Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. otorhinolaryngol. (Impr.) ; 83(6): 691-696, Nov.-Dec. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889319

RESUMO

Abstract Introduction: The use of mobile phones has become widespread in recent years. Although beneficial from the communication viewpoint, the electromagnetic fields generated by mobile phones may cause unwanted biological changes in the human body. Objective: In this study, we aimed to evaluate the effects of 2100 MHz Global System for Mobile communication (GSM-like) electromagnetic field, generated by an electromagnetic fields generator, on the auditory system of rats by using electrophysiological, histopathologic and immunohistochemical methods. Methods: Fourteen adult Wistar albino rats were included in the study. The rats were divided randomly into two groups of seven rats each. The study group was exposed continuously for 30 days to a 2100 MHz electromagnetic fields with a signal level (power) of 5.4 dBm (3.47 mW) to simulate the talk mode on a mobile phone. The control group was not exposed to the aforementioned electromagnetic fields. After 30 days, the Auditory Brainstem Responses of both groups were recorded and the rats were sacrificed. The cochlear nuclei were evaluated by histopathologic and immunohistochemical methods. Results: The Auditory Brainstem Responses records of the two groups did not differ significantly. The histopathologic analysis showed increased degeneration signs in the study group (p = 0.007). In addition, immunohistochemical analysis revealed increased apoptotic index in the study group compared to that in the control group (p = 0.002). Conclusion: The results support that long-term exposure to a GSM-like 2100 MHz electromagnetic fields causes an increase in neuronal degeneration and apoptosis in the auditory system.


Resumo Introdução: O uso de telefones celulares tornou-se generalizado nos últimos anos. Embora benéfico do ponto de vista da comunicação, os campos eletromagnéticos gerados por celulares pode causar alterações biológicas indesejáveis no corpo humano. Objetivo: Nesse estudo, o objetivo foi avaliar os efeitos do campo eletromagnético na frequência de 2.100 MHz, similar à modulação do Sistema Global para Comunicações Móveis, produzido por um gerador de campo eletromagnético, sobre o sistema auditivo de ratos usando os métodos eletrofisiológico, histopatológico e imunohistoquímico. Método: Foram incluídos no estudo catorze adultos ratos albinos Wistar. Os ratos foram divididos aleatoriamente em dois grupos de sete animais cada. O grupo de estudo foi exposto continuamente por 30 dias a um campo eletromagnético em 2100 MHz com um nível de sinal (potência) de 5,4 dBm (3,47 miliwatts) para simular o modo de conversação em um celular. O grupo controle não foi exposto ao campo eletromagnético acima mencionado. Após 30 dias, o potencial evocado auditivo de tronco encefálico de ambos os grupos foi gravado e os ratos foram sacrificados. Os núcleos cocleares foram avaliados pelos métodos histopatológico e imunohistoquímico. Resultados: Os registros do potencial evocado auditivo de tronco encefálico dos dois grupos não diferiram significativamente. A análise histopatológica mostrou aumento dos sinais de degeneração no grupo de estudo (p = 0,007). Além disso, a análise imuno-histoquímica revelou aumento do índice de apoptose no grupo de estudo em comparação com o grupo controle (p = 0,002). Conclusão: Os resultados confirmam que a exposição a longo prazo a um campo eletromagnético em 2100 MHz similar à modulação do sistema global para comunicações móveis causa um aumento na degeneração neuronal e apoptose no sistema auditivo.


Assuntos
Animais , Masculino , Ondas de Rádio/efeitos adversos , Núcleo Coclear/efeitos da radiação , Exposição à Radiação/efeitos adversos , Telefone Celular , Campos Eletromagnéticos/efeitos adversos , Audição/efeitos da radiação , Valores de Referência , Fatores de Tempo , Imuno-Histoquímica , Fatores de Risco , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos da radiação , Ratos Wistar , Apoptose/efeitos da radiação , Núcleo Coclear/patologia , Degeneração Neural/etiologia
2.
Braz J Otorhinolaryngol ; 83(6): 691-696, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27865708

RESUMO

INTRODUCTION: The use of mobile phones has become widespread in recent years. Although beneficial from the communication viewpoint, the electromagnetic fields generated by mobile phones may cause unwanted biological changes in the human body. OBJECTIVE: In this study, we aimed to evaluate the effects of 2100MHz Global System for Mobile communication (GSM-like) electromagnetic field, generated by an electromagnetic fields generator, on the auditory system of rats by using electrophysiological, histopathologic and immunohistochemical methods. METHODS: Fourteen adult Wistar albino rats were included in the study. The rats were divided randomly into two groups of seven rats each. The study group was exposed continuously for 30days to a 2100MHz electromagnetic fields with a signal level (power) of 5.4dBm (3.47mW) to simulate the talk mode on a mobile phone. The control group was not exposed to the aforementioned electromagnetic fields. After 30days, the Auditory Brainstem Responses of both groups were recorded and the rats were sacrificed. The cochlear nuclei were evaluated by histopathologic and immunohistochemical methods. RESULTS: The Auditory Brainstem Responses records of the two groups did not differ significantly. The histopathologic analysis showed increased degeneration signs in the study group (p=0.007). In addition, immunohistochemical analysis revealed increased apoptotic index in the study group compared to that in the control group (p=0.002). CONCLUSION: The results support that long-term exposure to a GSM-like 2100MHz electromagnetic fields causes an increase in neuronal degeneration and apoptosis in the auditory system.


Assuntos
Telefone Celular , Núcleo Coclear/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Audição/efeitos da radiação , Exposição à Radiação/efeitos adversos , Ondas de Rádio/efeitos adversos , Animais , Apoptose/efeitos da radiação , Núcleo Coclear/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos da radiação , Imuno-Histoquímica , Masculino , Degeneração Neural/etiologia , Ratos Wistar , Valores de Referência , Fatores de Risco , Fatores de Tempo
3.
J Neurophysiol ; 100(1): 76-91, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18367697

RESUMO

Cochlear implant speech processors transmit temporal features of sound as amplitude modulation of constant-rate electrical pulse trains. This study evaluated the central representation of amplitude modulation in the form of phase-locked firing of neurons in the auditory cortex. Anesthetized pigmented guinea pigs were implanted with cochlear electrode arrays. Stimuli were 254 pulse/s (pps) trains of biphasic electrical pulses, sinusoidally modulated with frequencies of 10-64 Hz and modulation depths of -40 to -5 dB re 100% (i.e., 1-56.2% modulation). Single- and multiunit activity was recorded from multi-site silicon-substrate probes. The maximum frequency for significant phase locking (limiting modulation frequency) was >or=60 Hz for 42% of recording sites, whereas phase locking to pulses of unmodulated pulse trains rarely exceeded 30 pps. The strength of phase locking to frequencies >or=40 Hz often varied nonmonotonically with modulation depth, commonly peaking at modulation depths around -15 to -10 dB. Cortical phase locking coded modulation frequency reliably, whereas a putative rate code for frequency was confounded by rate changes with modulation depth. Group delay computed from the slope of mean phase versus modulation frequency tended to increase with decreasing limiting modulation frequency. Neurons in cortical extragranular layers had lower limiting modulation frequencies than did neurons in thalamic afferent layers. Those observations suggest that the low-pass characteristic of cortical phase locking results from intracortical filtering mechanisms. The results show that cortical neurons can phase lock to modulated electrical pulse trains across the range of modulation frequencies and depths presented by cochlear implant speech processors.


Assuntos
Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Implantes Cocleares , Núcleo Coclear/fisiologia , Estimulação Acústica/métodos , Potenciais de Ação/efeitos da radiação , Animais , Córtex Auditivo/citologia , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Implante Coclear/métodos , Núcleo Coclear/efeitos da radiação , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Cobaias , Neurônios/fisiologia , Neurônios/efeitos da radiação , Psicofísica , Tempo de Reação/fisiologia , Tempo de Reação/efeitos da radiação
4.
Brain Res ; 1172: 40-7, 2007 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17803975

RESUMO

Numerous studies have reported auditory brainstem responses evoked by stimuli within the "normal" hearing range of rats, with maximum sensitivity peaking around 16 kHz. Yet rats also emit and respond to sounds in the ultrasonic (US) frequency range (30-100 kHz). However, very few electrophysiological studies have recorded auditory brainstem responses using US stimuli, and none have exceeded 70 kHz. We report here short-latency (1-3 ms) evoked potentials recorded in rat cochlear nucleus (CN) to US stimuli ranging from 40 to 90 kHz. Robust responses were recorded in 33 of 36 CN recording sites to stimuli ranging from 40 to 60 kHz; and twenty-eight of these sites continued to yield well-defined responses out to 90 kHz. Latencies systematically increased and overall amplitudes decreased with increasing US frequency. Amplitudes differed significantly in the three CN subnuclei, being largest in posterior-ventral (PVCN) and smallest in anterior-ventral (AVCN). The fact that well-defined responses can be recorded to stimuli as high as 90 kHz significantly extends the recorded upper frequency range of neural activity in the brainstem auditory pathway of the rat. These evoked potential results agree with the well-documented behavioral repertoire of rats in the US frequency range.


Assuntos
Núcleo Coclear/fisiologia , Potenciais Evocados Auditivos/fisiologia , Ultrassom , Estimulação Acústica/métodos , Análise de Variância , Animais , Mapeamento Encefálico , Núcleo Coclear/efeitos da radiação , Relação Dose-Resposta à Radiação , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/efeitos da radiação , Masculino , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia , Tempo de Reação/efeitos da radiação
5.
J Neurosci Res ; 84(4): 819-31, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16862546

RESUMO

This study sought to determine whether maintenance of noise-induced dorsal cochlear nucleus (DCN) hyperactivity depends on descending projections. Twenty-two hamsters were exposed under anesthesia to a 10-kHz tone at 125-130 dB SPL for 4 hr, and another 21 unexposed animals served as controls. After approximately 4-6 weeks of recovery, surgical transections were made to isolate the DCN from its adjacent brainstem structures. Spontaneous multiunit activity was recorded from the DCN surface 30-40 min after the surgical manipulations. Spontaneous rates were derived from the recording sites of the DCN along its mediolateral axis for each animal, yielding average spontaneous rates for both control and exposed groups. Histology was performed to assess the degree of sectioning of descending fiber tract connections to the cochlear nucleus, via the acoustic striae route, subpeduncular route, trapezoid body route, and ventral route of the olivocochlear bundle connection. The results showed that complete or nearly complete transections of descending inputs did not affect significantly the magnitude of DCN hyperactivity. However, this manipulation triggered a lateral shift of the peak mean rate, suggesting that descending inputs may play a modulatory role on the profile of DCN hyperactivity. Indeed, exposed animals with transection of only the strial route of entry manifested a level of hyperactivity much higher than that observed in exposed animals in which no sections were performed. This enhancement of DCN hyperactivity was weakened by damage to the subpeduncular or trapezoid routes of input, suggesting that the dorsally located inputs may have an inhibitory effect on DCN hyperactivity.


Assuntos
Vias Auditivas/fisiologia , Núcleo Coclear/fisiologia , Som/efeitos adversos , Estimulação Acústica/métodos , Análise de Variância , Animais , Mapeamento Encefálico , Núcleo Coclear/efeitos da radiação , Cricetinae , Eletrofisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Lateralidade Funcional/fisiologia , Técnicas In Vitro , Masculino , Mesocricetus
6.
Eur J Neurosci ; 21(12): 3334-48, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16026471

RESUMO

A necessary requirement for multisensory integration is the convergence of pathways from different senses. The dorsal cochlear nucleus (DCN) receives auditory input directly via the VIIIth nerve and somatosensory input indirectly from the Vth nerve via granule cells. Multisensory integration may occur in DCN cells that receive both trigeminal and auditory nerve input, such as the fusiform cell. We investigated trigeminal system influences on guinea pig DCN cells by stimulating the trigeminal ganglion while recording spontaneous and sound-driven activity from DCN neurons. A bipolar stimulating electrode was placed into the trigeminal ganglion of anesthetized guinea pigs using stereotaxic co-ordinates. Electrical stimuli were applied as bipolar pulses (100 micros per phase) with amplitudes ranging from 10 to 100 microA. Responses from DCN units were obtained using a 16-channel, four-shank electrode. Current pulses were presented alone or preceding 100- or 200-ms broadband noise (BBN) bursts. Thirty percent of DCN units showed either excitatory, inhibitory or excitatory-inhibitory responses to trigeminal ganglion stimulation. When paired with BBN stimulation, trigeminal stimulation suppressed or facilitated the firing rate in response to BBN in 78% of units, reflecting multisensory integration. Pulses preceding the acoustic stimuli by as much as 95 ms were able to alter responses to BBN. Bimodal suppression may play a role in attenuating body-generated sounds, such as vocalization or respiration, whereas bimodal enhancement may serve to direct attention in low signal-to-noise environments.


Assuntos
Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Núcleo Coclear/fisiologia , Estimulação Elétrica/métodos , Gânglio Trigeminal/fisiologia , Gânglio Trigeminal/efeitos da radiação , Potenciais de Ação/efeitos da radiação , Animais , Núcleo Coclear/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Cobaias , Inibição Neural/fisiologia , Inibição Neural/efeitos da radiação , Redes Neurais de Computação , Análise de Componente Principal , Tempo de Reação/efeitos da radiação , Fatores de Tempo
7.
Hear Res ; 124(1-2): 78-84, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9822904

RESUMO

Previous studies have shown that the dorsal cochlear nucleus exhibits increased spontaneous activity after exposure to intense sound. Such increases were apparent 1-2 months after the exposure and were generally proportional to the shift in response thresholds induced by the same exposure. The purpose of the present study was to determine whether this sound-induced increase in spontaneous activity is an early event which can be observed shortly after exposure. As in previous studies, anesthetized hamsters ranging in postnatal age from 60-70 days were exposed to a 10-kHz tone at levels between 125 and 130 dB SPL for a period of 4 h. Control animals were similarly anesthetized but were not exposed to the intense tone. Exposed animals were examined in two groups, one at 30 days after exposure, the other at 2 days after exposure. Time of exposure was adjusted so that all animals were between 90 and 100 days of age when spontaneous activity was studied electrophysiologically. The results showed that the increases in spontaneous activity, which were evident at 30 days after exposure, were not observed in animals studied 2 days after exposure. This result contrasted with the effect of the intense tone exposure on neural response thresholds. That is, the shifts in response thresholds seen 2 days after exposure were similar to those observed in animals studied 30 days after exposure. These results indicate that changes in spontaneous activity reflect a more slowly developing phenomenon and occur secondarily after induction of threshold shift.


Assuntos
Núcleo Coclear/fisiologia , Núcleo Coclear/efeitos da radiação , Limiar Sensorial/fisiologia , Som , Animais , Cricetinae , Mesocricetus , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA