Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Exp Neurol ; 343: 113784, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139240

RESUMO

Arginine vasopressin (AVP) neurons in the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) are involved in important physiological behaviors, such as controling osmotic stability and thermoregulation. However, the presynaptic input patterns governing AVP neurons have remained poorly understood due to their heterogeneity, as well as intermingling of AVP neurons with other neurons both in the SON and PVN. In the present study, we employed a retrograde modified rabies-virus system to reveal the brain areas that provide specific inputs to AVP neurons in the SON and PVN. We found that AVP neurons of the SON and PVN received similar input patterns from multiple areas of the brain, particularly massive afferent inputs from the diencephalon and other brain regions of the limbic system; however, PVNAVP neurons received relatively broader and denser inputs compared to SONAVP neurons. Additionally, SONAVP neurons received more projections from the median preoptic nucleus and organum vasculosum of the lamina terminalis (a circumventricular organ), compared to PVNAVP neurons, while PVNAVP neurons received more afferent inputs from the bed nucleus of stria terminalis and dorsomedial nucleus of the hypothalamus, both of which are thermoregulatory nuclei, compared to those of SONAVP neurons. In addition, both SONAVP and PVNAVP neurons received direct afferent projections from the bilateral suprachiasmatic nucleus, which is the master regulator of circadian rhythms and is concomitantly responsible for fluctuations in AVP levels. Taken together, our present results provide a comprehensive understanding of the specific afferent framework of AVP neurons both in the SON and PVN, and lay the foundation for further dissecting the diverse roles of SONAVP and PVNAVP neurons.


Assuntos
Arginina Vasopressina/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Núcleo Supraóptico/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Neurônios/química , Núcleo Hipotalâmico Paraventricular/química , Terminações Pré-Sinápticas/química , Núcleo Supraóptico/química
2.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33972988

RESUMO

Ghrelin stimulates both GH secretion and food intake. The orexigenic action of ghrelin is mainly mediated by neurons that coexpress agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). GH also stimulates food intake and, importantly, ARHAgRP/NPY neurons express GH receptor (GHR). Thus, ghrelin-induced GH secretion may contribute to the orexigenic effect of ghrelin. Here, we investigated the response to ghrelin in male mice carrying GHR ablation specifically in neurons (brain GHR knockout [KO] mice) or exclusively in ARHAgRP/NPY neurons (AgRP GHR KO mice). Although brain GHR KO mice showed normal ghrelin-induced increase in plasma GH levels, these mutants lacked the expected orexigenic response to ghrelin. Additionally, brain GHR KO mice displayed reduced hypothalamic levels of Npy and Ghsr mRNA and did not elicit ghrelin-induced c-Fos expression in the ARH. Furthermore, brain GHR KO mice exhibited a prominent reduction in AgRP fiber density in the ARH and paraventricular nucleus of the hypothalamus (PVH). In contrast, AgRP GHR KO mice showed no changes in the hypothalamic Npy and Ghsr mRNAs and conserved ghrelin-induced food intake and c-Fos expression in the ARH. AgRP GHR KO mice displayed a reduced AgRP fiber density (~16%) in the PVH, but this reduction was less than that observed in brain GHR KO mice (~61%). Our findings indicate that GHR signaling in the brain is required for the orexigenic effect of ghrelin, independently of GH action on ARHAgRP/NPY neurons.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Grelina/farmacologia , Hormônio do Crescimento/sangue , Receptores da Somatotropina/genética , Receptores da Somatotropina/fisiologia , Proteína Relacionada com Agouti/análise , Animais , Núcleo Arqueado do Hipotálamo/química , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeo Y/genética , Núcleo Hipotalâmico Paraventricular/química , Proteínas Proto-Oncogênicas c-fos/análise , RNA Mensageiro/análise , Receptores de Grelina/genética , Receptores da Somatotropina/deficiência , Transdução de Sinais/fisiologia
3.
J Comp Neurol ; 529(6): 1228-1239, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32844436

RESUMO

Multiple neuroendocrine, autonomic and behavioral responses are regulated by the paraventricular nucleus of the hypothalamus (PVH). Previous studies have shown that PVH neurons express the growth hormone (GH) receptor (GHR), although the role of GH signaling on PVH neurons is still unknown. Given the great heterogeneity of cell types located in the PVH, we performed a detailed analysis of the neurochemical identity of GH-responsive cells to understand the possible physiological importance of GH action on PVH neurons. GH-responsive cells were detected via the phosphorylated form of the signal transducer and activator of transcription-5 (pSTAT5) in adult male mice that received an intraperitoneal GH injection. Approximately 51% of GH-responsive cells in the PVH co-localized with the vesicular glutamate transporter 2. Rare co-localizations between pSTAT5 and vesicular GABA transporter or vasopressin were observed, whereas approximately 20% and 38% of oxytocin and tyrosine hydroxylase (TH) cells, respectively, were responsive to GH in the PVH. Approximately 55%, 35% and 63% of somatostatin, thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH) neurons expressed GH-induced pSTAT5, respectively. Additionally, 8%, 49% and 75% of neuroendocrine TH, TRH and CRH neurons, and 67%, 32% and 74% of nonneuroendocrine TH, TRH and CRH neurons were responsive to GH in the PVH of Fluoro-Gold-injected mice. Our findings suggest that GH action on PVH neurons is involved in the regulation of the thyroid, somatotropic and adrenal endocrine axes, possibly influencing homeostatic and stress responses.


Assuntos
Hormônio do Crescimento/metabolismo , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/metabolismo , Fenótipo , Receptores da Somatotropina/metabolismo , Animais , Hormônio do Crescimento/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Paraventricular/citologia , Receptores da Somatotropina/análise
4.
J Comp Neurol ; 529(9): 2283-2310, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33341960

RESUMO

Within the hypothalamic paraventricular nucleus (PVN), estrogen receptor (ER) ß and other gonadal hormone receptors play a role in central cardiovascular processes. However, the influence of sex and age on the cellular and subcellular relationships of ERß with ERα, G-protein ER (GPER1), as well as progestin and androgen receptors (PR and AR) in the PVN is uncertain. In young (2- to 3-month-old) females and males, ERß-enhanced green fluorescent protein (EGFP) containing neurons were approximately four times greater than ERα-labeled and PR-labeled nuclei in the PVN. In subdivisions of the PVN, young females, compared to males, had: (1) more ERß-EGFP neurons in neuroendocrine rostral regions; (2) fewer ERα-labeled nuclei in neuroendocrine and autonomic projecting medial subregions; and (3) more ERα-labeled nuclei in an autonomic projecting caudal region. In contrast, young males, compared to females, had approximately 20 times more AR-labeled nuclei, which often colocalized with ERß-EGFP in neuroendocrine (approximately 70%) and autonomic (approximately 50%) projecting subregions. Ultrastructurally, in soma and dendrites, PVN ERß-EGFP colocalized primarily with extranuclear AR (approximately 85% soma) and GPER1 (approximately 70% soma). Aged (12- to 24-month-old) males had more ERß-EGFP neurons in a rostral neuroendocrine subregion compared to aged females and females with accelerated ovarian failure (AOF) and in a caudal autonomic subregion compared to post-AOF females. Late-aged (18- to 24-month-old) females compared to early-aged (12- to 14-month-old) females and AOF females had fewer AR-labeled nuclei in neuroendrocrine and autonomic projecting subregions. These findings indicate that gonadal steroids may directly and indirectly influence PVN neurons via nuclear and extranuclear gonadal hormone receptors in a sex-specific manner.


Assuntos
Receptor beta de Estrogênio/biossíntese , Hormônios Esteroides Gonadais/biossíntese , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Caracteres Sexuais , Fatores Etários , Animais , Receptor beta de Estrogênio/análise , Receptor beta de Estrogênio/ultraestrutura , Feminino , Hormônios Esteroides Gonadais/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/ultraestrutura , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/ultraestrutura , Receptores Androgênicos/análise , Receptores Androgênicos/biossíntese , Receptores Androgênicos/ultraestrutura , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/ultraestrutura
5.
CNS Neurosci Ther ; 26(7): 730-740, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32011093

RESUMO

AIMS: This study aimed to investigate the functions of the amygdala in rat asthma model. MAIN METHODS: Wheat germ agglutinin-horseradish peroxidase (WGA-HRP) was used for tracing from the paraventricular nucleus (PVN) to the amygdala, and nuclear lesions were performed to observe changes in respiratory function and airway inflammation. RESULTS: This study showed that the extracellular neuronal discharged in the medial amygdala (MeA) and central amygdala (CeA), and the expression of Fos significantly increased in asthmatic rat compared to control group. The distribution of Fos- and oxytocin (OT)-positive neurons and Fos/OT dual-positive neurons evidently increased in the PVN. WGA-HRP was injected into the PVN for tracing, and Fos/HRP-dual-positive neurons were observed to be distributed in the MeA. By using kainic acid (KA) to injure the MeA and CeA in asthmatic rats, expiratory and inspiratory times (TE/TI) and airway resistance (Raw) decreased, and minute ventilation volume (MVV) and dynamic pulmonary compliance (Cdyn) increased accordingly. In the bronchoalveolar lavage fluid (BALF), the number of eosinophils and the concentration of IL-4 were lower than those of the control group, and the ratio of Th1/Th2 cells was higher than that of the control group. In the PVN, the distribution of Fos-, OT-positive cells and Fos/OT double-positive cells decreased compared with those of the control group. The activities of the MeA and CeA and of OT neurons in the PVN of the rats were correlated with the occurrence of asthma. CONCLUSIONS: Asthma attack could induce neural activities in the MeA and CeA, and OT neurons in the PVN may be involved in the process of asthma attack.


Assuntos
Tonsila do Cerebelo/metabolismo , Asma/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Tonsila do Cerebelo/química , Tonsila do Cerebelo/patologia , Animais , Asma/induzido quimicamente , Asma/patologia , Masculino , Ovalbumina/toxicidade , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/patologia , Ratos , Ratos Sprague-Dawley
6.
J Neuroendocrinol ; 31(4): e12712, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30887585

RESUMO

Vasopressinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei express oestrogen receptor (ER)ß and receive afferent projections from osmosensitive neurones that express ERα. However, which subtype of these receptors mediates the effects of oestradiol on vasopressin (AVP) secretion induced by hydromineral challenge has not yet been demonstrated in vivo. Moreover, AVP secretion induced by hyperosmolality is known to involve activation of TRPV1 (transient receptor potential vanilloid, member 1) in magnocellular neurones, although whether oestradiol modulates expression of this receptor is unknown. Thus, the present study aimed to clarify the mechanisms involved in the modulation exerted by oestradiol on AVP secretion, specifically investigating the involvement of ERß, ERα and TRPV1 receptors in response to water deprivation (WD). We observed that treatment with an ERß agonist potentiated AVP secretion and vasopressinergic neuronal activation induced by WD. This increase in AVP secretion induced by WD was reversed by an ERß antagonist. By contrast to ERß, the ERα agonist did not alter plasma AVP concentrations or activation of AVP neurones in the SON and PVN. Additionally, Fos expression in the subfornical organ was not altered by the ERα agonist. TRPV1 mRNA expression was increased by WD in the SON, although this response was not altered by any treatment. The results of the present study suggest that ERß mediates the effects of oestradiol on AVP secretion in response to WD, indicating that the effects of oestradiol occur directly in AVP neurones without affecting TRPV1.


Assuntos
Estradiol/farmacologia , Receptor beta de Estrogênio/fisiologia , Neurônios/fisiologia , Vasopressinas/fisiologia , Privação de Água/fisiologia , Animais , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Feminino , Concentração Osmolar , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Wistar , Elastômeros de Silicone , Núcleo Supraóptico/química , Núcleo Supraóptico/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Vasopressinas/análise , Vasopressinas/sangue
7.
Neuroscience ; 406: 50-61, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30826522

RESUMO

Despite the high incidence of neuropathic pain, its mechanism remains unclear. Oxytocin (OXT) is an established endogenous polypeptide produced in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. OXT, which is synthesized by OXT neurons in the SON and the magnocellular part of the PVN (mPVN), is delivered into the posterior pituitary (PP), then released into the systemic blood circulation. Meanwhile, OXT-containing neurosecretory cells in the parvocellular part of the PVN (pPVN) are directly projected to the spinal cord and are associated with sensory modulation. In this study, the OXT system in the hypothalamo-neurohypophysial and hypothalamo-spinal pathway was surveyed using a rat neuropathic pain model induced by partial sciatic nerve ligation (PSL). In the present study, we used transgenic rats expressing an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene. In a neuropathic pain model, mechanical allodynia was observed, and glial cell activation was also confirmed via immunohistochemistry. In this neuropathic pain model, a significant increase in the OXT-mRFP1 expression was observed in the PP, the SON, mPVN, and pPVN. Furthermore, OXT-mRFP1 granules with positive fluorescent reaction were remarkably increased in laminae I and II of the ipsilateral dorsal horn. Although the plasma concentrations of OXT did not significantly change, a significant increase of the mRNA levels of OXT and mRFP1 in the SON, mPVN, and pPVN were observed. These results suggest that neuropathic pain induced by PSL upregulates hypothalamic OXT synthesis and transportation to the OXTergic axon terminals in the PP and spinal cord.


Assuntos
Proteínas Luminescentes/biossíntese , Neuralgia/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Neuro-Hipófise/metabolismo , Medula Espinal/metabolismo , Animais , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Masculino , Vias Neurais/química , Vias Neurais/metabolismo , Ocitocina/análise , Limiar da Dor/fisiologia , Núcleo Hipotalâmico Paraventricular/química , Neuro-Hipófise/química , Ratos , Ratos Transgênicos , Ratos Wistar , Medula Espinal/química , Núcleo Supraóptico/química , Núcleo Supraóptico/metabolismo , Regulação para Cima/fisiologia , Proteína Vermelha Fluorescente
8.
Alcohol Clin Exp Res ; 41(8): 1444-1451, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28617958

RESUMO

BACKGROUND: Alcohol use disorders are associated with dysfunctional social relationships and stress responses. The neuropeptides oxytocin (OT) and vasopressin (AVP) are known to orchestrate or mediate many aspects of social behavior, stress responses, and ingestive behaviors. Because of the overlap between the effects of alcohol and the roles of OT and AVP, we sought to determine whether alcohol consumption altered expression of OT and AVP in the paraventricular nucleus (PVN) of the hypothalamus, one of the key sites for OT and AVP synthesis. METHODS: Pair-housed adult male prairie voles were allowed to consume 15% ethanol versus water in the home cage continuously (Continuous-Access [CA] group) or every other day for 4 hours (Intermittent-Access [IA] group). Control animals never had access to alcohol. After 7 weeks, animals were sacrificed and their brains were removed and immunohistochemical analysis of OT- and AVP-immunopositive neurons was performed. RESULTS: OT-immunopositive neurons were significantly decreased in the anterior PVN in the CA but not IA group, relative to Control animals, suggesting that continuous alcohol consumption decreases the number of OT neurons. There was no effect of alcohol consumption on posterior PVN OT neurons, and no effect on PVN AVP neurons. CONCLUSIONS: These data show that continuous-access voluntary alcohol consumption is associated with decreased OT neurons in the anterior PVN, suggesting that alcohol-induced alterations in the OT system should be investigated as a mechanism for alcohol-related changes in social behavior, stress responses, and exacerbation of alcohol use disorders.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/metabolismo , Neurônios/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Animais , Arvicolinae , Masculino , Neurônios/química , Ocitocina/análise , Núcleo Hipotalâmico Paraventricular/química , Vasopressinas/análise , Vasopressinas/metabolismo
9.
Sci Rep ; 7(1): 139, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28273940

RESUMO

Previously, we demonstrated that chronic exposure to low levels of estradiol-17ß (E2) increases mean arterial pressure (MAP) in young female Sprague-Dawley (SD) rats, however, the underlying mechanisms are unclear. Since endothelin-1 (ET-1) is implicated in blood pressure (BP) regulation, we hypothesized that E2's effects on MAP are mediated through central ET-1. To test this, young female SD rats were either sham implanted or implanted s.c. with slow-release E2 pellets (20 ng/day for 90 days). BP was monitored by telemetry. After 75 days of E2 exposure, ETA antagonist or vehicle was administered i.c.v. After 90 days of E2 exposure, rats were sacrificed, and the paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) were microdissected for gene expression and protein analysis of ET-1 and its receptors. E2 exposure increased MAP after pellet implantation. Gene expression of ET-1 and ETA but not ETB receptors were upregulated in the PVN and RVLM of E2 treated animals. Further, the protein levels of ETA receptor were also increased in the PVN of E2 treated animals. However, i.c.v. infusion of the ETA antagonist did not completely block the increase in blood pressure. Our results suggest that increases in central ET-1 activity could possibly play a role in chronic E2-induced increase in BP but further studies are needed to completely understand the contribution of ET-1 in this phenomenon.


Assuntos
Endotelina-1/genética , Endotelina-1/metabolismo , Estradiol/toxicidade , Antagonistas de Estrogênios/administração & dosagem , Hipertensão/induzido quimicamente , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão/genética , Hipertensão/metabolismo , Bulbo/química , Bulbo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Estradiol/genética , Receptores de Estradiol/metabolismo , Testes de Toxicidade Crônica
11.
Pharmacol Biochem Behav ; 131: 42-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25662821

RESUMO

Autism is a neurodevelopmental disorder characterised by the disruption of social interactions. Autistic animal models play a crucial role in neurophysiologic research on this disorder. One of these models is based on rats that have been prenatally treated with valproic acid - VPA rats. The aim of our study performed with this model was to investigate changes in sociability and gene expression of neuropeptides and receptors involved in regulating social behaviour. We focused on gene expression in the hypothalamus, where the neuropeptides oxytocin (OT) and arginine-vasopressin (AVP) are produced, as well as oxytocin receptors (OTR) in certain neuronal structures involved in the creation of social abilities. Our research showed that VPA rats spent more time in the part with an unknown animal and less time in the central part of a three chamber sociability test apparatus than control animals. The latency period of VPA rats before initiating social contact was decreased. In addition, during weaning, VPA female rats spent more time in direct interaction with an unknown rat. We also found that adult VPA rats had an increased expression of OT in the hypothalamic supraoptic and paraventricular nuclei and of OTR in the medial prefrontal cortex, piriform cortex, cortex-amygdala transition zone and the region of the basolateral and basomedial amygdaloid nuclei compared with controls. To sum up, we observed that a single prenatal injection of VPA increased social behaviour and gene expression of OT and OTR in neurological structures connected with the social behaviour of rats. One unanticipated finding was the absence of one of the core symptoms of autism in VPA rats, suggesting a decreased ability to understand intraspecific communication signals.


Assuntos
Hipotálamo/efeitos dos fármacos , Ocitocina/biossíntese , Receptores de Ocitocina/biossíntese , Comportamento Social , Ácido Valproico/farmacologia , Animais , Feminino , Expressão Gênica/efeitos dos fármacos , Hipotálamo/química , Masculino , Ocitocina/análise , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Wistar , Receptores de Ocitocina/química , Núcleo Supraóptico/química , Núcleo Supraóptico/efeitos dos fármacos
12.
Br J Nutr ; 113(3): 536-45, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25609154

RESUMO

The suppression of prolactin production with bromocriptine (BRO) in the last 3 d of lactation reduces milk yield (early weaning) and increases the transfer of leptin through the milk, causing hyperleptinaemia in pups. In adulthood, several changes occur in the offspring as a result of metabolic programming, including overweight, higher visceral fat mass, hypothyroidism, hyperglycaemia, insulin resistance, hyperleptinaemia and central leptin resistance. In the present study, we investigated whether overweight rats programmed by early weaning with maternal BRO treatment have hypothalamic alterations in adulthood. We analysed the expression of neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), pro-opiomelanocortin (POMC) and α-melanocyte-stimulating hormone (α-MSH) by immunohistochemistry in the following hypothalamic nuclei: medial and lateral arcuate nucleus (ARC); paraventricular nucleus (PVN); lateral hypothalamus (LH). Additionally, we sought to determine whether these programmed rats exhibited hypothalamic inflammation as indicated by astrogliosis. NPY immunostaining showed a denser NPY-positive fibre network in the ARC and PVN (+82% in both nuclei) of BRO offspring. Regarding the anorexigenic neuropeptides, no difference was found for CART, POMC and α-MSH. The number of astrocytes was higher in all the nuclei of BRO rats. The fibre density of glial fibrillary acidic protein was also increased in both medial and lateral ARC (6·06-fold increase and 9·13-fold increase, respectively), PVN (5·75-fold increase) and LH (2·68-fold increase) of BRO rats. We suggest that early weaning has a long-term effect on the expression of NPY as a consequence of developmental plasticity, and the presence of astrogliosis indicates hypothalamic inflammation that is closely related to overweight and hyperleptinaemia observed in our model.


Assuntos
Gliose/induzido quimicamente , Hipotálamo/patologia , Lactação/efeitos dos fármacos , Neuropeptídeo Y/análise , Prolactina/antagonistas & inibidores , Desmame , Animais , Núcleo Arqueado do Hipotálamo/química , Feminino , Hipotálamo/química , Hipotálamo/efeitos dos fármacos , Leptina/sangue , Leptina/metabolismo , Masculino , Leite/metabolismo , Proteínas do Tecido Nervoso/análise , Núcleo Hipotalâmico Paraventricular/química , Gravidez , Pró-Opiomelanocortina/análise , Ratos , Ratos Wistar , alfa-MSH/análise
13.
J Chem Neuroanat ; 52: 44-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23680380

RESUMO

Sepsis is known to affect neuroendocrine circuits: injections of lipopolysaccaride are potent stimulators of oxytocin secretion from the posterior lobe, acute sepsis leads to uterus contractions and spontaneous abort. Here, we report changes in expression and distribution of hypothalamic oxytocin in rats that had been subjected to caecal ligation and puncture which led to acute sepsis. Septic animals showed loss of oxytocin immunostaining in perikarya of the supraoptic and paraventricular nuclei and an increase of oxytocin positive fibres, suggesting a shift of oxytocin pools into the axonal compartment. Immunostaining of the posterior lobe revealed reduction of oxytocin in septic rats. Magnocellular neurons in supraoptic- and to a lesser extent in paraventricular nuclei showed nuclear immunoreactivity for the protooncogene c-Fos, indicating stimulation of transcriptional activity upon sepsis. Contrary to magnocellular oxytocin immunoreactivity, we observed increased oxytocin immunoreactivity in cell bodies and processes of periventricular nucleus and in perivascular neurons. Oxytocin neurons in other regions of the hypothalamus and the preoptic region did not appear to be affected by acute sepsis. Our findings suggest a differential activation of neurohypophyseal and cerebrospinal fluid contacting oxytocin systems while centrally projecting oxytocin neurons may not be affected. Systemic oxytocin levels may serve as additional diagnostic marker for sepsis.


Assuntos
Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Sepse/metabolismo , Animais , Hipotálamo/química , Hipotálamo/citologia , Hipotálamo/metabolismo , Masculino , Ocitocina/análise , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/citologia , Ratos , Ratos Wistar
14.
Neuroscience ; 228: 139-62, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23085097

RESUMO

The neuropeptide arginine vasopressin (AVP) exerts a modulatory role on hippocampal excitability through vasopressin V(1A) and V(1B) receptors. However, the origin and mode of termination of the AVP innervation of the hippocampus remain unknown. We have used light and electron microscopy to trace the origin, distribution and synaptic relationships of AVP-immuno-positive fibres and nerve terminals in the rat hippocampus. Immuno-positive fibres were present in all areas (CA1-3, dentate gyrus) of the whole septo-temporal extent of the hippocampus; they had the highest density in the CA2 region, strongly increasing in density towards the ventral hippocampus. Two types of fibres were identified, both establishing synaptic junctions. Type A had large varicosities packed with immuno-positive large-granulated peptidergic vesicles and few small clear vesicles forming type I synaptic junctions with pyramidal neuron dendrites, dendritic spines and with axonal spines. Type B had smaller varicosities containing mostly small clear vesicles and only a few large-granulated vesicles and established type II synaptic junctions mainly with interneuron dendrites. The AVP-positive axons in stratum oriens appeared to follow and contact metabotropic glutamate receptor 1α (mGluR1α)-immuno-positive interneuron dendrites. Fluoro-Gold injection into the hippocampus revealed retrogradely labelled AVP-positive somata in hypothalamic supraoptic and paraventricular nuclei. Hypothalamo-hippocampal AVP-positive axons entered the hippocampus mostly through a ventral route, also innervating the amygdala and to a lesser extent through the dorsal fimbria fornix, in continuation of the septal AVP innervation. Thus, it appears the AVP-containing neurons of the magnocellular hypothalamic nuclei serve as important sources for hippocampal AVP innervation, although the AVP-expressing neurons located in amygdala and bed nucleus of the stria terminalis reported previously may also contribute.


Assuntos
Arginina Vasopressina/análise , Hipocampo/química , Hipotálamo Anterior/química , Fibras Nervosas Mielinizadas/química , Núcleo Hipotalâmico Paraventricular/química , Sinapses/química , Animais , Arginina Vasopressina/fisiologia , Hipocampo/fisiologia , Hipotálamo Anterior/fisiologia , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Vias Neurais/química , Vias Neurais/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Ratos , Ratos Wistar , Sinapses/fisiologia
15.
Zhong Xi Yi Jie He Xue Bao ; 10(8): 874-9, 2012 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-22883403

RESUMO

OBJECTIVE: To investigate the effects of electroacupuncture (EA) at Neiguan (PC6) and Xinshu (BL15) on the nerve electrical activity in spinal dorsal root and norepinephrine (NE) and dopamine (DA) concentrations in the paraventricular nucleus of the hypothalamus in rats with acute myocardial ischemia (AMI). METHODS: A total of 100 male Sprague-Dawley rats were randomly divided into sham-operation, model, EA at PC6, EA at BL15 and EA at both PC6 and BL15 groups with 20 rats in each group. The nerve electrical activity in spinal dorsal roots was recorded by bipolar electrodes. NE and DA concentrations in the paraventricular nucleus of the hypothalamus were detected by high-performance liquid chromatography. RESULTS: When compared with the sham-operation group, the nerve electrical activity in spinal dorsal roots was significantly increased while the NE and DA concentrations in the paraventricular nucleus of the hypothalamus were decreased in the model group (P<0.01). The nerve electrical activity in spinal dorsal roots was decreased and the NE and DA concentrations were increased in the paraventricular nucleus of the hypothalamus in the EA at PC6 group, the EA at BL15 group and the EA at both PC6 and BL15 group in comparison to those in the model group (P<0.01). The nerve electrical activity in spinal dorsal roots and the NE and DA concentrations in paraventricular nucleus of hypothalamus of the EA at both PC6 and BL15 group were significantly improved when compared to those of the EA at PC6 and EA at BL15 groups (P<0.05). CONCLUSION: EA at both PC6 and BL15 acupoints exhibits the synergistic protective effects against AMI. The possible mechanism is related to regulating the nerve electrical activity in spinal dorsal roots and the concentrations of NE and DA in paraventricular nucleus of the hypothalamus.


Assuntos
Dopamina/análise , Eletroacupuntura , Isquemia Miocárdica/fisiopatologia , Norepinefrina/análise , Núcleo Hipotalâmico Paraventricular/química , Raízes Nervosas Espinhais/fisiopatologia , Pontos de Acupuntura , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
16.
Br J Nutr ; 108(12): 2286-95, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22874082

RESUMO

The interruption of lactation for a short period, without the use of pharmacological substances or maternal separation, causes offspring malnutrition and hypoleptinaemia and programmes for metabolic disorders such as higher body weight and adiposity, hyperphagia, hyperleptinaemia and central leptin resistance in adulthood. Here, in order to clarify the mechanisms underlying the phenotype observed in adult early-weaned (EW) rats, we studied the expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) in different hypothalamic nuclei by immunohistochemistry and Western blot. In the EW group, the teats of lactating rats were blocked with a bandage to interrupt lactation during the last 3 d, while control pups had free access to milk throughout the entire lactation period. At age 180 d, EW offspring showed higher NPY staining in the paraventricular nucleus (PVN), as well as NPY protein content (+68 %) in total hypothalamus than control ones. AgRP showed no changes in staining or Western blot. POMC content was not affected; however, its distribution pattern was altered. CART-positive cells of EW offspring had lower immunoreactivity associated with reduced cell number in the PVN and lower protein content ( - 38 %) in total hypothalamus. The present data indicate that precocious weaning can imprint the neuronal circuitry, especially in the PVN, and cause a long-term effect on the expression of specific orexigenic and anorexigenic neuropeptides, such as NPY and CART, that can be caused by leptin resistance and are coherent with the hyperphagia observed in these animals.


Assuntos
Proteína Relacionada com Agouti/análise , Expressão Gênica , Proteínas do Tecido Nervoso/análise , Neuropeptídeo Y/análise , Núcleo Hipotalâmico Paraventricular/química , Desmame , Fatores Etários , Animais , Western Blotting , Feminino , Hipotálamo/química , Imuno-Histoquímica , Lactação , Masculino , Pró-Opiomelanocortina/análise , Ratos , Ratos Wistar
17.
J Neurosci Methods ; 209(1): 127-33, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-22710285

RESUMO

Oxytocin (OXT) and arg-vasopressin (AVP) are nonapeptides with many important functions both peripherally and centrally. Intracerebral microdialysis has helped characterize their importance in regulating complex social and emotional processes. Radioiummunoassay is the most commonly used analytical method used for OXT and AVP measurements in microdialysates. These measurements have several well-known issues including single peptide per assay limit, possible cross-reactivity between structurally related peptides, and laborious sample preparation with radioactive materials. Here we demonstrate the use of capillary LC-MS(3) for measuring OXT and AVP simultaneously in dialysates at a 10 min sampling frequency. Microdialysate samples required no preparation and instrumentation was commercially available. Microdialysis probes made with polyacrylonitrile membranes were suitable for high level recovery of the peptides in vitro and in vivo. Responses were linear from 1 to 100 pM. Matrix effect was assessed by standard addition experiments and by comparing signal intensities of OXT and AVP standards made in aCSF or dialysate. It was determined that the online washing step used on this setup was adequate for removing contaminants which interfere with electrospray ionization efficiency. In vivo, both peptides were stimulated by high K(+) (75 mM) aCSF perfusion in the paraventricular nucleus (PVN). Also, a systemic injection of high Na(+) (2M) caused a rapid and transient increase in PVN OXT while AVP increased only after 1.5h. Our findings suggest that capillary LC-MS(3) is a straightforward method for monitoring OXT and AVP simultaneously from complex samples such as dialysates.


Assuntos
Arginina Vasopressina/análise , Microdiálise/métodos , Ocitocina/análise , Núcleo Hipotalâmico Paraventricular/química , Animais , Química Encefálica , Cromatografia Líquida , Masculino , Espectrometria de Massas , Ratos , Ratos Sprague-Dawley
18.
Neurosci Lett ; 515(1): 55-60, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22445884

RESUMO

Various lines of evidence indicate that astrocytes can undergo morphological changes that modify their relationship to adjacent neurons in response to physiological stimulation such as dehydration. Supraoptic (SON) and paraventricular (PVN) nuclei of hypothalamus represent obvious examples of activity-dependent neuro-astrocytic plasticity. In the present study, Meriones shawi is used as an animal model. Moreover, GFAP and vasopressin expressions are used as indicators successively of astrocytes and neuronal activations. In order to evaluate the reversibility of the neuro-astrocytic plasticity in SON and PVN, prolonged episode of water deprivation followed by episode of rehydration were examined. Hence, we studied the immunoreactivity in various hydration states: water ad libitum, dehydration, and rehydration of animals. Our results showed that dehydration of Meriones induced a significant decrease of GFAP immunoreactivity accompanied by a significant increase of AVP immunoreactivity, the latter concerns both cell bodies and fibers in the same hypothalamic nuclei SON and PVN. Conversely, rehydration of animals shows a reversible phenomenon leading a return of vasopressin and GFAP immunoreactivities to the control level. These results show that both astrocytes and vasopressin neurons display a remarkable structural and physiological plasticity, allowing to M. shawi, a great ability to support the hostile conditions in dry environment.


Assuntos
Desidratação/terapia , Hidratação , Proteína Glial Fibrilar Ácida/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo , Animais , Desidratação/patologia , Clima Desértico , Hidratação/métodos , Gerbillinae , Proteína Glial Fibrilar Ácida/antagonistas & inibidores , Plasticidade Neuronal/fisiologia , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Supraóptico/química , Núcleo Supraóptico/patologia , Resultado do Tratamento , Vasopressinas/biossíntese
19.
Neurosci Lett ; 509(1): 64-8, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22230896

RESUMO

In order to increase our knowledge about the distribution of vitamins in the mammalian brain, we have developed a highly specific antiserum directed against retinoic acid with good affinity (10(-8) M), as evaluated by ELISA tests. In the rat brain, no immunoreactive fibers containing retinoic acid were detected. Cell bodies containing retinoic acid were only found in the hypothalamus. This work reports the first visualization and the morphological characteristics of cell bodies containing retinoic acid in the mammalian paraventricular hypothalamic nucleus and in the dorsal perifornical region, using an indirect immunoperoxidase technique. The restricted distribution of retinoic acid in the rat brain suggests that this vitamin could be involved in very specific physiological mechanisms.


Assuntos
Hipotálamo/química , Tretinoína/análise , Animais , Ensaio de Imunoadsorção Enzimática , Hipotálamo/citologia , Soros Imunes/imunologia , Técnicas Imunoenzimáticas , Imuno-Histoquímica , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/citologia , Ratos , Tretinoína/imunologia
20.
Peptides ; 32(12): 2384-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21964377

RESUMO

Corticotropin-releasing factor (CRF) plays an important role in stress responses through activation of its receptor subtypes, CRF1 receptor (CRF(1)) and CRF2 receptor (CRF(2)). The parvocellular paraventricular nucleus of the hypothalamus (PVNp), the central nucleus of the amygdala (CeA), and the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), which are rich in CRF neurons with equivocal expression of CRF(1) and CRF(2), are involved in stress-related responses. In these areas, Fos expression is induced by various stimuli, although the functions of CRF receptor subtypes in stimuli-induced Fos expression are unknown. To elucidate this issue and to examine whether Fos is expressed in CRF or non-CRF neurons in these areas, the effects of antalarmin and antisauvagine-30 (AS-30), CRF(1)- and CRF(2)-specific antagonists, respectively, on intracerebroventricular (ICV) CRF- or 60min-restraint-induced Fos expression were examined in rats. ICV CRF increased the number of Fos-positive CRF and non-CRF neurons in the PVNp, with the increases being inhibited by antalarmin in CRF and non-CRF neurons and by AS-30 in CRF neurons. Restraint also increased Fos-positive CRF and non-CRF neurons in the PVNp, with the increases being inhibited by antalarmin in the CRF neurons. ICV CRF also increased Fos-positive non-CRF neurons in the CeA and the BNSTov, which was inhibited by AS-30 in both areas, and inhibited by antalarmin in the BNSTov only. Restraint increased Fos-positive non-CRF neurons in the CeA and BNSTov, with the increases being almost completely inhibited by either antagonist. These results indicate that both ICV CRF and restraint activate both CRF and non-CRF neurons in the PVNp and non-CRF neurons in the CeA and BNSTov, and that the activation is mediated by CRF(1) and/or CRF(2). However, the manner of involvement for CRF(1) and CRF(2) in ICV CRF- and restraint-induced activation of neurons differs with respect to the stimuli and brain areas; being roughly equivalent in the CeA and BNSTov, but different in the PVNp. Furthermore, the non-CRF(1&2)-mediated signals seem to primarily play a role in restraint-induced activation of non-CRF neurons in the PVNp since the activation was not inhibited by CRF receptor antagonists.


Assuntos
Neurônios/química , Receptores de Hormônio Liberador da Corticotropina/química , Estresse Fisiológico , Tonsila do Cerebelo/química , Animais , Imuno-Histoquímica , Infusões Intraventriculares , Masculino , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/química , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-fos/química , Pirimidinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Restrição Física , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...