Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 24(6): 1562-1572, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089266

RESUMO

Cranial motor nuclei in the brainstem innervate diverse types of head and neck muscles. Failure in establishing these neuromuscular connections causes congenital cranial dysinnervation disorders (CCDDs) characterized by abnormal craniofacial movements. However, mechanisms that link cranial motor nuclei to target muscles are poorly understood at the molecular level. Here, we report that protocadherin-mediated repulsion mediates neuromuscular connection in the ocular motor system in zebrafish. We identify pools of abducens motor neurons that are topographically arranged according to soma size and convergently innervate a single muscle. Disruptions of Duane retraction syndrome-associated transcription factors reveal that these neurons require Mafba/MAFB, but not Sall4/SALL4, for differentiation. Furthermore, genetic perturbations of Pcdh17/protocadherin-17 result in defective axon growth and soma clumping, thereby abolishing neuromuscular connectivity. Our results suggest that protocadherin-mediated repulsion forms the central topography and efferent projection pattern of the abducens nucleus following Mafba-dependent specification and imply potential involvement of protocadherins in CCDD etiology.


Assuntos
Núcleo do Nervo Abducente/fisiopatologia , Tronco Encefálico/metabolismo , Animais , Humanos , Peixe-Zebra
2.
Invest Ophthalmol Vis Sci ; 56(1): 10-9, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25414191

RESUMO

PURPOSE: Infantile strabismus is characterized by persistent misalignment of the eyes. Mounting evidence suggests that the disorder is associated with abnormalities at the neural level, but few details are known. This study investigated the signals carried by abducens neurons in monkeys with experimentally induced strabismus. We wanted to know whether the firing rates of individual neurons are exclusively related to the position and velocity of one eye and whether the overall level of activity of the abducens nucleus was in the normal range. METHODS: We recorded 58 neurons in right and left abducens nuclei while strabismic monkeys (one esotrope and one exotrope) performed a saccade task. We analyzed the firing rates associated with static horizontal eye position and saccades by fitting the data with a dynamic equation that included position and velocity terms for each eye. Results were compared to previously published data in normal monkeys. RESULTS: For both strabismic monkeys the overall tonic activity was 50 to 100 spikes/s lower, for every suprathreshold eye position, than what has previously been reported for normal monkeys. This was mostly the result of lower baseline activity; the slopes of rate-position curves were similar to those in previous reports in normal monkeys. The saccade velocity sensitivities were similar to those of normal monkeys, 0.35 for the esotrope and 0.40 for the exotrope. For most neurons the firing rate was more closely related to the position and velocity of the ipsilateral eye. CONCLUSIONS: These data suggest that strabismus can be associated with reduced neural activity in the abducens nucleus.


Assuntos
Núcleo do Nervo Abducente/fisiopatologia , Neurônios Motores/fisiologia , Movimentos Sacádicos/fisiologia , Estrabismo/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA