Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.096
Filtrar
2.
Sci Adv ; 10(19): eadk7636, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728397

RESUMO

Corticotropin releasing factor (CRF) network in the oval nucleus of bed nuclei of the stria terminalis (ovBNST) is generally indicated in stress, but its role in female-biased susceptibility to anxiety is unknown. Here, we established a female-biased stress paradigm. We found that the CRF release in ovBNST during stress showed female-biased pattern, and ovBNST CRF neurons were more prone to be hyperexcited in female mice during stress in both in vitro and in vivo studies. Moreover, optogenetic modulation to exchange the activation pattern of ovBNST CRF neurons during stress between female and male mice could reverse their susceptibility to anxiety. Last, CRF receptor type 1 (CRFR1) mediated the CRF-induced excitation of ovBNST CRF neurons and showed female-biased expression. Specific knockdown of the CRFR1 level in ovBNST CRF neurons in female or overexpression that in male could reverse their susceptibility to anxiety. Therefore, we identify that CRFR1-mediated hyperexcitation of ovBNST CRF neurons in female mice encode the female-biased susceptibility to anxiety.


Assuntos
Ansiedade , Hormônio Liberador da Corticotropina , Neurônios , Receptores de Hormônio Liberador da Corticotropina , Núcleos Septais , Animais , Feminino , Ansiedade/metabolismo , Masculino , Neurônios/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Núcleos Septais/metabolismo , Camundongos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Aprendizagem da Esquiva/fisiologia , Estresse Psicológico/metabolismo , Comportamento Animal
3.
Theranostics ; 14(7): 2881-2896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773977

RESUMO

Methamphetamine (METH) withdrawal anxiety symptom and relapse have been significant challenges for clinical practice, however, the underlying neuronal basis remains unclear. Our recent research has identified a specific subpopulation of choline acetyltransferase (ChAT+) neurons localized in the external lateral portion of parabrachial nucleus (eLPBChAT), which modulates METH primed-reinstatement of conditioned place preference (CPP). Here, the anatomical structures and functional roles of eLPBChAT projections in METH withdrawal anxiety and primed reinstatement were further explored. Methods: In the present study, a multifaceted approach was employed to dissect the LPBChAT+ projections in male mice, including anterograde and retrograde tracing, acetylcholine (Ach) indicator combined with fiber photometry recording, photogenetic and chemogenetic regulation, as well as electrophysiological recording. METH withdrawal anxiety-like behaviors and METH-primed reinstatement of conditioned place preference (CPP) were assessed in male mice. Results: We identified that eLPBChAT send projections to PKCδ-positive (PKCδ+) neurons in lateral portion of central nucleus of amygdala (lCeAPKCδ) and oval portion of bed nucleus of the stria terminalis (ovBNSTPKCδ), forming eLPBChAT-lCeAPKCδ and eLPBChAT-ovBNSTPKCδ pathways. At least in part, the eLPBChAT neurons positively innervate lCeAPKCδ neurons and ovBNSTPKCδ neurons through regulating synaptic elements of presynaptic Ach release and postsynaptic nicotinic acetylcholine receptors (nAChRs). METH withdrawal anxiety and METH-primed reinstatement of CPP respectively recruit eLPBChAT-lCeAPKCδ pathway and eLPBChAT-ovBNSTPKCδ pathway in male mice. Conclusion: Our findings put new insights into the complex neural networks, especially focusing on the eLPBChAT projections. The eLPBChAT is a critical node in the neural networks governing METH withdrawal anxiety and primed-reinstatement of CPP through its projections to the lCeAPKCδ and ovBNSTPKCδ, respectively.


Assuntos
Ansiedade , Metanfetamina , Camundongos Endogâmicos C57BL , Síndrome de Abstinência a Substâncias , Animais , Metanfetamina/efeitos adversos , Masculino , Camundongos , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia , Ansiedade/metabolismo , Neurônios/metabolismo , Colina O-Acetiltransferase/metabolismo , Núcleos Septais/metabolismo , Comportamento Animal/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 121(20): e2319641121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709918

RESUMO

One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.


Assuntos
Ansiedade , Arginina Vasopressina , Receptores de Vasopressinas , Núcleos Septais , Comportamento Social , Animais , Masculino , Feminino , Ansiedade/metabolismo , Camundongos , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia , Arginina Vasopressina/metabolismo , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Caracteres Sexuais , Optogenética , Comportamento Animal/fisiologia , Vasopressinas/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia
5.
Mol Brain ; 17(1): 22, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702738

RESUMO

We previously reported that enhanced corticotropin-releasing factor (CRF) signaling in the bed nucleus of the stria terminalis (BNST) caused the aversive responses during acute pain and suppressed the brain reward system during chronic pain. However, it remains to be examined whether chronic pain alters the excitability of CRF neurons in the BNST. In this study we investigated the chronic pain-induced changes in excitability of CRF-expressing neurons in the oval part of the BNST (ovBNSTCRF neurons) by whole-cell patch-clamp electrophysiology. CRF-Cre; Ai14 mice were used to visualize CRF neurons by tdTomato. Electrophysiological recordings from brain slices prepared from a mouse model of neuropathic pain revealed that rheobase and firing threshold were significantly decreased in the chronic pain group compared with the sham-operated control group. Firing rate of the chronic pain group was higher than that of the control group. These data indicate that chronic pain elevated neuronal excitability of ovBNSTCRF neurons.


Assuntos
Dor Crônica , Hormônio Liberador da Corticotropina , Neurônios , Núcleos Septais , Animais , Núcleos Septais/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Neurônios/metabolismo , Dor Crônica/fisiopatologia , Dor Crônica/metabolismo , Masculino , Potenciais de Ação/fisiologia , Camundongos Endogâmicos C57BL , Camundongos
6.
Neurosci Biobehav Rev ; 161: 105683, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649125

RESUMO

The lateral septum (LS) is involved in controlling anxiety, aggression, feeding, and other motivated behaviors. Lesion studies have also implicated the LS in various forms of caring behaviors. Recently, novel experimental tools have provided a more detailed insight into the function of the LS, including the specific role of distinct cell types and their neuronal connections in behavioral regulations, in which the LS participates. This article discusses the regulation of different types of maternal behavioral alterations using the distributions of established maternal hormones such as prolactin, estrogens, and the neuropeptide oxytocin. It also considers the distribution of neurons activated in mothers in response to pups and other maternal activities, as well as gene expressional alterations in the maternal LS. Finally, this paper proposes further research directions to keep up with the rapidly developing knowledge on maternal behavioral control in other maternal brain regions.


Assuntos
Comportamento Materno , Núcleos Septais , Comportamento Materno/fisiologia , Animais , Núcleos Septais/fisiologia , Núcleos Septais/metabolismo , Feminino , Humanos , Ocitocina/metabolismo , Ocitocina/fisiologia
7.
Neurochem Int ; 176: 105739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604443

RESUMO

Corticoptropin releasing factor (CRF) is implicated in stress-related physiological and behavioral changes. The septohippocampal pathway regulates hippocampal-dependent mnemonic processes, which are affected in stress-related disorders, and given the abundance of CRF receptors in the medial septum (MS), this pathway is influenced by CRF. Moreover, there are sex differences in the MS sensitivity to CRF and its impact on hippocampal function. However, the mechanisms underlying these associations remain elusive. In the present study, we utilized an in vivo biosensor-based electrochemistry approach to examine the impact of MS CRF infusions on hippocampal cholinergic signaling dynamics in male and female rats. Our results show increased amplitudes of depolarization-evoked phasic cholinergic signals in the hippocampus following MS infusion of CRF at the 3 ng dose as compared to the infusion involving artificial cerebrospinal fluid (aCSF). Moreover, a trend for a sex × infusion interaction indicated larger cholinergic transients in females. On the contrary, intraseptal infusion of a physiologically high dose (100 ng) of CRF produced a subsequent reduction in phasic cholinergic transients in both males and females. The assessment of tonic cholinergic activity over 30 min post-infusion revealed no changes at the 3 ng CRF dose in either sex, but a significant infusion × sex interaction indicated a reduction in females at the 100 ng dose of CRF as compared to the aCSF. Taken together, our results show differential, dose-dependent modulatory effects of MS CRF on the dynamics of phasic and tonic modes of cholinergic signaling in the hippocampus of male and female rats. These cholinergic signaling modes are critical for memory encoding and maintaining arousal states, and may underlie sex differences in cognitive vulnerability to stress and stress-related psychiatric disorders.


Assuntos
Hormônio Liberador da Corticotropina , Hipocampo , Animais , Feminino , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ratos , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/administração & dosagem , Ratos Sprague-Dawley , Núcleos Septais/metabolismo , Núcleos Septais/efeitos dos fármacos , Caracteres Sexuais , Acetilcolina/metabolismo
8.
J Affect Disord ; 356: 672-680, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657771

RESUMO

BACKGROUND: Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS: Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS: Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS: This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS: Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Núcleo Accumbens , Tomografia por Emissão de Pósitrons , Racloprida , Receptores de Dopamina D2 , Humanos , Receptores de Dopamina D2/metabolismo , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Transtorno Depressivo Resistente a Tratamento/terapia , Transtorno Depressivo Resistente a Tratamento/metabolismo , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Núcleo Accumbens/metabolismo , Núcleo Accumbens/diagnóstico por imagem , Adulto , Núcleos Septais/metabolismo , Núcleos Septais/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Resultado do Tratamento
9.
Nat Commun ; 15(1): 3455, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658548

RESUMO

Understanding how distinct functional circuits are coordinated to fine-tune mood and behavior is of fundamental importance. Here, we observe that within the dense projections from basolateral amygdala (BLA) to bed nucleus of stria terminalis (BNST), there are two functionally opposing pathways orchestrated to enable contextually appropriate expression of anxiety-like behaviors in male mice. Specifically, the anterior BLA neurons predominantly innervate the anterodorsal BNST (adBNST), while their posterior counterparts send massive fibers to oval BNST (ovBNST) with moderate to adBNST. Optogenetic activation of the anterior and posterior BLA inputs oppositely regulated the activity of adBNST neurons and anxiety-like behaviors, via disengaging and engaging the inhibitory ovBNST-to-adBNST microcircuit, respectively. Importantly, the two pathways exhibited synchronized but opposite responses to both anxiolytic and anxiogenic stimuli, partially due to their mutual inhibition within BLA and the different inputs they receive. These findings reveal synergistic interactions between two BLA-to-BNST pathways for appropriate anxiety expression with ongoing environmental demands.


Assuntos
Ansiedade , Complexo Nuclear Basolateral da Amígdala , Optogenética , Núcleos Septais , Animais , Masculino , Núcleos Septais/fisiologia , Núcleos Septais/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Camundongos , Comportamento Animal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia
10.
Sci Rep ; 14(1): 8919, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637645

RESUMO

The natural alignment of animals into social dominance hierarchies produces adaptive, and potentially maladaptive, changes in the brain that influence health and behavior. Aggressive and submissive behaviors assumed by animals through dominance interactions engage stress-dependent neural and hormonal systems that have been shown to correspond with social rank. Here, we examined the association between social dominance hierarchy status established within cages of group-housed mice and the expression of the stress peptide PACAP in the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We also examined the relationship between social dominance rank and blood corticosterone (CORT) levels, body weight, motor coordination (rotorod) and acoustic startle. Male C57BL/6 mice were ranked as either Dominant, Submissive, or Intermediate based on counts of aggressive/submissive encounters assessed at 12 weeks-old following a change in homecage conditions. PACAP expression was significantly higher in the BNST, but not the CeA, of Submissive mice compared to the other groups. CORT levels were lowest in Submissive mice and appeared to reflect a blunted response following events where dominance status is recapitulated. Together, these data reveal changes in specific neural/neuroendocrine systems that are predominant in animals of lowest social dominance rank, and implicate PACAP in brain adaptations that occur through the development of social dominance hierarchies.


Assuntos
Corticosterona , Núcleos Septais , Animais , Masculino , Camundongos , Tonsila do Cerebelo/metabolismo , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Predomínio Social , Estresse Psicológico/metabolismo
11.
Behav Brain Res ; 465: 114928, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38432301

RESUMO

Testosterone (T), estrogen receptor alpha (ERα), and androgen receptor (AR) play a significant role in the regulation of paternal behavior. We determined the effects of deprivation of paternal care on alterations in paternal behavior, T concentrations in plasma, and the presence of ERα and AR in the medial preoptic area (mPOA), bed nucleus of the stria terminalis (BNST), medial amygdala (MeA), and olfactory bulb (OB), as well as the corticosterone (CORT) concentrations in plasma caused by deprivation of paternal care in the Mongolian gerbil (Meriones unguiculatus). Twenty pairs of gerbils were formed; the pups were deprived of paternal care (DPC) in 10 pairs. In another 10 pairs, the pups received paternal care (PC). Ten males raised in DPC condition and 10 males raised in PC conditions were mated with virgin females. When they became fathers, each DPC male and PC male was subjected to tests of paternal behavior on day three postpartum. Blood samples were obtained to quantify T and CORT concentrations, and the brains were removed for ERα and AR immunohistochemistry analyses. DPC males gave less care to their pups than PC males, and they had significantly lower T concentrations and levels of ERα and AR in the mPOA and BNST than PC males. DPC males also had higher CORT concentrations than PC males. These results suggest that in the Mongolian gerbil father's absence causes a decrease in paternal care in the offspring, which is associated with alterations in the neuroendocrine mechanisms that regulate it.


Assuntos
Receptores Androgênicos , Núcleos Septais , Animais , Feminino , Masculino , Humanos , Gerbillinae/fisiologia , Receptores Androgênicos/metabolismo , Núcleos Septais/metabolismo , Receptor alfa de Estrogênio/metabolismo , Comportamento Paterno/fisiologia , Área Pré-Óptica/metabolismo , Pai , Corticosterona
12.
Neurochem Int ; 175: 105720, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458538

RESUMO

The anteroventral bed nucleus of stria terminalis (avBNST) is a key brain region which involves negative emotional states, such as anxiety. The most neurons in the avBNST are GABAergic, and it sends GABAergic projections to the ventral tegmental area (VTA) and the dorsal raphe nucleus (DRN), respectively. The VTA and DRN contain dopaminergic and serotonergic cell groups in the midbrain which regulate anxiety-like behaviors. However, it is unclear the role of GABAergic projections from the avBNST to the VTA and the DRN in the regulation of anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and decreased level of dopamine (DA) in the basolateral amygdala (BLA). Chemogenetic activation of avBNSTGABA-VTA or avBNSTGABA-DRN pathway induced anxiety-like behaviors and decreased DA or 5-HT release in the BLA in sham and 6-OHDA rats, while inhibition of avBNSTGABA-VTA or avBNSTGABA-DRN pathway produced anxiolytic-like effects and increased level of DA or 5-HT in the BLA. These findings suggest that avBNST inhibitory projections directly regulate dopaminergic neurons in the VTA and serotonergic neurons in the DRN, and the avBNSTGABA-VTA and avBNSTGABA-DRN pathways respectively exert impacts on PD-related anxiety-like behaviors.


Assuntos
Ansiolíticos , Doença de Parkinson , Núcleos Septais , Ratos , Animais , Núcleo Dorsal da Rafe/metabolismo , Área Tegmentar Ventral/metabolismo , Serotonina/metabolismo , Núcleos Septais/metabolismo , Oxidopamina/toxicidade , Ansiedade , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Ansiolíticos/farmacologia , Neurônios Dopaminérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
Neuropharmacology ; 246: 109847, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218578

RESUMO

Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We have previously shown that intracerebroventricular administration of NPY reduces the expression of social fear via simultaneous activation of Y1 and Y2 receptors in a mouse model of social fear conditioning (SFC). In the present study, we investigated whether the anteroventral bed nucleus of the stria terminalis (BNSTav) mediates these effects of NPY, given the important role of BNSTav in regulating anxiety- and fear-related behaviors. We show that while NPY (0.1 nmol/0.2 µl/side) did not reduce the expression of SFC-induced social fear in male CD1 mice, it reduced the expression of both cued and contextual fear by acting on Y2 but not on Y1 receptors within the BNSTav. Prior administration of the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 µl/side) but not of the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 µl/side) blocked the effects of NPY on the expression of cued and contextual fear. Similarly, NPY exerted non-social anxiolytic-like effects in the elevated plus maze test but not social anxiolytic-like effects in the social approach avoidance test by acting on Y2 receptors and not on Y1 receptors within the BNSTav. These results suggest that administration of NPY within the BNSTav exerts robust Y2 receptor-mediated fear-reducing and anxiolytic-like effects specifically in non-social contexts and add a novel piece of evidence regarding the neural underpinnings underlying the effects of NPY on conditioned fear and anxiety-like behavior.


Assuntos
Núcleos Anteriores do Tálamo , Ansiolíticos , Núcleos Septais , Masculino , Camundongos , Animais , Neuropeptídeo Y/farmacologia , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Ansiolíticos/farmacologia , Núcleos Septais/metabolismo , Ansiedade/tratamento farmacológico , Medo , Núcleos Anteriores do Tálamo/metabolismo
14.
Neuropsychopharmacology ; 49(2): 377-385, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37452139

RESUMO

Corticotropin-releasing factor (CRF) in the anterior bed nucleus of the stria terminalis (aBNST) is associated with chronic stress and avoidance behavior. However, CRF + BNST neurons project to reward- and motivation-related brain regions, suggesting a potential role in motivated behavior. We used chemogenetics to selectively activate CRF+ aBNST neurons in male and female CRF-ires-Cre mice during an effort-related choice task and a concurrent choice task. In both tasks, mice were given the option either to exert effort for high value rewards or to choose freely available low value rewards. Acute chemogenetic activation of CRF+ aBNST neurons reduced barrier climbing for a high value reward in the effort-related choice task in both males and females. Furthermore, acute chemogenetic activation of CRF+ aBNST neurons also reduced effortful lever pressing in high-performing males in the concurrent choice task. These data suggest a novel role for CRF+ aBNST neurons in effort-based decision and motivation behaviors.


Assuntos
Hormônio Liberador da Corticotropina , Núcleos Septais , Camundongos , Masculino , Feminino , Animais , Hormônio Liberador da Corticotropina/metabolismo , Núcleos Septais/metabolismo , Motivação , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo
15.
eNeuro ; 10(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053471

RESUMO

Alcohol use disorder (AUD) is a complex psychiatric disease characterized by periods of heavy drinking and periods of withdrawal. Chronic exposure to ethanol causes profound neuroadaptations in the extended amygdala, which cause allostatic changes promoting excessive drinking. The bed nucleus of the stria terminalis (BNST), a brain region involved in both excessive drinking and anxiety-like behavior, shows particularly high levels of pituitary adenylate cyclase-activating polypeptide (PACAP), a key mediator of the stress response. Recently, a role for PACAP in withdrawal-induced alcohol drinking and anxiety-like behavior in alcohol-dependent rats has been proposed; whether the PACAP system of the BNST is also recruited in other models of alcohol addiction and whether it is of local or nonlocal origin is currently unknown. Here, we show that PACAP immunoreactivity is increased selectively in the BNST of C57BL/6J mice exposed to a chronic, intermittent access to ethanol. While pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor-expressing cells were unchanged by chronic alcohol, the levels of a peptide closely related to PACAP, the calcitonin gene-related neuropeptide, were found to also be increased in the BNST. Finally, using a retrograde chemogenetic approach in PACAP-ires-Cre mice, we found that the inhibition of PACAP neuronal afferents to the BNST reduced heavy ethanol drinking. Our data suggest that the PACAP system of the BNST is recruited by chronic, voluntary alcohol drinking in mice and that nonlocally originating PACAP projections to the BNST regulate heavy alcohol intake, indicating that this system may represent a promising target for novel AUD therapies.


Assuntos
Alcoolismo , Núcleos Septais , Animais , Camundongos , Ratos , Consumo de Bebidas Alcoólicas , Etanol , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico
16.
Behav Brain Res ; 453: 114628, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37579818

RESUMO

The medial amygdala (MeA) controls several types of social behavior via its projections to other limbic regions. Cells in the posterior dorsal and posterior ventral medial amygdala (MePD and MePV, respectively) project to the bed nucleus of the stria terminalis (BNST) and these pathways respond to chemosensory cues and regulate aggressive and defensive behavior. Because the BNST is also essential for the display of stress-induced anxiety, a MePD/MePV-BNST pathway may modulate both aggression and responses to stress. In this study we tested the hypothesis that dominant animals would show greater neural activity than subordinates in BNST-projecting MePD and MePV cells after winning a dominance encounter as well as after losing a social defeat encounter. We created dominance relationships in male and female Syrian hamsters (Mesocricetus auratus), used cholera toxin b (CTB) as a retrograde tracer to label BNST-projecting cells, and collected brains for c-Fos staining in the MePD and MePV. We found that c-Fos immunoreactivity in the MePD and MePV was positively associated with aggression in males, but not in females. Also, dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells compared to their same-sex subordinate counterparts. Another set of animals received social defeat stress after acquiring a dominant or subordinate social status and we stained for stress-induced c-Fos expression in the MePD and MePV. We found that dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells in the MePD after social defeat stress compared to subordinates. Also, dominants showed a longer latency to submit during social defeat than subordinates. Further, in males, latency to submit was positively associated with the proportion of c-Fos+ /CTB+ double-labeled cells in the MePD and MePV. These findings indicate that social dominance increases neural activity in BNST-projecting MePD and MePV cells and activity in this pathway is also associated with proactive responses during social defeat stress. In sum, activity in a MePD/MePV-BNST pathway contributes to status-dependent differences in stress coping responses and may underlie experience-dependent changes in stress resilience.


Assuntos
Complexo Nuclear Corticomedial , Núcleos Septais , Cricetinae , Animais , Masculino , Feminino , Núcleos Septais/metabolismo , Mesocricetus , Comportamento Social , Agressão , Complexo Nuclear Corticomedial/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
17.
Neuropharmacology ; 237: 109645, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392819

RESUMO

The anteroventral bed nucleus of the stria terminalis (avBNST) is widely acknowledged as a key brain structure that regulates negative emotional states, such as anxiety. At present, it is still unclear whether GABAA receptor-mediated inhibitory transmission in the avBNST is involved in Parkinson's disease (PD)-related anxiety. In this study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) in rats induced anxiety-like behaviors, increased GABA synthesis and release, and upregulated expression of GABAA receptor subunits in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). In both sham and 6-OHDA rats, intra-avBNST injection of GABAA receptor agonist muscimol induced the following changes: (i) anxiolytic-like responses, (ii) inhibition of the firing activity of GABAergic neurons in the avBNST, (iii) excitation of dopaminergic neurons in the ventral tegmental area (VTA) and serotonergic neurons in the dorsal raphe nucleus (DRN), and (iv) increase of DA and 5-HT release in the BLA, whereas antagonist bicuculline induced the opposite effects. Collectively, these findings suggest that degeneration of the nigrostriatal pathway enhances GABAA receptor-mediated inhibitory transmission in the avBNST, which is involved in PD-related anxiety. Further, activation and blockade of avBNST GABAA receptors affect the firing activity of VTA dopaminergic and DRN serotonergic neurons, and then change release of BLA DA and 5-HT, thereby regulating anxiety-like behaviors.


Assuntos
Doença de Parkinson , Núcleos Septais , Ratos , Animais , Receptores de GABA-A/metabolismo , Núcleos Septais/metabolismo , Serotonina/metabolismo , Oxidopamina/farmacologia , Ratos Sprague-Dawley , Ansiedade , Substância Negra/metabolismo , Dopamina/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Ácido gama-Aminobutírico
18.
Brain Behav Immun ; 113: 104-123, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37393058

RESUMO

Social novelty is a cognitive process that is essential for animals to interact strategically with conspecifics based on their prior experiences. The commensal microbiome in the gut modulates social behavior through various routes, including microbe-derived metabolite signaling. Short-chain fatty acids (SCFAs), metabolites derived from bacterial fermentation in the gastrointestinal tract, have been previously shown to impact host behavior. Herein, we demonstrate that the delivery of SCFAs directly into the brain disrupts social novelty through distinct neuronal populations. We are the first to observe that infusion of SCFAs into the lateral ventricle disrupted social novelty in microbiome-depleted mice without affecting brain inflammatory responses. The deficit in social novelty can be recapitulated by activating calcium/calmodulin-dependent protein kinase II (CaMKII)-labeled neurons in the bed nucleus of the stria terminalis (BNST). Conversely, chemogenetic silencing of the CaMKII-labeled neurons and pharmacological inhibition of fatty acid oxidation in the BNST reversed the SCFAs-induced deficit in social novelty. Our findings suggest that microbial metabolites impact social novelty through a distinct neuron population in the BNST.


Assuntos
Núcleos Septais , Camundongos , Animais , Núcleos Septais/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Neurônios/metabolismo , Transdução de Sinais , Comportamento Social
19.
Nature ; 620(7972): 154-162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495689

RESUMO

Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.


Assuntos
Jejum , Sistema Hipotálamo-Hipofisário , Neurônios , Sistema Hipófise-Suprarrenal , Proteína Relacionada com Agouti/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Jejum/fisiologia , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Sistema Hipotálamo-Hipofisário/citologia , Sistema Hipotálamo-Hipofisário/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/citologia , Sistema Hipófise-Suprarrenal/inervação , Sistema Hipófise-Suprarrenal/metabolismo , Terminações Pré-Sinápticas/metabolismo , Núcleos Septais/citologia , Núcleos Septais/metabolismo
20.
Horm Behav ; 154: 105407, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523807

RESUMO

Steroid-sensitive vasopressin (AVP) neurons in the bed nucleus of the stria terminalis (BNST) and medial amygdala (MeA) have been implicated in the control of social behavior, but the connectional architecture of these cells is not well understood. Here we used a modified rabies virus (RV) approach to identify cells that provide monosynaptic input to BNST and MeA AVP cells, and an adeno-associated viral (AAV) anterograde tracer strategy to map the outputs of these cells. Although the location of in- and outputs of these cells generally overlap, we observed several sex differences with differences in density of outputs typically favoring males, but the direction of sex differences in inputs vary based on their location. Moreover, the AVP cells located in both the BNST and MeA are in direct contact with each other suggesting that AVP cells in these two regions act in a coordinated manner, and possibly differently by sex. This study represents the first comprehensive mapping of the sexually dimorphic and steroid-sensitive AVP neurons in the mouse brain.


Assuntos
Complexo Nuclear Corticomedial , Núcleos Septais , Camundongos , Animais , Feminino , Masculino , Núcleos Septais/metabolismo , Caracteres Sexuais , Vasopressinas/metabolismo , Neurônios/metabolismo , Complexo Nuclear Corticomedial/metabolismo , Arginina Vasopressina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...