Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 972: 176561, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580182

RESUMO

Neuronal depression in the thalamus underlies anesthetic-induced loss of consciousness, while the precise sub-thalamus nuclei and molecular targets involved remain to be elucidated. The present study investigated the role of extrasynaptic GABAA receptors in the central medial thalamic nucleus (CM) in anesthesia induced by gaboxadol (THIP) and diazepam (DZP) in rats. Local lesion of the CM led to a decrease in the duration of loss of righting reflex induced by THIP and DZP. CM microinjection of THIP but not DZP induced anesthesia. The absence of righting reflex in THIP-treated rats was consistent with the increase of low frequency oscillations in the delta band in the medial prefrontal cortex. CM microinjection of GABAA receptor antagonist SR95531 significantly attenuated the anesthesia induced by systemically-administered THIP, but not DZP. Moreover, the rats with declined expression of GABAA receptor δ-subunit in the CM were less responsive to THIP or DZP. These findings explained a novel mechanism of THIP-induced loss of consciousness and highlighted the role of CM extrasynaptic GABAA receptors in mediating anesthesia.


Assuntos
Anestesia , Isoxazóis , Receptores de GABA-A , Animais , Receptores de GABA-A/metabolismo , Masculino , Ratos , Isoxazóis/farmacologia , Diazepam/farmacologia , Ratos Sprague-Dawley , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Núcleo Mediodorsal do Tálamo/metabolismo , Núcleo Mediodorsal do Tálamo/fisiologia , Reflexo de Endireitamento/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
2.
J Psychopharmacol ; 34(12): 1371-1381, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103560

RESUMO

BACKGROUND: Thalamic subregions mediate various cognitive functions, including attention, inhibitory response control and decision making. Such neuronal activity is modulated by cholinergic thalamic afferents and deterioration of such modulatory signaling has been theorised to contribute to cognitive decline in neurodegenerative disorders. However, the thalamic subnuclei and cholinergic receptors involved in cognitive functioning remain largely unknown. AIMS: We investigated whether muscarinic or nicotinic receptors in the mediodorsal thalamus and anterior thalamus contribute to rats' performance in the five-choice serial reaction time task, which measures sustained visual attention and impulsive action. METHODS: Male Long-Evans rats were trained in the five-choice serial reaction time task then surgically implanted with guide cannulae targeting either the mediodorsal thalamus or anterior thalamus. Reversible inactivation of either the mediodorsal thalamus or anterior thalamus were achieved with infusions of the γ-aminobutyric acid-ergic agonists muscimol and baclofen prior to behavioural assessment. To investigate cholinergic mechanisms, we also assessed the behavioural effects of locally administered nicotinic (mecamylamine) and muscarinic (scopolamine) receptor antagonists. RESULTS: Reversible inactivation of the mediodorsal thalamus severely impaired discriminative accuracy and response speed and increased omissions. Inactivation of the anterior thalamus produced less profound effects, with impaired accuracy at the highest dose. In contrast, blocking cholinergic transmission in these regions did not significantly affect five-choice serial reaction time task performance. CONCLUSIONS/INTERPRETATIONS: These findings show the mediodorsal thalamus plays a key role in visuospatial attentional performance that is independent of local cholinergic neurotransmission.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Atenção/fisiologia , Agonistas GABAérgicos/farmacologia , Comportamento Impulsivo/fisiologia , Núcleo Mediodorsal do Tálamo/metabolismo , Antagonistas Muscarínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Desempenho Psicomotor/fisiologia , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Animais , Núcleos Anteriores do Tálamo/efeitos dos fármacos , Atenção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Agonistas GABAérgicos/administração & dosagem , Comportamento Impulsivo/efeitos dos fármacos , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Antagonistas Muscarínicos/administração & dosagem , Antagonistas Nicotínicos/administração & dosagem , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Long-Evans , Receptores Muscarínicos/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Percepção Espacial/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos
3.
Biomolecules ; 9(11)2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752219

RESUMO

N-methyl-d-aspartate/glutamate receptor (NMDAR) is one of the major voltage-sensitive ligand-gated cation channel. Several noncompetitive NMDAR antagonists contribute to pathophysiology of schizophrenia and mood disorders; however, the effects of inhibition of NMDAR on several transmitter system have not been well clarified. Thus, this study determined the selective NMDAR antagonist, MK801 (dizocilpine), on thalamocortical, mesothalamic, and mesocortical transmissions associated with l-glutamate, GABA, serotonin, norepinephrine, and dopamine using multiprobe microdialysis. Perfusion with MK801 into the medial prefrontal cortex (mPFC) increased and decreased respective regional releases of monoamine and GABA without affecting l-glutamate. The mPFC MK801-induced monoamine release is generated by the regional GABAergic disinhibition. Perfusion with MK801 into the reticular thalamic nucleus (RTN) decreased GABA release in the mediodorsal thalamic nucleus (MDTN) but increased releases of l-glutamate and catecholamine without affecting serotonin in the mPFC. The RTN MK801-induced l-glutamate release in the mPFC was generated by GABAergic disinhibition in the MDTN, but RTN MK801-induced catecholamine release in the mPFC was generated by activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/glutamate receptor (AMPAR) which received l-glutamate release from thalamocortical glutamatergic terminals in the mPFC. Perfusion with MK801 into the dorsal raphe nucleus (DRN) decreased GABA release in the DRN but selectively increased serotonin release in the MDTN and mPFC. These DRN MK801-induced serotonin releases in the both mPFC and MDTN were also generated by GABAergic disinhibition in the DRN. These results indicate that the GABAergic disinhibition induced by NMDAR inhibition plays important roles in the MK801-induced releases of l-glutamate and monoamine in thalamic nuclei and cortex.


Assuntos
Maleato de Dizocilpina , Núcleo Mediodorsal do Tálamo/metabolismo , Córtex Pré-Frontal/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Maleato de Dizocilpina/farmacocinética , Maleato de Dizocilpina/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
4.
Neuropharmacology ; 158: 107745, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445017

RESUMO

Non-competitive N-methyl-d-aspartate receptor antagonists mimic schizophrenia symptoms and produce immediate and persistent antidepressant effects. We investigated the effects of ketamine and phencyclidine (PCP) on thalamo-cortical network activity in awake, freely-moving male Wistar rats to gain new insight into the neuronal populations and brain circuits involved in the effects of NMDA-R antagonists. Single unit and local field potential (LFP) recordings were conducted in mediodorsal/centromedial thalamus and in medial prefrontal cortex (mPFC) using microelectrode arrays. Ketamine and PCP moderately increased the discharge rates of principal neurons in both areas while not attenuating the discharge of mPFC GABAergic interneurons. They also strongly affected LFP activity, reducing beta power and increasing that of gamma and high-frequency oscillation bands. These effects were short-lasting following the rapid pharmacokinetic profile of the drugs, and consequently were not present at 24 h after ketamine administration. The temporal profile of both drugs was remarkably different, with ketamine effects peaking earlier than PCP effects. Although this study is compatible with the glutamate hypothesis for fast-acting antidepressant action, it does not support a local disinhibition mechanism as the source for the increased pyramidal neuron activity in mPFC. The short-lasting increase in thalamo-cortical activity is likely associated with the rapid psychotomimetic action of both agents but could also be part of a cascade of events ultimately leading to the persistent antidepressant effects of ketamine. Changes in spectral contents of high-frequency bands by the drugs show potential as translational biomarkers for target engagement of NMDA-R modulators.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Núcleos Intralaminares do Tálamo/efeitos dos fármacos , Ketamina/farmacologia , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Fenciclidina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Neurônios GABAérgicos/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Núcleos Intralaminares do Tálamo/citologia , Núcleos Intralaminares do Tálamo/metabolismo , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tálamo , Vigília
5.
Brain Stimul ; 12(6): 1410-1420, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31324604

RESUMO

BACKGROUND: Social deficit is a core symptom in autism spectrum disorder (ASD). Although deep brain stimulation (DBS) has been proposed as a potential treatment for ASD, an ideal target nucleus is yet to be identified. DBS at the central thalamic nucleus (CTN) is known to alter corticostriatal and limbic circuits, and subsequently increase the exploratory motor behaviors, cognitive performance, and skill learning in neuropsychiatric and neurodegenerative disorders. OBJECTIVE: We first investigated the ability of CTN-DBS to selectively engage distinct brain circuits and compared the spatial distribution of evoked network activity and modulation. Second, we investigated whether CTN-DBS intervention improves social interaction in a valproic acid-exposed ASD rat offspring model. METHODS: Brain regions activated through CTN-DBS by using a magnetic resonance (MR)-compatible neural probe, which is capable of inducing site-selective microstimulations during functional MRI (fMRI), were investigated. We then performed functional connectivity MRI, the three-chamber social interaction test, and Western blotting analyses to evaluate the therapeutic efficacy of CTN-DBS in an ASD rat offspring model. RESULTS: The DBS-evoked fMRI results indicated that the activated brain regions were mainly located in cortical areas, limbic-related areas, and the dorsal striatum. We observed restoration of brain functional connectivity (FC) in corticostriatal and corticolimbic circuits after CTN-DBS, accompanied with increased social interaction and decreased social avoidance in the three-chamber social interaction test. The dopamine D2 receptor decreased significantly after CTN-DBS treatment, suggesting changes in synaptic plasticity and alterations in the brain circuits. CONCLUSIONS: Applying CTN-DBS to ASD rat offspring increased FC and altered the synaptic plasticity in the corticolimbic and the corticostriatal circuits. This suggests that CTN-DBS could be an effective treatment for improving the social behaviors of individuals with ASD.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/terapia , Estimulação Encefálica Profunda/métodos , Imageamento por Ressonância Magnética/métodos , Núcleo Mediodorsal do Tálamo/diagnóstico por imagem , Núcleo Mediodorsal do Tálamo/metabolismo , Animais , Transtorno do Espectro Autista/metabolismo , Mapeamento Encefálico/métodos , Relações Interpessoais , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo
6.
Biomolecules ; 9(6)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31213006

RESUMO

Pharmacological mechanisms of gold-standard antipsychotics against treatment-refractory schizophrenia, such as clozapine (CLZ), remain unclear. We aimed to explore the mechanisms of CLZ by investigating the effects of MK801 and CLZ on tripartite synaptic transmission in the thalamocortical glutamatergic pathway using multi-probe microdialysis and primary cultured astrocytes. l-glutamate release in the medial prefrontal cortex (mPFC) was unaffected by local MK801 administration into mPFC but was enhanced in the mediodorsal thalamic nucleus (MDTN) and reticular thalamic nucleus (RTN) via GABAergic disinhibition in the RTN-MDTN pathway. The local administration of therapeutically relevant concentrations of CLZ into mPFC and MDTN increased and did not affect mPFC l-glutamate release. The local administration of the therapeutically relevant concentration of CLZ into mPFC reduced MK801-induced mPFC l-glutamate release via presynaptic group III metabotropic glutamate receptor (III-mGluR) activation. However, toxic concentrations of CLZ activated l-glutamate release associated with hemichannels. This study demonstrated that RTN is a candidate generator region in which impaired N-methyl-d-aspartate (NMDA)/glutamate receptors likely produce thalamocortical hyperglutamatergic transmission. Additionally, we identified several mechanisms of CLZ relating to its superiority in treatment-resistant schizophrenia and its severe adverse effects: (1) the prevention of thalamocortical hyperglutamatergic transmission via activation of mPFC presynaptic III-mGluR and (2) activation of astroglial l-glutamate release associated with hemichannels. These actions may contribute to the unique clinical profile of CLZ.


Assuntos
Clozapina/farmacologia , Ácido Glutâmico/metabolismo , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ácido gama-Aminobutírico/metabolismo
7.
Neurobiol Learn Mem ; 162: 15-22, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31047996

RESUMO

Reciprocal connections between the mediodorsal thalamic nucleus (MD) and the prefrontal cortex (PFC) are important for memory processes. Since the co-abuse of nicotine and ethanol affects memory formation, this study investigated the effect of nitric oxide inhibition in the MD on memory retrieval induced by co-administration of nicotine and ethanol. Subsequently, western blot analysis was used to evaluate how this change would alter the PFC pCREB/CREB signaling pathway. Male Wistar rats were bilaterally cannulated into the MD and the memory retrieval was measured by passive avoidance task. Intraperitoneal (i.p.) administration of ethanol (1 g/kg, i.p) 30 min before the test impaired memory retrieval and caused ethanol-induced amnesia. Subcutaneous (s.c.) administration of nicotine (0.05-0.2 mg/kg, s.c.) prevented ethanol-induced amnesia and improved memory retrieval. Intra-MD microinjection of a nitric oxide synthase (NOS) inhibitor, L-NAME (0.5-1 µg/rat) inhibited the improving effect of nicotine (0.2 mg/kg, s.c.) on ethanol-induced amnesia, while intra-MD microinjection of a precursor of nitric oxide, l-arginine (0.25-1 µg/rat), potentiated such effect. Noteworthy, intra-MD microinjection of the same doses of L-NAME or l-arginine by itself had no effect on memory retrieval. Furthermore, intra-MD microinjection of L-NAME (0.05, 0.1 and 0.3 µg/rat) reversed the l-arginine improving effect on nicotine response. Successful memory retrieval significantly increased the p-CREB/CREB ratio in the PFC tissue. Ethanol-induced amnesia, however, decreased this ratio in the PFC while the co-administration of nicotine and ethanol increased the PFC CREB signaling. Interestingly, the inhibitory effect of L-NAME and the potentiating effect of l-arginine on nicotine response were associated with the decrease and increase of the PFC p-CREB/CREB ratio respectively. It can be concluded that MD-PFC connections are involved in the combined effects of nicotine and ethanol on memory retrieval. The mediodorsal thalamic NO system possibly mediated this interaction via the pCREB/CREB signaling pathways in the PFC.


Assuntos
Etanol/farmacologia , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Nicotina/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Córtex Pré-Frontal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Masculino , Núcleo Mediodorsal do Tálamo/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Agonistas Nicotínicos/farmacologia , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar
8.
Exp Brain Res ; 237(6): 1397-1407, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30887077

RESUMO

A cellular degeneration of two thalamic nuclei belonging to the "limbic thalamus", i.e., the anteroventral (AV) and mediodorsal (MD) nuclei, has been shown in patients suffering from Fatal Familial Insomnia (FFI), a lethal prion disease characterized by autonomic activation and severe insomnia. To better assess the physiological role of these nuclei in autonomic and sleep regulation, c-Fos expression was measured in rats during a prolonged exposure to low ambient temperature (Ta, - 10 °C) and in the first hours of the subsequent recovery period at normal laboratory Ta (25 °C). Under this protocol, the thermoregulatory and autonomic activation led to a tonic increase in waking and to a reciprocal depression in sleep occurrence, which was more evident for REM sleep. These effects were followed by a clear REM sleep rebound and by a rebound of Delta power during non-REM sleep in the following recovery period. In the anterior thalamic nuclei, c-Fos expression was (1) larger during the activity rather than the rest period in the baseline; (2) clamped at a level in-between the normal daily variation during cold exposure; (3) not significantly affected during the recovery period in comparison to the time-matched baseline. No significant changes were observed in either the MD or the paraventricular thalamic nucleus, which is also part of the limbic thalamus. The observed changes in the activity of the anterior thalamic nuclei appear, therefore, to be more specifically related to behavioral activation than to autonomic or sleep regulation.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Sistema Nervoso Autônomo/fisiologia , Regulação da Temperatura Corporal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fases do Sono/fisiologia , Vigília/fisiologia , Animais , Eletroencefalografia , Masculino , Núcleo Mediodorsal do Tálamo/metabolismo , Núcleos da Linha Média do Tálamo/metabolismo , Ratos , Ratos Sprague-Dawley , Sono REM/fisiologia , Sono de Ondas Lentas/fisiologia
9.
Pharmacol Res Perspect ; 7(1): e00457, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30784207

RESUMO

Deficiencies in N-methyl-d-aspartate (NMDA)/glutamate receptor (NMDAR) signaling have been considered central to the cognitive impairments of schizophrenia; however, an NMDAR antagonist memantine (MEM) improves cognitive impairments of Alzheimer's disease and schizophrenia. These mechanisms of paradoxical clinical effects of NMDAR antagonists remain unclear. To explore the mechanisms by which MK801 and MEM affect thalamocortical transmission, we determined interactions between local administrations of MK801, MEM, system xc- (Sxc), and metabotropic glutamate receptors (mGluRs) on extracellular glutamate and GABA levels in the mediodorsal thalamic nucleus (MDTN) and medial prefrontal cortex (mPFC) using dual-probe microdialysis with ultra-high-pressure liquid chromatography. Effects of MK801 and MEM on Sxc activity were also determined using primary cultured astrocytes. Sxc activity was enhanced by MEM, but was unaffected by MK801. MK801 enhanced thalamocortical glutamatergic transmission by GABAergic disinhibition in the MDTN. In the MDTN and the mPFC, MEM weakly increased glutamate release by activating Sxc, whereas MEM inhibited thalamocortical glutamatergic transmission. Paradoxical effects of MEM were induced following secondary activation of inhibitory II-mGluR and III-mGluR by exporting glutamate from astroglial Sxc. The present results suggest that the effects of therapeutically relevant concentrations of MEM on thalamocortical glutamatergic transmission are predominantly caused by activation of Sxc rather than inhibition of NMDAR. These demonstrations suggest that the combination between reduced NMDAR and activated Sxc contribute to the neuroprotective effects of MEM. Furthermore, activation of Sxc may compensate for the cognitive impairments that are induced by hyperactivation of thalamocortical glutamatergic transmission following activation of Sxc/II-mGluR in the MDTN and Sxc/II-mGluR/III-mGluR in the mPFC.


Assuntos
Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Ácido Glutâmico/metabolismo , Masculino , Núcleo Mediodorsal do Tálamo/metabolismo , Microdiálise/métodos , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Tálamo/metabolismo
10.
Neuropharmacology ; 156: 107547, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30802458

RESUMO

The selective α2A adrenoceptor agonist guanfacine reduces hyperactivity and improves cognitive impairment in patients with attention-deficit/hyperactivity disorder (ADHD). The major mechanisms of guanfacine have been considered to involve activation of postsynaptic α2A adrenoceptor in frontal pyramidal neurons. However, the effects of chronic guanfacine administration on catecholaminergic transmissions associated with the orbitofrontal cortex (OFC) remain unclear. To explore the mechanisms of action of guanfacine on catecholaminergic transmission, the effects of its acute local or sub-chronic systemic administration on catecholamine release within pathways from locus coeruleus (LC) to OFC and reticular thalamic nucleus (RTN), from RTN to mediodorsal thalamic nucleus (MDTN), and from MDTN to OFC were determined using multi-probe microdialysis with ultra-high performance liquid chromatography. Acute OFC local administration of guanfacine did not affect catecholamine release in OFC. Acute LC local and sub-chronic systemic administrations of guanfacine reduced norepinephrine release in LC, OFC and RTN, and also reduced GABA release in MDTN, whereas AMPA-induced (perfusion with AMPA into NDTN) releases of l-glutamate, norepinephrine and dopamine in OFC were enhanced by sub-chronic systemic guanfacine administration. This study identified that catecholaminergic transmission is composed of three pathways: direct noradrenergic and co-releasing catecholaminergic LC-OFC pathways and intermediate LC-OFC (LC-RTN-MDTN-OFC) pathway. We demonstrated the dual actions of guanfacine on catecholaminergic transmission: attenuation of direct noradrenergic LC-OFC transmission at the resting stage and enhancement of direct co-releasing catecholaminergic LC-OFC transmission via GABAergic disinhibition in the intermediate LC-OFC pathway. These dual actions of guanfacine probably contribute to clinical actions of guanfacine against ADHD and its comorbid symptoms. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Dopamina/metabolismo , Guanfacina/administração & dosagem , Norepinefrina/metabolismo , Córtex Pré-Frontal/metabolismo , Transmissão Sináptica , Animais , Núcleos Intralaminares do Tálamo/efeitos dos fármacos , Núcleos Intralaminares do Tálamo/metabolismo , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Núcleo Mediodorsal do Tálamo/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos
11.
Gen Comp Endocrinol ; 274: 73-79, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611814

RESUMO

To investigate factors involved in pregnancy-induced regulation of tissue sensitivity to leptin, we determined leptin concentrations and expression levels of the long form of the leptin receptor (LRb) and suppressor of cytokine signalling (SOCS)-3 in the ventro- and dorsomedial nuclei (VMH/DMH), arcuate nucleus (ARC), median eminence (ME) and anterior pituitary (AP) in 15 Polish Longwool ewes euthanized at 30, 60, 90 and 120 days of pregnancy and before gestation (n = 3 per group). Leptin concentrations increased during the first half of pregnancy, peaked on day 60, and then declined. In the VMH/DMH, LRb mRNA levels decreased from day 60 of pregnancy; in the ARC, LRb mRNA levels remained stable before and throughout pregnancy. LRb expression in the ME was lower in the first two months of pregnancy than before pregnancy (P < 0.01) and peaked at day 90. In the AP, LRb mRNA levels were higher during mid-pregnancy (P < 0.05) than before pregnancy. SOCS-3 expression in the VMH/DMH was higher throughout gestation (P < 0.05) than before pregnancy but was undetectable at day 120. SOCS-3 transcript levels were higher in the ARC (P < 0.05) in late-pregnancy (at day 120) than in non-pregnant ewes. SOCS-3 mRNA levels in the ME were lower at days 30 and 60 (P < 0.05) than at day 120 or before pregnancy. In the AP, SOCS-3 transcription was stable throughout gestation except at day 120, when it increased (P < 0.05). The changes in plasma leptin concentrations during pregnancy, hypothalamic LRb downregulation in the VMH/DMH during the second half of gestation and SOCS-3 upregulation in the ARC in late-pregnant ewes identified here may be essential components of the mechanisms driving ovine leptin insensitivity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Regulação para Baixo/genética , Leptina/metabolismo , Núcleo Mediodorsal do Tálamo/metabolismo , Receptores para Leptina/genética , Ovinos/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Regulação para Cima/genética , Animais , Feminino , Gravidez , RNA Mensageiro/genética , Receptores para Leptina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
12.
J Psychiatry Neurosci ; 43(5): 338-346, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30125244

RESUMO

BACKGROUND: Results of neuroimaging and postmortem studies suggest that people with schizophrenia may have lower levels of muscarinic M1 receptors (CHRM1) in the cortex, but not in the hippocampus or thalamus. Here, we use a novel immunohistochemical approach to better understand the likely cause of these low receptor levels. METHODS: We determined the distribution and number of CHRM1-positive (CHRM1+) neurons in the cortex, medial dorsal nucleus of the thalamus and regions of the hippocampus from controls (n = 12, 12 and 5, respectively) and people with schizophrenia (n = 24, 24 and 13, respectively). RESULTS: Compared with controls, levels of CHRM1+ neurons in people with schizophrenia were lower on pyramidal cells in layer III of Brodmann areas 9 (-44%) and 17 (-45%), and in layer V in Brodmann areas 9 (-45%) and 17 (-62%). We found no significant differences in the number of CHRM1+ neurons in the medial dorsal nucleus of the thalamus or in the hippocampus. LIMITATIONS: Although diagnostic cohort sizes were typical for this type of study, they were relatively small. As well, people with schizophrenia were treated with antipsychotic drugs before death. CONCLUSION: The loss of CHRM1+ pyramidal cells in the cortex of people with schizophrenia may underpin derangements in the cholinergic regulation of GABAergic activity in cortical layer III and in cortical/subcortical communication via pyramidal cells in layer V.


Assuntos
Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Núcleo Mediodorsal do Tálamo/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Receptor Muscarínico M1/metabolismo , Esquizofrenia/metabolismo , Adulto , Autopsia , Encéfalo/citologia , Encéfalo/metabolismo , Estudos de Casos e Controles , Contagem de Células , Córtex Cerebral/citologia , Feminino , Hipocampo/citologia , Humanos , Imuno-Histoquímica , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Pessoa de Meia-Idade , Neurônios/citologia , Células Piramidais/citologia , Esquizofrenia/patologia
13.
J Neurochem ; 147(1): 71-83, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989183

RESUMO

Elucidating how cannabinoids affect brain function is instrumental for the development of therapeutic tools aiming to mitigate 'on target' side effects of cannabinoid-based therapies. A single treatment with the cannabinoid receptor agonist, WIN 55,212-2, disrupts recognition memory in mice. Here, we evaluate how prolonged, intermittent (30 days) exposure to WIN 55,212-2 (1 mg/kg) alters recognition memory and impacts on brain metabolism and functional connectivity. We show that chronic, intermittent treatment with WIN 55,212-2 disrupts recognition memory (Novel Object Recognition Test) without affecting locomotion and anxiety-like behaviour (Open Field and Elevated Plus Maze). Through 14 C-2-deoxyglucose functional brain imaging we show that chronic, intermittent WIN 55,212-2 exposure induces hypometabolism in the hippocampal dorsal subiculum and in the mediodorsal nucleus of the thalamus, two brain regions directly involved in recognition memory. In addition, WIN 55,212-2 exposure induces hypometabolism in the habenula with a contrasting hypermetabolism in the globus pallidus. Through the application of the Partial Least Squares Regression (PLSR) algorithm to the brain imaging data, we observed that prolonged WIN 55,212-2 administration alters functional connectivity in brain networks that underlie recognition memory, including that between the hippocampus and prefrontal cortex, the thalamus and prefrontal cortex, and between the hippocampus and the perirhinal cortex. In addition, our results support disturbed lateral habenula and serotonin system functional connectivity following WIN 55,212-2 exposure. Overall, this study provides new insight into the functional mechanisms underlying the impact of chronic cannabinoid exposure on memory and highlights the serotonin system as a particularly vulnerable target.


Assuntos
Benzoxazinas/toxicidade , Encéfalo/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/toxicidade , Memória/efeitos dos fármacos , Morfolinas/toxicidade , Naftalenos/toxicidade , Rede Nervosa/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Globo Pálido/efeitos dos fármacos , Globo Pálido/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Núcleo Mediodorsal do Tálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos
14.
J Comp Neurol ; 526(9): 1498-1526, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29524205

RESUMO

The prefrontal cortex (PFC) is usually defined as the frontal cortical area receiving a mediodorsal thalamic (MD) innervation. Certain areas in the medial wall of the rat frontal area receive a MD innervation. A second frontal area that is the target of MD projections is located dorsal to the rhinal sulcus and often referred to as the orbitofrontal cortex (OFC). Both the medial PFC and OFC are comprised of a large number of cytoarchitectonic regions. We assessed the afferent innervation of the different areas of the OFC, with a focus on projections arising from the mediodorsal thalamic nucleus, the basolateral nucleus of the amygdala, and the midbrain dopamine neurons. Although there are specific inputs to various OFC areas, a simplified organizational scheme could be defined, with the medial areas of the OFC receiving thalamic inputs, the lateral areas of the OFC being the recipient of amygdala afferents, and a central zone that was the target of midbrain dopamine neurons. Anterograde tracer data were consistent with this organization of afferents, and revealed that the OFC inputs from these three subcortical sites were largely spatially segregated. This spatial segregation suggests that the central portion of the OFC (pregenual agranular insular cortex) is the only OFC region that is a prefrontal cortical area, analogous to the prelimbic cortex in the medial prefrontal cortex. These findings highlight the heterogeneity of the OFC, and suggest possible functional attributes of the three different OFC areas.


Assuntos
Vias Aferentes/fisiologia , Complexo Nuclear Basolateral da Amígdala/citologia , Núcleo Mediodorsal do Tálamo/citologia , Mesencéfalo/citologia , Córtex Pré-Frontal/citologia , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Monoaminas Biogênicas/metabolismo , Toxina da Cólera/metabolismo , Células HEK293 , Humanos , Masculino , Núcleo Mediodorsal do Tálamo/metabolismo , Mesencéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Estilbamidinas , Transfecção , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Sci Rep ; 7(1): 2501, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566754

RESUMO

Excessive alcohol consumption is a known risk factor for stroke, but the effect of stroke on alcohol intake is unknown. The dorsomedial striatum (DMS) and midbrain areas of the nigrostriatal circuit are critically associated to stroke and alcohol addiction. Here we sought to explore the influence of stroke on alcohol consumption and to uncover the underlying nigrostriatal mechanism. Rats were trained to consume alcohol using a two-bottle choice or operant self-administration procedure. Retrograde beads were infused into the DMS or midbrain to label specific neuronal types, and ischemic stroke was induced in the dorsolateral striatum (DLS). Slice electrophysiology was employed to measure excitability and synaptic transmission in DMS and midbrain neurons. We found that ischemic stroke-induced DLS infarction produced significant increases in alcohol preference, operant self-administration, and relapse. These increases were accompanied by enhanced excitability of DMS and midbrain neurons. In addition, glutamatergic inputs onto DMS D1-neurons was potentiated, whereas GABAergic inputs onto DMS-projecting midbrain dopaminergic neurons was suppressed. Importantly, systemic inhibition of dopamine D1 receptors attenuated the stroke-induced increase in operant alcohol self-administration. Our results suggest that the stroke-induced DLS infarction evoked abnormal plasticity in nigrostriatal dopaminergic neurons and DMS D1-neurons, contributing to increased post-stroke alcohol-seeking and relapse.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Alcoolismo/fisiopatologia , Corpo Estriado/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Comportamento de Escolha/fisiologia , Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Humanos , Masculino , Núcleo Mediodorsal do Tálamo/metabolismo , Núcleo Mediodorsal do Tálamo/fisiopatologia , Mesencéfalo/metabolismo , Mesencéfalo/fisiopatologia , Plasticidade Neuronal/fisiologia , Ratos , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Autoadministração , Acidente Vascular Cerebral/metabolismo
16.
Pain ; 158(7): 1302-1313, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28394853

RESUMO

Approximately 7% to 10% of patients develop a chronic pain syndrome after stroke. This chronic pain condition is called central poststroke pain (CPSP). Recent studies have observed an abnormal increase in the secretion of brain-derived neurotrophic factor (BDNF) in spinal cord tissue after spinal cord injury. An animal model of CPSP was established by an intrathalamus injection of collagenase. Mechanical and thermal allodynia was induced after lesions of the thalamic ventral basal complex in rats. Four weeks after the injection, the number of neurons decreased, the number of astrocytes, microglia, and P2X4 receptors increased, and BDNF mRNA expression increased in the brain lesion area. Nociceptive activity in the medial thalamus (MT) and the coherence coefficient of spontaneous field potential oscillations in the anterior cingulate cortex were enhanced in CPSP animals, and these enhancements were blocked by an acute injection of TrkB-Fc and TrkB antagonist Tat Cyclotraxin-B. Instead of being inhibited by the γ-aminobutyric acid (GABA) system in normal rats, multiunit activity in the MT was enhanced after a microinjection of muscimol, a GABAA receptor agonist, in CPSP animals. After CPSP, BDNF expression was enhanced in the MT, whereas the expression of GABAA channels and the cotransporter KCC2 decreased in the same area. These findings suggest that neuronal plasticity in the MT that was induced by BDNF overexpression after the thalamic lesion was a key factor in CPSP.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Núcleo Mediodorsal do Tálamo/metabolismo , Manejo da Dor/métodos , Dor/tratamento farmacológico , Peptídeos Cíclicos/uso terapêutico , Receptor trkB/antagonistas & inibidores , Acidente Vascular Cerebral/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Muscimol/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/etiologia , Dor/metabolismo , Peptídeos Cíclicos/farmacologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações
17.
Brain Struct Funct ; 222(6): 2527-2545, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28150086

RESUMO

Early postnatal damage to the mediodorsal thalamus (MD) produces deficits in cognition and behavior believed to be associated with early prefrontal cortical maldevelopment. We assessed the role of MD afferents during development on the morphological and functional maturation of the prefrontal cortex (PFC) and the basolateral amygdala (BLA). Sprague-Dawley rat pups (n = 56) received a bilateral electrolytic lesion of the MD or a MD Sham lesion on postnatal day 4. 7 weeks later, all rats were tested in anxiety-related and cognitive paradigms using the elevated plus maze and novel object recognition tests. Following behavioral testing (P70), rats were killed and the baseline expression of C-Fos protein and the number of GABAergic neurons were evaluated in the PFC and the BLA. The dendritic morphology and spine density in the PFC using Golgi-Cox staining was also evaluated. Adult rats with early postnatal bilateral MD damage exhibited disrupted recognition memory and increased anxiety-like behaviors. The lesion also caused a significant diminution of C-Fos immunolabeling and an increase of the number of GABAergic neurons in the PFC. In the BLA, the number of GABAergic neurons was significantly reduced, associated with an increase in C-Fos immunolabeling. Furthermore, in the PFC the lesion induced a significant reduction in dendritic branching and spine density. Our data are consistent with the hypothesis that the MD plays a role in the development of the PFC and, therefore, may be a good animal model to investigate cognitive symptoms associated with schizophrenia.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Comportamento Animal , Núcleo Mediodorsal do Tálamo/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia , Animais , Animais Recém-Nascidos , Ansiedade/patologia , Ansiedade/fisiopatologia , Ansiedade/psicologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/patologia , Cognição , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Estimulação Elétrica , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Aprendizagem em Labirinto , Núcleo Mediodorsal do Tálamo/metabolismo , Núcleo Mediodorsal do Tálamo/patologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Neurônios Aferentes/metabolismo , Neurônios Aferentes/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Reconhecimento Psicológico , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Psicologia do Esquizofrênico , Ácido gama-Aminobutírico/metabolismo
18.
Anat Histol Embryol ; 46(2): 213-215, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27402225

RESUMO

Glutamate acts as the excitatory neurotransmitter in the brain and is mediated largely by the vesicular glutamate transporters (VGLUTs). The objective of the study was to determine the distribution of VGLUT2 mRNA in the turtle brain by in situ hybridization. Intense expression was observed in the olfactory bulb, cerebral cortex, nucleus dorsomedialis thalami, nucleus dorsolateralis thalami, dorsal lateral geniculate nucleus, nucleus reuniens and nucleus periventricularis hypothalami. Moderate expression was noticed in the nucleus rotundus, area lateralis hypothalami, reticular nucleus, cerebellar nucleus and nucleus cochlearis. In conclusion, this study reveals many glutamatergic neurons in the turtle brain.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , RNA Mensageiro/genética , Tartarugas/anatomia & histologia , Proteína Vesicular 2 de Transporte de Glutamato/genética , Animais , Encéfalo/citologia , Córtex Cerebral/metabolismo , Corpos Geniculados/metabolismo , Hibridização In Situ , Núcleo Mediodorsal do Tálamo/metabolismo , Núcleos da Linha Média do Tálamo/metabolismo , Neurônios/citologia , Bulbo Olfatório/metabolismo
19.
Schizophr Res ; 177(1-3): 10-17, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26922657

RESUMO

BACKGROUND: Glutamic acid decarboxylase (GAD) is a key enzyme in GABA synthesis and alterations in GABAergic neurotransmission related to glial abnormalities are thought to play a crucial role in the pathophysiology of schizophrenia. This study aimed to identify potential differences regarding the neuropil expression of GAD between paranoid and residual schizophrenia. METHODS: GAD65/67 immunostained histological sections were evaluated by quantitative densitometric analysis of GAD-immunoreactive (ir) neuropil. Regions of interest were the hippocampal formation (CA1 field and dentate gyrus [DG]), superior temporal gyrus (STG), and laterodorsal thalamic nucleus (LD). Data from 16 post-mortem schizophrenia patient samples (10 paranoid and 6 residual schizophrenia cases) were compared with those from 16 matched controls. RESULTS: Overall, schizophrenia patients showed a lower GAD-ir neuropil density (P=0.014), particularly in the right CA1 (P=0.033). However, the diagnostic subgroups differed significantly (P<0.001), mainly because of lower right CA1 GAD-ir neuropil density in paranoid versus residual patients (P=0.036) and controls (P<0.003). Significant GAD-ir neuropil reduction was also detected in the right STG layer V of paranoid versus residual schizophrenia cases (P=0.042). GAD-ir neuropil density correlated positively with antipsychotic dosage, particularly in CA1 (right: r=0.850, P=0.004; left: r=0.800, P=0.010). CONCLUSION: Our finding of decreased relative density of GAD-ir neuropil suggests hypofunction of the GABAergic system, particularly in hippocampal CA1 field and STG layer V of patients with paranoid schizophrenia. The finding that antipsychotic medication seems to counterbalance GABAergic hypofunction in schizophrenia patients suggests the possibility of exploring new treatment avenues which target this system.


Assuntos
Região CA1 Hipocampal/metabolismo , Glutamato Descarboxilase/metabolismo , Esquizofrenia Paranoide/metabolismo , Lobo Temporal/metabolismo , Adulto , Idoso , Antipsicóticos/uso terapêutico , Região CA1 Hipocampal/efeitos dos fármacos , Estudos de Coortes , Feminino , Humanos , Imuno-Histoquímica , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Núcleo Mediodorsal do Tálamo/metabolismo , Pessoa de Meia-Idade , Neurópilo/metabolismo , Esquizofrenia Paranoide/tratamento farmacológico , Lobo Temporal/efeitos dos fármacos
20.
Neuropharmacology ; 107: 471-479, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26145183

RESUMO

The dorsal raphe nucleus (DR), the main source of 5-HT projections to brain areas involved in anxiety regulation, is composed by 5 subnuclei that differ morphologically, functionally and neurochemically. Based on immunohistochemical evidence, it has been proposed that whereas 5-HT cells of the dorsomedial (dmDR) and caudal subnuclei are implicated in the pathophysiology of generalized anxiety disorder (GAD), neurons of the lateral wings (lwDR) are associated with panic disorder (PD). We here tested this hypothesis from a behavioral perspective by investigating the consequences of the non-selective stimulation of neurons within the dmDR and lwDR, or the pharmacological manipulation of 5-HT1A receptors located in these nuclei, of male Wistar rats exposed to the elevated T-maze. This test allows the measurement of both a GAD- (i.e. inhibitory avoidance) and a PD- (i.e. escape) related response in the same animal. Intra-dmDR injection of either the excitatory amino acid kainic acid or the 5-HT1A receptor antagonist WAY-100635 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, and inhibited escape expression, a panicolytic-like effect. Microinjection of the 5-HT1A receptor agonist 8-OH-DPAT caused the opposite effect. Administration of the same drugs into the lwDR only altered escape performance. Whereas kainic acid and 8-OH-DPAT facilitated its expression, WAY-100635 inhibited it. At higher doses, kainic acid administration evoked vigorous escape reactions as measured in an open-field. These findings implicate 5-HT neurons of the dmDR in the regulation of both GAD- and PD-related defensive behaviors. They also support a primary role of the lwDR in the mediation of PD-associated responses.


Assuntos
Ansiedade/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Núcleo Mediodorsal do Tálamo/metabolismo , Pânico/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Pânico/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Neurônios Serotoninérgicos/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...