host cell cycle. Bacteria can deliver these effector proteins to eukaryotic cells via a range of strategies. Despite an increasing number of reports describing the effects of bacterial effector proteins on nuclear processes in host cells, the intracellular pathways used by these proteins to traffic to the nucleus have yet to be fully elucidated. This review will describe current knowledge about how nucleomodulins and cyclomodulins enter eukaryotic cells, exploit endocytic pathways and translocate to the nucleus. We will also discuss the secretion of nuclear-targeting proteins or their release in bacterial membrane vesicles and the trafficking pathways employed by each of these forms. Besides their importance for bacterial pathogenesis, some nuclear-targeting proteins have been implicated in the development of chronic diseases and even cancer. A greater understanding of nuclear-targeting proteins and their actions will provide new insights into the pathogenesis of infectious diseases, as well as contribute to advances in the development of novel therapies against bacterial infections and possibly cancer.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Interações Hospedeiro-Patógeno , Bactérias/química , Bactérias/patogenicidade , Proteínas de Bactérias/genética , Transporte Biológico , Ciclo Celular , Núcleo Celular/microbiologia , Fatores de Virulência/metabolismo
4.
Results Probl Cell Differ ; 69: 105-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263870

RESUMO

The chapter describes the exceptional symbiotic associations formed between the ciliate Paramecium and Holospora, highly infectious bacteria residing in the host nuclei. Holospora and Holospora-like bacteria (Alphaproteobacteria) are characterized by their ability for vertical and horizontal transmission in host populations, a complex biphasic life cycle, and pronounced preference for host species and colonized cell compartment. These bacteria are obligate intracellular parasites; thus, their metabolic repertoire is dramatically reduced. Nevertheless, they perform complex interactions with the host ciliate. We review ongoing efforts to unravel the molecular adaptations of these bacteria to their unusual lifestyle and the host's employment in the symbiosis. Furthermore, we summarize current knowledge on the genetic and genomic background of Paramecium-Holospora symbiosis and provide insights into the ecological and evolutionary consequences of this interaction. The diversity and occurrence of symbioses between ciliates and Holospora-like bacteria in nature is discussed in connection with transmission modes of symbionts, host specificity and compatibility of the partners. We aim to summarize 50 years of research devoted to these symbiotic systems and conclude trying to predict some perspectives for further studies.


Assuntos
Núcleo Celular/microbiologia , Holosporaceae , Paramecium/microbiologia , Simbiose , Holosporaceae/genética , Paramecium/genética
5.
Infect Immun ; 88(8)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32513853

RESUMO

MCR-1 is a plasmid-encoded phosphoethanolamine transferase able to modify the lipid A structure. It confers resistance to colistin and was isolated from human, animal, and environmental strains of Enterobacteriaceae, raising serious global health concerns. In this paper, we used recombinant mcr-1-expressing Escherichia coli to study the impact of MCR-1 products on E. coli-induced activation of inflammatory pathways in activated THP-1 cells, which was used as a model of human macrophages. We found that infection with recombinant mcr-1-expressing E. coli significantly modulated p38-MAPK and Jun N-terminal protein kinase (JNK) activation and pNF-κB nuclear translocation as well as the expression of genes for the relevant proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and IL-1ß compared with mcr-1-negative strains. Caspase-1 activity and IL-1ß secretion were significantly less activated by mcr-1-positive E. coli strains than the mcr-1-negative parental strain. Similar results were obtained with clinical isolates of mcr-1-positive E. coli, suggesting that, in addition to colistin resistance, the expression of mcr-1 allows the escape of early host innate defenses and may promote bacterial survival.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação da Expressão Gênica/imunologia , MAP Quinase Quinase 4/genética , NF-kappa B/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Caspase 1/genética , Caspase 1/imunologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/microbiologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Citoplasma/microbiologia , Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , MAP Quinase Quinase 4/imunologia , Viabilidade Microbiana , NF-kappa B/imunologia , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Transdução de Sinais , Células THP-1 , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
6.
Vet Pathol ; 57(4): 565-576, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32527210

RESUMO

Enterospora nucleophila is a microsporidian responsible for an emaciative disease in gilthead sea bream (Sparus aurata). Its intranuclear development and the lack of in vitro and in vivo models hinder its research. This study investigated the associated lesions, its detection by quantitative polymerase chain reaction, and the cellular immune response of naturally infected fish. The intensity of infection in the intestine was correlated with stunted growth and reduced body condition. At the beginning of the outbreaks, infection prevalence was highest in intestine and stomach, and in subsequent months, the prevalence decreased in the intestine and increased in hematopoietic organs and stomach. In heavy infections, the intestine had histologic lesions of enterocyte hypercellularity and proliferation of rodlet cells. Infected enterocytes had E. nucleophila spores in the cytoplasm, and a pyknotic nucleus, karyorhexis or karyolysis. Lymphocytes were present at the base of the mucosa, and eosinophilic granule cells were located between the enterocytes. In intestinal submucosa, macrophage aggregates containing spores were surrounded by lymphocytes and granulocytes, with submucosal infiltration of granulocytes. Macrophage aggregates appeared to develop into granulomata with necrotic areas containing parasite remnants. Immunohistochemistry revealed mast cells as the main type of granulocyte involved. Abundant IgM+ and IgT+ cells were identified by in situ hybridization in the submucosa when intracytoplasmic stages were present. This study describes the lesions of E. nucleophila in gilthead sea bream, an important aquaculture species.


Assuntos
Doenças dos Peixes/microbiologia , Microsporídios/isolamento & purificação , Microsporidiose/veterinária , Dourada/microbiologia , Animais , Aquicultura , Núcleo Celular/microbiologia , Núcleo Celular/patologia , Citoplasma/microbiologia , Citoplasma/patologia , Enterócitos/microbiologia , Enterócitos/patologia , Doenças dos Peixes/patologia , Granulócitos/microbiologia , Granulócitos/patologia , Granuloma/microbiologia , Granuloma/patologia , Histocitoquímica/veterinária , Imunidade Celular , Hibridização In Situ/veterinária , Intestinos/microbiologia , Intestinos/patologia , Microsporídios/classificação , Microsporídios/ultraestrutura , Microsporidiose/patologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Dourada/crescimento & desenvolvimento
7.
Toxins (Basel) ; 12(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244550

RESUMO

Pathogenic bacteria secrete a variety of proteins that manipulate host cell function by targeting components of the plasma membrane, cytosol, or organelles. In the last decade, several studies identified bacterial factors acting within the nucleus on gene expression or other nuclear processes, which has led to the emergence of a new family of effectors called "nucleomodulins". In human and animal pathogens, Listeria monocytogenes for Gram-positive bacteria and Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis,Legionella pneumophila, Shigella flexneri, and Escherichia coli for Gram-negative bacteria, have led to pioneering discoveries. In this review, we present these paradigms and detail various mechanisms and core elements (e.g., DNA, histones, epigenetic regulators, transcription or splicing factors, signaling proteins) targeted by nucleomodulins. We particularly focus on nucleomodulins interacting with epifactors, such as LntA of Listeria and ankyrin repeat- or tandem repeat-containing effectors of Rickettsiales, and nucleomodulins from various bacterial species acting as post-translational modification enzymes. The study of bacterial nucleomodulins not only generates important knowledge about the control of host responses by microbes but also creates new tools to decipher the dynamic regulations that occur in the nucleus. This research also has potential applications in the field of biotechnology. Finally, this raises questions about the epigenetic effects of infectious diseases.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Fatores de Virulência/metabolismo , Animais , Bactérias/genética , Bactérias/patogenicidade , Proteínas de Bactérias/genética , Núcleo Celular/microbiologia , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Transcrição Gênica , Fatores de Virulência/genética
8.
Methods Mol Biol ; 2116: 425-447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221935

RESUMO

In this chapter we describe different electron microscopy techniques such as freeze fracture, deep etching, and three-dimensional reconstruction, obtained by electron tomography or focused ion beam scanning electron microscopy (FIB-SEM), combined with quick-freezing methods in order to reveal aspects of the cell structure in trypanosomatids. For this purpose, we chose protists that evolve in a mutualistic way with a symbiotic bacterium. Such cells represent excellent models to study the positioning and distribution of organelles, since the symbiotic bacterium interacts with different organelles of the host trypanosomatid. We demonstrate that the employment of such techniques can show the proximity and even the interaction of the symbiotic bacterium with different structures of the protist host, such as the nucleus and the glycosomes. In addition, the quick-freezing approach can reveal new aspects of the gram-negative bacterial envelope, such as the presence of a greatly reduced cell wall between the two membrane units.


Assuntos
Bactérias/citologia , Microscopia Eletrônica de Varredura/métodos , Trypanosomatina/microbiologia , Núcleo Celular/microbiologia , Parede Celular , Microcorpos/microbiologia , Microscopia Eletrônica de Varredura/instrumentação , Simbiose , Trypanosomatina/citologia
9.
Vet Res ; 50(1): 75, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570109

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen which causes illness in humans. Ruminants are the main reservoirs and EHEC predominantly colonizes the epithelium of the recto-anal junction of cattle. Immunosuppression by EHEC promotes re-infection of cattle. However, bovine lactoferrin (bLF) apparently can overrule the immunosuppression by inducing EHEC-specific IgA responses at the mucosal site. The IgA responses are significantly correlated with reduced EHEC shedding and the absence of colonization at the rectal mucosa following re-infection. Therefore, to examine the interaction between bLF and bovine rectal epithelial cells, we first developed a method to establish a primary cell culture of epithelial cells of the rectum of cattle. Furthermore, we used LC-MS/MS to demonstrate the presence of secreted lactoferrin in bovine milk and the absence of a "delta" isoform which is known to translocate to the nucleus of cells. Nevertheless, lactoferrin derived from bovine milk was internalized by rectal epithelial cells and translocated to the nuclei. Moreover, nuclear translocation of bLF was significantly enhanced when the epithelial cells were inoculated with EHEC, as demonstrated by confocal fluorescence microscopy and confirmed by Raman microscopy and 3D imaging.


Assuntos
Escherichia coli O157/fisiologia , Lactoferrina/metabolismo , Leite/química , Animais , Bovinos , Núcleo Celular/microbiologia , Células Epiteliais/microbiologia , Isoenzimas/metabolismo , Reto/metabolismo
10.
Plant Physiol ; 180(4): 2227-2239, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31217198

RESUMO

The potato (Solanum tuberosum) blight pathogen Phytophthora infestans delivers Arg-X-Leu-Arg (RXLR) effector proteins into host cells to subvert plant immune responses and promote colonization. We show that transient expression and stable transgenic expression of the RXLR effector Pi22926 in Nicotiana benthamiana promotes leaf colonization by P. infestans. Pi22926 suppresses cell death triggered by coexpression of the Cladosporium fulvum avirulence protein Avr4 and the tomato (Solanum lycopersicum) resistance protein Cf4. Pi22926 interacts with a potato mitogen-activated protein kinase kinase kinase, StMAP3Kß2, in the nucleoplasm. Virus-induced gene silencing (VIGS) of the ortholog NbMAP3Kß2 in N. benthamiana enhances P. infestans colonization and attenuates Cf4/Avr4-induced cell death, indicating that this host protein is a positive regulator of immunity. Cell death induced by Cf4/Avr4 is dependent on NbMAP3Kε and NbMAP3Kß2, indicating that these MAP3Ks function in the same signaling pathway. VIGS of NbMAP3Kß2 does not compromise cell death triggered by overexpression of MAP3Kε. Similarly, VIGS of NbMAP3Kε does not attenuate cell death triggered by MAP3Kß2, demonstrating that these MAP3K proteins function in parallel. In agreement, Pi22926 or another RXLR effector, PexRD2, only suppresses cell death triggered by expression of StMAP3Kß2 or StMAP3Kε, respectively. Our data reveal that two P. infestans effectors, PexRD2 and Pi22926, promote P. infestans colonization by targeting MAP3K proteins that act in parallel in the same signal transduction pathway.


Assuntos
Phytophthora infestans/patogenicidade , Proteínas de Plantas/metabolismo , Morte Celular/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/microbiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Nicotiana/metabolismo , Nicotiana/microbiologia
11.
BMC Microbiol ; 19(1): 91, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072343

RESUMO

BACKGROUND: 'Candidatus Berkiella cookevillensis' and 'Ca. Berkiella aquae' have previously been described as intranuclear bacteria of amoebae. Both bacteria were isolated from amoebae and were described as appearing within the nuclei of Acanthamoeba polyphaga and ultimately lysing their host cells within 4 days. Both bacteria are Gammaproteobacteria in the order Legionellales with the greatest similarity to Coxiella burnetii. Neither bacterium grows axenically in artificial culture media. In this study, we further characterized 'Ca. B. cookevillensis' by demonstrating association with nuclei of human phagocytic and nonphagocytic cell lines. RESULTS: Transmission electron microscopy (TEM) and confocal microscopy were used to confirm nuclear co-localization of 'Ca. B. cookevillensis' in the amoeba host A. polyphaga with 100% of cells having bacteria co-localized with host nuclei by 48 h. TEM and confocal microscopy demonstrated that the bacterium was also observed to be closely associated with nuclei of human U937 and THP-1 differentiated macrophage cell lines and nonphagocytic HeLa human epithelial-like cells. Immunofluorescent staining revealed that the bacteria-containing vacuole invaginates the nuclear membranes and appears to cross from the cytoplasm into the nucleus as an intact vacuole. CONCLUSION: Results of this study indicate that a novel coccoid bacterium isolated from amoebae can infect human cell lines by associating with the host cell nuclei, either by crossing the nuclear membranes or by deeply invaginating the nuclear membranes. When associated with the nuclei, the bacteria appear to be bound within a vacuole and replicate to high numbers by 48 h. We believe this is the first report of such a process involving bacteria and human cell lines.


Assuntos
Amoeba/microbiologia , Núcleo Celular/microbiologia , Gammaproteobacteria/fisiologia , Interações entre Hospedeiro e Microrganismos , Monócitos/microbiologia , Citoplasma/microbiologia , Gammaproteobacteria/ultraestrutura , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Monócitos/ultraestrutura , Simbiose , Células THP-1 , Células U937
12.
Tuberculosis (Edinb) ; 116S: S98-S106, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060958

RESUMO

Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a wide variety of cells and play a major role in lipid signaling. NRs are key regulators of immune and metabolic functions in macrophages and are linked to macrophage responses to microbial pathogens. Pathogens are also known to induce the expression of specific NRs to promote their own survival. In this review, we focus on the NRs recently shown to influence macrophage responses to Mycobacterium tuberculosis (M.tb), a significant cause of morbidity and mortality worldwide. We provide an overview of NR-controlled transcriptional activity and regulation of macrophage activation. We also discuss in detail the contribution of specific NRs to macrophage responses to M.tb, including influence on macrophage phenotype, cell signaling, and cellular metabolism. We pay particular attention to PPARγ since it is required for differentiation of alveolar macrophages, an important niche for M.tb, and its role during M.tb infection is becoming increasingly appreciated. Research into NRs and M.tb is still in its early stages, therefore continuing to advance our understanding of the complex interactions between M.tb and macrophage NRs may reveal the potential of NRs as pharmacological targets for the treatment of tuberculosis.


Assuntos
Núcleo Celular/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , PPAR gama/metabolismo , Tuberculose/metabolismo , Animais , Núcleo Celular/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Ativação de Macrófagos , Macrófagos/microbiologia , Transdução de Sinais , Tuberculose/diagnóstico , Tuberculose/microbiologia
13.
J Fish Dis ; 42(6): 809-815, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30968978

RESUMO

Enterospora nucleophila is an intranuclear microsporidian responsible for emaciative microsporidiosis of gilthead sea bream (GSB). Its minute size and cryptic nature make it easily misdiagnosed. An in situ hybridization (ISH) technique based on antisense oligonucleotide probes specific for the parasite was developed and used in clinically infected GSB in combination with calcofluor white stain (CW) and other histopathological techniques. The ISH method was found to label very conspicuously the cells containing parasite stages, with the signal concentrating in merogonial and sporogonial plasmodia within the infected cell nuclei. Comparison with CW demonstrated limited ISH signal in cells containing mature spores, which was attributed mostly to the scarcity of probe targets present in these stages. Although spores were detected in other organs of the digestive system as well as in the peripheral blood, proliferative stages or parasite reservoirs were not found in this work outside the intestines. The study demonstrated a frequent disassociation between the presence of abundant spores and the intensity of the infections as determined by the parasite activity. The ISH allows confirmatory diagnosis of GSB microsporidiosis and estimation of infection intensity and will be a valuable tool for a more precise determination of parasite dissemination pathways and pathogeny mechanisms.


Assuntos
Núcleo Celular/microbiologia , Doenças dos Peixes/diagnóstico , Microsporídios/genética , Microsporidiose/veterinária , Dourada/microbiologia , Animais , Benzenossulfonatos , Sondas de DNA/genética , Doenças dos Peixes/microbiologia , Técnicas Histológicas , Hibridização In Situ , Microsporídios/isolamento & purificação , Microsporidiose/diagnóstico , Coloração e Rotulagem
14.
Plant Sci ; 277: 218-228, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466588

RESUMO

NACs are important transcriptional factors involved in growth and development as well as responses to abiotic and biotic stresses in plants. In this study, TaNAC6 was identified as a differentially expressed gene between two lines with broad-spectrum resistance to powdery mildew, NAU9918 and OEStpk-V, and their corresponding susceptible isogenic lines, SM-1 and Yangmai158, after Bgt inoculation by transcriptome analysis. Then, three homoeologous genes of TaNAC6 were cloned and named as TaNAC6-A, TaNAC6-B and TaNAC6-D, respectively. Each member of TaNAC6s was subcellular localized to the nucleus and displayed the transcriptional activation activity. However, the responses of them to pathogens and phytohormones were different. Transient overexpression of each TaNAC6 reduced the haustorium index of Yangmai158, and stable transformation of TaNAC6-A enhanced its resistance against Bgt, implying that TaNAC6s play important roles in basal resistance. Silencing of TaNAC6s compromised the resistance of OEStpk-V and NAU9918 suggesting that TaNAC6s play positive roles in the broad-spectrum resistance against Bgt. TaNAC6s might be induced by JA and then feedback regulate the JA pathway leading to improved resistance to Bgt. The role of TaNAC6s and their orthologous genes HvNAC6 and ATAF1 in the powdery mildew resistance implied these NAC6 genes share a common signal pathway across species.


Assuntos
Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Triticum/metabolismo , Triticum/microbiologia , Núcleo Celular/metabolismo , Núcleo Celular/microbiologia , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais
15.
Reprod Biol ; 18(1): 115-121, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29449095

RESUMO

The Aim of this study was to evaluate the effects of bacteriospermia on human sperm parameters, nuclear protamines, DNA integrity and ICSI outcome in patients enrolled for ICSI treatment. 84 unselected couples consulting in infertility and obstetrics clinic and enrolled for ICSI treatment were included in this study. The semen specimens were screened bacteriologically; semen and sperm parameters were also evaluated according to WHO guidelines. DNA integrity, protamines concentration and protamine deficiency were estimated by TUNEL assay, AU-PAGE and Chromomycin (CMA3) respectively. The results of this study revealed that 34.52% of studied semen samples were infected with bacteria. The isolated bacteria were identified as Staphylococcus aureus, Staph. epidermidis, Staph. haemolyticus, Escherichia coli, Enterococcus faecalis and Streptococcus agalactiae. Bacteriospermia had a significant (p < .010) negative effect on sperm parameters; concentration, motility, progressive motility and chromatin condensation. Moreover, high DNA fragmentation with low P1 and P2 concentrations were noticed in infected patients in comparison to non-infected patients but non-significant. Also, the fertilization rate decreased significantly (p < .05) with infected patients. IN CONCLUSION: bacteriospermia has significant negative effect on sperm quality and fertilization rate in patients who underwent ICSI treatment.


Assuntos
Núcleo Celular/metabolismo , Fragmentação do DNA , Infertilidade Masculina/etiologia , Protaminas/metabolismo , Infecções do Sistema Genital/fisiopatologia , Injeções de Esperma Intracitoplásmicas , Espermatozoides/metabolismo , Adulto , Núcleo Celular/microbiologia , Núcleo Celular/patologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Infecções por Escherichia coli/fisiopatologia , Características da Família , Feminino , Alemanha/epidemiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/patologia , Infecções por Bactérias Gram-Positivas/fisiopatologia , Hospitais Universitários , Humanos , Infertilidade Feminina/terapia , Masculino , Pessoa de Meia-Idade , Gravidez , Taxa de Gravidez , Infecções do Sistema Genital/epidemiologia , Infecções do Sistema Genital/microbiologia , Infecções do Sistema Genital/patologia , Sêmen/microbiologia , Análise do Sêmen , Espermatozoides/microbiologia , Espermatozoides/patologia
16.
PLoS One ; 12(7): e0179782, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28683084

RESUMO

Several regulators of programmed cell death (PCD) have been identified in plants which encode proteins with putative lipid-binding domains. Among them, VAD1 (Vascular Associated Death) contains a novel protein domain called VASt (VAD1 analog StAR-related lipid transfer) still uncharacterized. The Arabidopsis mutant vad1-1 has been shown to exhibit a lesion mimic phenotype with light-conditional appearance of propagative hypersensitive response-like lesions along the vascular system, associated with defense gene expression and increased resistance to Pseudomonas strains. To test the potential of ectopic expression of VAD1 to influence HR cell death and to elucidate the role of the VASt domain in this function, we performed a structure-function analysis of VAD1 by transient over-expression in Nicotiana benthamiana and by complementation of the mutant vad1-1. We found that (i) overexpression of VAD1 controls negatively the HR cell death and defense expression either transiently in Nicotiana benthamania or in Arabidopsis plants in response to avirulent strains of Pseudomonas syringae, (ii) VAD1 is expressed in multiple subcellular compartments, including the nucleus, and (iii) while the GRAM domain does not modify neither the subcellular localization of VAD1 nor its immunorepressor activity, the domain VASt plays an essential role in both processes. In conclusion, VAD1 acts as a negative regulator of cell death associated with the plant immune response and the VASt domain of this unknown protein plays an essential role in this function, opening the way for the functional analysis of VASt-containing proteins and the characterization of novel mechanisms regulating PCD.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/imunologia , Morte Celular/imunologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/imunologia , Morte Celular/genética , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Núcleo Celular/microbiologia , Citosol/imunologia , Citosol/metabolismo , Citosol/microbiologia , Teste de Complementação Genética , Mutação , Células Vegetais/imunologia , Células Vegetais/metabolismo , Células Vegetais/microbiologia , Doenças das Plantas/genética , Domínios Proteicos , Pseudomonas syringae/crescimento & desenvolvimento , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/microbiologia
17.
Sci Rep ; 7(1): 4746, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684792

RESUMO

We previously reported the importance of induced nuclear transglutaminase (TG) 2 activity, which results in hepatic cell death, in ethanol-induced liver injury. Here, we show that co-incubation of either human hepatic cells or mouse primary hepatocytes derived from wild-type but not TG2-/- mice with pathogenic fungi Candida albicans and C. glabrata, but not baker's yeast Saccharomyces cerevisiae, induced cell death in host cells by enhancing cellular, particularly nuclear, TG activity. Further pharmacological and genetic approaches demonstrated that this phenomenon was mediated partly by the production of reactive oxygen species (ROS) such as hydroxyl radicals, as detected by a fluorescent probe and electron spin resonance. A ROS scavenger, N-acetyl cysteine, blocked enhanced TG activity primarily in the nuclei and inhibited cell death. In contrast, deletion of C. glabrata nox-1, which encodes a ROS-generating enzyme, resulted in a strain that failed to induce the same phenomena. A similar induction of hepatic ROS and TG activities was observed in C. albicans-infected mice. An antioxidant corn peptide fraction inhibited these phenomena in hepatic cells. These results address the impact of ROS-generating pathogens in inducing nuclear TG2-related liver injuries, which provides novel therapeutic targets for preventing and curing alcoholic liver disease.


Assuntos
Acetilcisteína/farmacologia , Candida albicans/patogenicidade , Candida glabrata/patogenicidade , Núcleo Celular/enzimologia , Sequestradores de Radicais Livres/farmacologia , Hepatócitos/enzimologia , Peptídeos/farmacologia , Animais , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candida albicans/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/enzimologia , Candida glabrata/genética , Candidíase/tratamento farmacológico , Candidíase/enzimologia , Candidíase/genética , Candidíase/microbiologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/deficiência , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Deleção de Genes , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Radical Hidroxila , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Cultura Primária de Células , Proteína 2 Glutamina gama-Glutamiltransferase , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Transglutaminases/deficiência , Transglutaminases/genética , Transglutaminases/imunologia
18.
PLoS Negl Trop Dis ; 11(1): e0005241, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28045926

RESUMO

BACKGROUND: During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure. METHODS: We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells. RESULTS: TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei. CONCLUSION: B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection.


Assuntos
Burkholderia pseudomallei/fisiologia , Núcleo Celular/microbiologia , Melioidose/microbiologia , Actinas/metabolismo , Animais , Burkholderia pseudomallei/crescimento & desenvolvimento , Cobaias , Humanos , Fígado/metabolismo , Fígado/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , Melioidose/metabolismo , Viabilidade Microbiana , Baço/metabolismo , Baço/microbiologia
19.
Nat Commun ; 8: 14023, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067236

RESUMO

Pathogens use a variety of secreted and surface proteins to interact with and manipulate their hosts, but a systematic approach for identifying such proteins has been lacking. To identify these 'host-exposed' proteins, we used spatially restricted enzymatic tagging followed by mass spectrometry analysis of Caenorhabditis elegans infected with two species of Nematocida microsporidia. We identified 82 microsporidia proteins inside of intestinal cells, including several pathogen proteins in the nucleus. These microsporidia proteins are enriched in targeting signals, are rapidly evolving and belong to large Nematocida-specific gene families. We also find that large, species-specific families are common throughout microsporidia species. Our data suggest that the use of a large number of rapidly evolving species-specific proteins represents a common strategy for microsporidia to interact with their hosts. The unbiased method described here for identifying potential pathogen effectors represents a powerful approach to study a broad range of pathogens.


Assuntos
Caenorhabditis elegans/microbiologia , Células Epiteliais/metabolismo , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Microsporídios/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/microbiologia , Células Epiteliais/microbiologia , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Microsporídios/classificação , Microsporídios/metabolismo , Filogenia , Canais de Sódio/genética , Canais de Sódio/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-27919889

RESUMO

Bacteriophages (phages) are known to effectively kill extracellular multiplying bacteria. The present study demonstrated that phages penetrated bovine mammary epithelial cells and cleared intracellular Staphylococcus aureus in a time-dependent manner. In particular, phage vB_SauM_JS25 reached the nucleus within 3 h postincubation. The phages had an endocytotic efficiency of 12%. This ability to kill intracellular host bacteria suggests the utility of phage-based therapies and may protect patients from recurrent infection and treatment failure.


Assuntos
Bacteriófagos/fisiologia , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Glândulas Mamárias Animais/citologia , Staphylococcus aureus/fisiologia , Animais , Bovinos , Linhagem Celular , Núcleo Celular/microbiologia , Núcleo Celular/virologia , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...